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SELF-CONSISTENT PARTICLE DYNAMICS IN THE GEOTAIL 
MAGNETIC FIELD REVERSAL 

B.V. Shulgin, S.C. Chapman, V.M. Nakariakov 

Dynamics оЁ ions т the geotail magnetic field reversal plasmas is modelled with а 
hybrid code. Poincaré maps are calculated for stationary and for adiabatically changing field 
configurations starting from an anisotropic pressure self-consistent equilibrium. It is shown 
that the essential dynamics as found previously for single particle in prescribed fields persists 
in the hybrid code simulations of self-consistent fields. The possible interplay of dynamical 
processes in the Earth’s magnetosphere and in the solar wind is discussed. 

The Earth magnetosphere (Fig. 1) has the long magnetotail directed outwards of 
the sun. The magnetotail is thought to operate as a storage of the energy accumulated 
from the solar wind, i.e. from the inflow оё the space plasma coming from the Sun. The 
consequent releases of the stored energy can cause magnetic substorms which have 
impact on the Earth inhabitants. One of the mechanisms connected with the origin of the 
energy releases 15 thought 10 be the changes т the complex dynamics оё charged particles 
in the magnetosphere. We simulate particle dynamics with a hybrid code and calculate 
Poincaré maps for the particie trajectories in а self-consistent, adiabatically changing 
field. 
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Fig. 1. Earth magnetosphere [1] 
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1. Method 

In the magnetohydrodynamics (MHD) the plasma particle distribution function is 
Maxwellian and it defines its density л, and the first and the second moments (bulk 
velocity апа pressure), U, p. The MHD equations сап be obtained by integration оё the 
Vlasov equation [2,3]. But the MHD approach can not be used if the plasma distribution 
function can be essentially non-Maxwellian. Then other approaches allowing for an 
arbitrary distribution function could be used, such ав the hybrid, particles-in-cell and 
Vlasov codes. The MHD approach also cannot be used if the time and space scales of the 
problem are of the order of the ion-gyromotion scales, because of appearing time 
dependence in the distribution function on the scales of averaging. 

In the hybrid code [4-6] the ions are considered as particles with an arbitrary 
distribution function while the electrons are still considered as a massless fluid with the 
Maxwell distribution function. This approach is computationally efficient, as it allows us 
do not resolve the small time scales of the electron gyromotion. The particles (ions) move 
accordingly to the equation of motion: 

dv/dt = q/m(E+vxB), @) 

and фе field can be found from the Maxwell equations in the low frequency limit, 

дВ/дг= -УхЕ, VxB=J, VB=0 (2) 

Е =-UxB + (VxBxB-VP )/ng (3) 

0. = Ипа - 0, (4) 

where U is the 10п bulk velocity and U, is the electron bulk velocity. The electron 
density is equal to the ion density, n, because of the plasma quasi-neutrality, апа the 
electron pressure, P, can be found from the electron fluid equation, 

3P,/ = -UVP,-yPY U, 
The moments of the ion distribution function: the density л and the bulk velocity U, can 
be obtained by averaging: 

n(x,)=f, fvxNdv+&, U1 = Ип (x2) [yAvxL)dV + &y (5) 

The limited number оё ions, N, оп the computational grid leads to appearing оё statistical 
errors оЁ averaging, &, &, which makes the code noisy. The noise intensity is inversely 

proportional to N2, апа proportional to the temperature. The statistical noise sources§ , 
and & сап be considered ав internal noise sources оЁ the plasma. Because the considered 
space plasma is collisionless with zero diffusion, it is necessary to introduce the 
numerical diffusion to stabilize the code. 

2. A self-consistent magnetic field reversal 

A simple one-dimensional (д/дх=д/ду=0) model for the magnetotail 15 @е 
modified Harris field reversal (Fig. 2): 

B(z) = B tanh(z/L)X + B, . (6) 

We will study the self-consistent field of form (6) created by the motion of charged 
particles in Фаг field. In order 10 get the reversal varying оп timescale much slower ап 
that оЁ the particles we want to set the reversal into initial equilibrium: др/дг=0, 0U/0r=0, 
дВ/дг=0. Using (2), (3), and (6), we obtain from the condition дВ/дг=0 that 
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U = ((1/р)дВ д + с„)Ё‚ (7) 
and др/дт=-\(р,/0)=0. From dU/dr=0 using 
(7) and the MHD equation of conservation 
of the momentum one gets the pressure 
balance equation: 

JxB = УР + VP, (8) 

which т the one-dimensional case conside- 

red is: УР=хдР, /д:+уЭР /дг+дР д2 [7]. It 
is known that in the one-dimensional case 
(6) the pressure balance can not be satisfied 
with the isotropic pressure tensor [8]. In 

order to obtain an anisotropic pressure tensor one can use the bi-Maxwellian distribution 

function with different temperatures in the directions perpendicular and paralle] ю the 
magnetic field [3] 

