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FLUCTUATIONAL TRANSITIONS ACROSS LOCALLY-DISCONNECTED 
AND LOCALLY-CONNECTED FRACTAL BASIN BOUNDARIES 

A.N. Silchenko, S.Beri, D.G. Luchinsky and P.V.E. McClintock 

We study fluctuational transitions in а discrete dynamical system а: has two 
coexisting attractors in phase space, separated by а fractal basin boundary which may be 
cither locally-disconnected ог locaily-connected. It 18 shown that, in each case, transitions 

оссиг via ап accessible point оп the boundary. The complicated structure of paths inside the 
locally-disconnecied fractal boundary is determined by а hierarchy of homoclinic original 
saddles. The most probable escape path from а regular atiractor (0 the fractal boundary is 
found for the each type of boundary using both statistical analyses of fluctuational trajectories 
ала the Hamiltonian theory оё fluctuations. 

1. Introduction 

The stability of nonlinear multistable systems in the presence of noise is of great 
importance for practical applications {1,2]. It is well known аг nonlinear dynamical 
systems can demnonstrate sensitivity 10 initial conditions, even in the absence of limit sets 
with complex geometrical structure in their phase space. The reason lies in the complex 
structure оё the basins of attraction, which may be fractal [3-8], thus raising some 
challenging and difficult problems. For example, how does а fluctuational transition take 
place across a fractal basin boundary (FBB)? What is the difference, if any, in the 
transition mechanism for the different types оЁ FBB? If transitions across FBBs are 
characterised by general features, a knowledge of them. could considerably simplify 
investigations of stability and control for chaotic dynamical systems, both of which are 
topical problems of broad interdisciplinary interest [9-11]. 

А promising approach to this problem 15 based оп the analysis of fluctuations т the 
limit of small noise intensity: the system fluctuates 10 remote states along most probable 
deterministic paths [12-14] that correspond to rays in the WKB-like asymptotic solution 
оё the Fokker-Planck equation [15]. The approach has been extended to chaotic systems, 
both continuous and discrete, [16-19]. It was shown recently that the homoclinic 
tangencies responsible for fractahization of the basins cause а decrease in the activation 
energy [20]. However, there are still no theoretical predictions about the mechanism оЁ 
escape ш the case оЁ ап FBB. Unsolved problems include the uniqueness оЁ the escape 
path, the form оё the boundary conditions оп the ЕВВ and, аз already mentioned,whether 

ог not the mechanism of escape depends оп the гуре of ЕВВ under consideration. 
In this paper, we describe the mechanisms of fluctuational transition for two 

different types оё FBB, namely, locally-disconnected (LD) and locally-connected (LC) 
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FBBs. We show below that in spite of the large qualitative differences between these 

types оё FBB, their mechanisms оЁ fluctuational transition are characterised by а 

universal common feature. 

2. Transitions across a locally-disconnected FBB 

There are known to be several types оЁ ЕВВ in different dynamical systems [4-8]. 

The LD ЕВВ represents the simplest and commonest, and it is @е only type оё ЕВВ 10 

have been observed in experiments [4,5]. As ме will show below, the mechanism оЁ 

fluctuational transition across it is determined primarily by its deterministic structure, 

which enables us 10 infer that the mechanism must be generic to all systems with FBBs оЁ 

this kind. To reveal the transition mechanism across an LD FBB, we take as our model 

the two-dimensional map introduced by Holmes [21] 

Y =)=, 
@ 

эна =F5,Y,08) = -Б + dy, - 3,2 +E, 

where &, is white Gaussian noise with (g )=0, апа (§ &, )=2D3, „ In what follows we will 

adopt the notation x,={x,.y,}, f={f,/,} апа § ={0,£,}. Due to symmetry, е system (1) has 

pairs оЁ coexisting attractors for b=0.2 and 2.0<d<2.745. Their basins are separated by а 

boundary that may be either smooth ог fractal depending оп е chosen parameter values. 