Fig. 2. Harris field reversal and axes ов rotated 
distribution function 

Fxav.t) = (Г T,72)[ml(2ck )] х ) 
© 

жехр[2(ту,- 012 T )-(mv )ХТ ). 
The pressure tensor corresponding to the bi-Maxwellian distribution function is diagonal 
in the local field-aligned coordinates, 

py=n(x0kT,, p,=n(x0kT,. (10) 

It & convenient to use the cartesian coordinates rotated to the angle g(z)=arctan(-B (z)/B,) 
(Fig. 2) ав the local coordinates. The tensor components in these Cartesian coordinates 
are: 

Р(2) = тп Г U -U)(z.v")dv, @, (12) 

where /(г,у' „Г) 15 the local (rotated) ion distribution function, 

К> = nl(2xky) 32 [ml(T, T, T, ) exp(-m/(2k;)) х ) 
` (12 

х exp[(v,-U VIT ~(v,-U PIT~(v,-U)IT.], 

where v and v_" are фе velocity vector components in the local coordinates. Substituting 
(12) into (11) and integrating, one can obtain: 

P_(2) = sin2q(2)/(2m)(n(z)k,T, (2)- n(z)kBT_L( z)), P:y(z) =0, 

P_(z) = Um(n(2)kyT, (2)cos’@(z)+n(2)k, T, (2)sin’p(z)). 

Substituting (13) into (8), integrating and using (10), one can get the components of the 
equilibrium anisotropic pressure tensor: 

(13) 

р,(2) = Ра - Р„ +const, p(z)=P,  +P,+const, (14) 

where Р =B/(2u,) 15 the magnetic pressure апа P, =(B,*+B,2)/(2u,) 15 the maximum 
magnetic pressure. 

The equation оЁ state for the plasma with anisotropic pressure tensor aligned with 
directions parallel апа perpendicular to the B field may be obtained in the CGL theory 
[8): 
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(д/дн-ОМ)(2? p [p°) = 0. (15) 

From (15) the equilibrium number density is: 

n(z) = (p,*@p ()" (16) 
The obtained self-consistent equilibrium given by the functions (6), (7), (10), 

(14), апа (16) is stable ю the local mirror-mode perturbation: (P, /Р„)(Р -P)<B*(2uy), 
апа neutrally stable to the local firehose-mode perturbations: РР =B%/,, 

To study the long-time stability of this magnetic reversal, we simulated #5 
dynamics with the hybrid code discribed above. The simulation showed that the self- 
consistent equilibrium is stable for а relatively long time, 7>100P , where P, 18 the ion gy- 
roperiod, and it slowly diffuses later due to the numerical diffusion introduced into the code. 

The numerical diffusion can be taken into account in the pressure balance equation (8) 

JxB=VP+VP,-D VB. (17) 

It leads 10 фе арреагапсе of ап additional component ов the bulk velocity, 

U =-D/B.(B /д2), —° (18) 

where the diffusion coefficient 15 D,=Ax*/(4Ar), where Аг and Ах are the time and space 
steps of the grid. Then the diffusion of the equilibrium gradually decreases. 

3. The Poincaré maps 

The Poincaré surface of section can be used to study the nonlinear particle 
dynamics [9,10]. In the map, each crossing of a chosen surface of section in the phase 
space by the phase trajectory in a chosen direction corresponds to a point. The ensemble 
оё these points defines а Poincaré map. In this approach, а periodical trajectory corresponds 
to а finite number оЁ points, ergodic tori correspond 10 а closed curves and chaotic motion 
corresponds to chaotic set of points. 

In general, the equation оё motion for а single particle defines а six-dimensional 
phase space. In the one-dimensional case (6), the equations are: 

dXldt=v, dvldt=f(z,v), X,vE КЗ. (19) 

One could see фаг in (19) there 15 а partial subsystem оё four equations which are 
independent of the other two. That subsystem is four-dimensional. For a chosen constant 
energy, H=mv?/2 апа а chosen direction of the crossings, e.g. dv_/dr>0, set (19) corres- 
ponds 10 а two-dimensional тар in the surface of section. There 15 а150 а transformation 
оё variables based оп the existence оё constants of the motion P, апа С, [11}: 

х = (x-P/(mw,))/(B,L), ( 
20) 

у = (y+C/(mw ))(B,L), z'=zI(B,L), 

where B, and L are ав in (6), and o,=¢B, /m. The transformation (20) reduces the system 
(19) ю а four-dimensional system with the two-dimensional map on the surface of 
section z=0. If the magnetic field is prescribed, the Poincaré map can be calculated from 
the particle equation оё motion (19) [12]. The Poincaré maps for different energies 
corresponding to different layers in the distribution function are presented in Fig. 3. In the 
figure, one can observe periodic and ergodic tori, chaotic trajectories and transient 
(Speiser) trajectories carrying the currents (empty areas). 
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In order to calculate the Poincaré maps for the self-consistent field one should take 
into account the following problems. The fields created by the particles are affected by 
the statistical noise (5), Фаг makes е maps noisy and gives them some width in the 
appearing г@ dimension (since the energy is no longer conserved). Affected by е 
noise, the particles can move into different areas of the phase space changing the 
behaviour of their motion. The diffusion of the field reversals increases the particles 
energy and makes the maps time-dependent. The noise and diffusion lead to development 
оё а small B, component that rotates апа transforms [12] the Poincaré maps. The noise 
intensity can be reduced by the increase оё number of particles in the grid. The Poincaré 
maps which were calculated for the self-consistent reversal are presented in Fig. 3. The 
Poincaré maps shown that the essential dynamics of single particles in prescribed fields 
[11] persists in the hybrid code simulations оё self-consistent fields. 
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Fig. 3. Poincaré maps for prescribed magnetic field (left column) and for self-consistent magnetic field 
(right column). Dimensionless energyH is 500; 50; 2.5 from top 10 bottom 
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Fig. 4. Screen-shots of the virtual reality representation оЁ particle trajectories in е phase space 