We choose for опг studies #=0.2 and d=2.65, which corresponds ю there being two 

coexisting stable points оё period 4 whose basins are separated by ап LD ЕВВ (see 

Fig.1). The fractal dimension оё the boundary is equal to 1.8451. 

Yn 

Fig. L. The coexisting stable points оё period 4 (black crosses) апа their basins of attraction, shown in grey 

апа white respectively. The accessible boundary saddle points оё period 3 are indicated by шс small filled 

circles S3. Their stable manifolds are drawn а5 solid black lines 
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Fig. 2. (a) The most probable escape path (dashed line) connecting the stable point оё period 4 with the 
period-3 saddle cycle lying оп the fractal boundary obiained from the numerical simulations with 
D=10"3, The optimal path found by the sofution оё the boundary-value problem is shown ав а solid line. 
{b) Two-dimensional plot оё the paths presented in (a) 

To find the boundary conditions on the LD FBB, and the optimal fluctuational 

force steering the system (1) from one coexisting attractor to another, we will make use 
оё ап analogy between energy-optimal contro}l and noise-induced escape from а basin оЁ 
attraction. We have modelled (1) numerically, exciting е system with weak noise апа 
collecting both the escape trajectories between the attractors and also the corresponding 
noise realisations inducing the transitions. By ensemble-averaging a few hundred such 
escape trajectories and noise realisations, we have obtained the optimal escape path (see 
Fig. 2) and corresponding optimal force shown in Fig. 3. In the case of the LD FBB, 
these results allow us both to determine the boundary conditions near the boundary, and 

10 demonstrate the uniqueness оё the most probable escape path (MPEP). А typical 
optimal escape рай is shown in Fig. 2, а. A simple analysis оё the optimal ра shows 
that the system (1) leaves the stable point оё period 4 and moves to the LD FBB, crossing 
it ar a point оё period 3 located near, ог directly on, the LD ЕВВ (see Fig. 2, а). Simple 
calculations have shown Ваг а saddle point оё period 3, 83, in Fig. 1 and Fig. 2,5 (with 
multipliers p,=0.001218 and p,=6.566269) does exist for е chosen parameter values 
and that it lies оп the boundary. Moreover, its stable manifold (solid black line т Fig. 1} 
is dense in е boundary ап detaches the open neighborhood including the attractor from 
the LD ЕВВ itself, allowing us 10 classify it а$ ап accessible boundary point [22]. It is 

well known that the energy-optimal path is 
о т т т given by that path which minimises @е 

sum S = 1/2 Z.N: 16° where & 15 the noise 
realization moving the system from one 
attractor to the other. The extremal problem 
can easily be solved by taking (1) into 
account by means of Lagrangian 
multipliers A, [18], yielding the following 
Lagrangian for minimization: 
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where X, f(x) and &) are the two- 
dimensional vectors defined @ (1). 

Fig. 3. The optimal fluctuational force 2 obtained  Further, varying L with respect to & апа x, 
from the Monte-Carlo simulations we get the following two-dimensional map: 

4 3 12 6 я 
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Equations (2) are supplemented by the following boundary сопф оп5 

lim, A, =0, x?CEattractor, x,'€LDFBB. (3) Пка 

In fact, the unique energy-opuma.l trajectory along which 5 takes its minimal value is а 
heteroclinic trajectory 1 the four-dimensional phase space of the system (2), connecting 
the stable point of period 4 with a point on the boundary. At this stage, we are ready to 
solve the corresponding boundary-value problem for (2) numerically. This can be done 
via a procedure involving shooting from a very small neighbourhood of the chosen saddle 
point, parametrizing the initial conditions as points lying on a two-dimensional unstable 
manifold of this saddle point, characterized by the appropriate radius r and angle ¢, and 
with subsequent selection of the trajectory minimizing S. Initial values for the coordinates 
can be parametrised by the distance from the initial state and angular position; the initial 
values for the A, are obtained by using the equations for the linearised manifold. Durmg 
the evolution of the system (2) Гаг from its initial state, we collect the values S, 
=5 +1/2А ТА, апа plot S, as а function оЁ the two parameters. Thus, the global mmunum 
оё фе activation energy glves us the parameters corresponding to the optimal escape path. 
‘We emphasise that the optimal trajectory is physically real, and not just а mathematical 
abstraction. In fact, when the system (1) 15 driven by noise whose intensity tends (0 zero, 
the escape events become exponentially rare, but they take place in an almost 
deterministic way following very closely the deterministic trajectory of (2). As clearly 
seen from Fig. 2, е phase trajectory т (2) along which S takes И5 minimal value 
coincides with the MPEP obtained by taking ап ensemble average оЁ successful 
trajectories. Note аг no action is required to bring е system 10 the other attractor after 
it has hit the FBB, апа neither 15 there апу possibility оё controlling the motion inside the 
LD FBB. 

Analysis of the structure of escape paths inside the LD FBB has shown that 
homaoclinic saddle points play а key role. In the system (1), we observe ап infinite 
sequence of saddle-node bifurcations оё period 3,4,5,6..., occurring аг parameter values 
di<d,<d.<d,... апа caused by sequential tangencies of the stable and unstable manifolds 
оё the saddle point O а: (0,0). The homoclinic orbits appearing as the result of these 
bifurcations were classified earlier as original saddles and it was also shown that their 

stable and unstable manifolds cross each other in hierarchical sequence [22]. To 
characterize this hierarchical relationship between original saddles it is reasonable [0 use 
the ratio 

в = D (S, (5), 
where A (S) апа &, (S) аге the stable and unstable eigenvalues оё @е Jacobian matrix of 
(1) at the saddle point S. Simple calculations have shown that, for the original saddles of 
period 3,4,5,6... п (1), the following hierarchical sequence оё index p values occurs: 
1,=3.566, и,=3.301, иу=3.249, u=3.142. It is known that unstable periodic orbits 
embedded within a chaotic saddle define a distribution of the natural measure on it both 
for hyperbolic and nonhyperbolic dynamical systems [23,24]. In particular, the natural 
measure 1} оп а two-dimensional chaotic nonaitracting set is concentrated along its 
unstable mamfold апа can be represented via unstable eigenvalues of unstable orbits: 

n(C)=Z ЧЬ „а(*), where С is the region оё phase space containing the chaotic saddle, 
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A, (%) 15 the eigenvalue comspondmg to the unstable manifold and the summation is 
over ай the unstable orbits х; № С [24] (cf. [23]). A statistical analysis оё escape 
trajectories has shown that these probabilities demonstrate а hierarchical interrelation 
[25], which is in a good agreement with the distribution of the natural measure on the 
chaotic saddle O forming the LD FBB. 

3. Transitions across a locally-connected FBB 

‘We now consider the same escape problem, but in а system possessing ап ЕС FBB. 
This type of FBB is generally observed in two-dimensional noninvertible analytic and 
nonanalytic maps [4,26). We take ав our model а typical quadratic conformal map: 

X=Xy +07x, + ЕЛ 

“@ 
=2xy, +07x,+0.5y, +§2 n+l » 

where £ 1, Е2 are statistically independent sources оЁ white, Gaussian, noise оЁ zero mean 
that are of the same intensity D as each other. This map has stable points at the origin and 
at infinity, separated by the LC FBB. The boundary contains an infinite set of repelling 
points and, in this case, no stable ог saddle points. Note that noise-induced escape from 
the attractor surrounded by the LC FBB in (4) was considered earlier in the pioneering 
work оЁ Grassberger [18], who succeeded in calculating the optimal escape path, albeit 
without finding the boundary condition on the LC FBB or the mechanism of escape. 