® у) а) Chaotic particle trajectory, b) quasiperiodic trajectory lying оп а three-dimensional projection 
оЁ afour-dimensional ergodic torus and its surface of section 

The virtual reality set at Warwick space and Astrophysics group provides us with a 
useful tool for studying complex particle trajectories. The 3D semi-immersive 
environment creates the effect of presence of studied objects flying in the air in the dark 
room with е observers. The objects could be interactively stirred (arbitrary scaled, 
moved or rotated) which allows us to analyse the geometry of the complex particles 
trajectories and corresponding Poincaré maps in details as shown in Fig. 4. 

4. Time dependent field reversal 

During magnetic substorms the geometry of the Earth field reversal changes in 
time, interacting with the charged particles. As а simple model оё а time dependent field 
reversal, the time dependence appearing in the reversal due to instability of the 
equilibrium caused by noise and numerical diffusion was chosen. Hybrid simulations 

showed that the time dependence could be well approximated by the following 

expressions: 
B_=Bgtanh(z/L(r)), L(1)=Ly+th, (21) 

where the value оё т depends оп the initial energy of particles. Chapman et al., [13,14] 
showed that it is possible to introduce two dimensionless parameters: the parameter оЁ 

adiabaticity оё фе system а,, ап the phase of the process, az [13], 

a=(B/B)(p,/L)(@,/2), 

where р 15 the gyroradius, and ©. =1/x. The changes in фе behaviour оё particles motion 

and time оё the changes are defined by parameters о. and oz. These parameters define the 

dynamics of the particles moving in the slowly changing magnetic field reversal. The 

detailed comparison of е self-consistent simulations with the predictions оЁ the 

prescribed field theory [13] is the aim of the further studies. 

5. Discussion 

A sudden destruction оГ the geotail magnetic reversal becausc оё the ficld slow 
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Fig. 5. а) D, geomagnetic index, large negative drops correspond to magnetic substorms; b) power 
spectrum density of AA geomagnetic index averaged for 30 years 
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Fig. 6. Signal-to-noise ratio (SNR) in AA power 
spectrum (bold line), and Sun spot number, SSN 
(dots) divided by 10 

evolution leads to the release of the energy 
accumulated from the solar wind, causing 
the events of storms and substorms. The 
understanding of the reversal destruction 
process would allow us to link statistical 
properties of geomagnetic activity with 
statistical properties of the solar wind. For 
example, the time dependence of the Earth 
geomagnetic index D shown in Fig. 5, а 
demonstrates the behaviour similar to the 
behaviour of simple integrate and fire 
systems affected by noise. This suggests 
the idea to try to use the simple stochastic 
integrate-and-fire — models for the 

magnetospheric substorm studies. There is 
also periodicity in the solar wind inflow caused by е rotation оё фе sun around its axes 
with the period оё approximately 27 days [15]. That periodicity can also be seen а5 the 
first peak ш the power spectra which we cal culated for the Earth geomagnetic index as 
shown in Fig. 5, b. The strength of the periodic component is not constant but correlates 
with the phase of the solar cycle (the number of the sun spots or solar activity) as 
presented in Fig. 6. Such a behaviour may be associated with the phenomenon of 
stochastic resonance [17,16] and needs to be studied. 

This research was supported by PPARC. B.S. thanks A.P.Nikitin апа 
A.G. Balanov ог useful discussions. The authors cordial greet Prof. Vadim Semenovich 
Anishchenko on the jubilee with the best wishes. 
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САМОСОГЛАСОВАННАЯ ДИНАМИКА ЧАСТИЦ B РАЗВОРОТЕ 
ПОЛЯ ГЕОМАГНИТНОГО XBOCTA 

Б.В. Шульгин, S.C. Chapman, B.M. Накаряков 

Динамика ионов в плазме геомагнитного хвоста моделируется с поМоЩЬюЮ 
тибридного кода. В случаях заданного и самосогласованного равновесия с 
медленно меняющимся магнитным полем вычисляются отображения Пуанкаре. 
Показано, что в рассматриваемом случае самосогласованного равновесия 
сохраняются основные свойства динамики заряженных частиц в заданных полях. 
Обсуждается возможная  связь  между  рассматриваемыми — динамическими 
процессами в Земной магнитосфере и в солнечном ветре. 
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