To find the boundary condition оп the LC ЕВВ and фе optimal escape path, we use 
exactly the same technique as in the case of the LD FBB, above. The results of our 
calculations are presented т Fig. 4. As clearly seen from this figure, the system (4) 
leaves the stable point O at the origin along the unique optimal escape path and 
approaches the LC ЕВВ а е unique point shown in Fig. 4, а. Moreover, our 
calculations have shown that the optimal fluctuational force (see Fig. 4, b) becomes equal 
to zero at this moment. According to our previous results, this means that the system (4) 

reached the boundary а! #5 point, апа its further relaxation to infinity 15 noise-free and 
completely specified by @е deterministic structure оё е FBB. Ошг calculations have 
shown that the boundary point A corresponds exactly to the repelling boundary point of 
period 9, which plays the role of the unique boundary condition on this LC FBB. These 
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Fig. 4. {a) The locally-connected ЕВВ (solid closed curve), unstable nodes оё period 9 (crosses) and рошш 
оё (№ optimal escape path obtained from ®е Monte-Carlo simulations (filled circles) with D=5-1073, 
©) Components of the optimal fluctuational force: х (solid line) апа у (dashed line) 
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the corresponding four-dimensional extended map. To approach an understanding of why 
this repelling point should play фе role оё the boundary condition, it is necessary 10 look 
more closely at the structure оё the LC FBB, which is the Julia set J(x). It is well known 
that е Julia set contains а dense set о repelling points [27]. However, these points are 
not ай the same, and they may be classified 1 terms оЁ their local instability. Indeed, 
there are two types of repelling points forming the LC FBB in (4), namely, unstable 
nodes and unstable focuses. Every unstable node on the LC FBB has a part of its unstable 
manifold connecting it to the stable point O and lying fully inside its basin of attraction, 
whereas this is not true of а focus. By definition, а point х 15 accessible # there is а 

continuous curve y:[0,2)—C for which y(n) lies in е basin о attraction оё х for а! л and 
lim,__y(n)=x. This fact enable us Ю conclude that unstable nodes form а countable set of 
accessible points оп @ LC FBB. The presence оё а countable set оЁ accessible points 
was rigorously proven [28] quite recently. Our calculations have shown that accessible 
boundary points are distributed nonuniformly оп the boundary, and that their multipliers, 
have different values which, in turn, may lead 10 а hierarchal interrelationship between 
them. The quest for such a hierarchy, and further generalizations of our approach 
presented above, represent goals оЁ опг future investigations. 

4. Conclusions 

In conclusion, we have studied fluctuational transitions between coexisting regular 

attractors separated by both @е LD ап LC FBB. We have shown Фаг ап accessibie point 
оп the ЕВВ plays the role оё а unique boundary condition for both types of FBB. Our 
statistical analyses of fluctuational trajectories have yielded solutions of the boundary- 
value problem for both types of FBB, and have revealed the optimal fluctuational forces 
moving the systems (1) апа (4) from one attractor to the other. We were also able to find 
the unique optimal escape path in both cases. The original saddles forming the 
homoclinic structure of the system (1) play а key role in the formation of the escape paths 
inside the LD FBB, and the difference in their local stability defines the hierarchical 
relationship between them. The results obtained can be applied directly to the other maps 
and flows having the same type of FBB. 

The research has been supported by the Engineering апа Physical Sciences 
Research Council (UK) and INTAS. 
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ФЛУКТУАЦИОННЫЕ ПЕРЕХОДЫ ЧЕРЕЗ 
ЛОКАЛЬНО-НЕСВЯЗАННЫЕ И ЛОКАЛЬНО-СВЯЗАННЫЕ 

ФРАКТАЛЬНЫЕ ГРАНИЦЫ БАССЕЙНОВ 

A.H. Сильченко, $. Beri, Д.Г. Лучинский, P.V.E. McClintock 

МЫ изучаем флуктуационные переходы в дискретной динамической системе, 
которая имеет два сосуществующих аттрактора в фазовом пространстве, разделен- 
ных фрактальными границами бассейнов, которые могут быть или локально- 
несвязанными — или — локально-связанными. В каждом — случае — переходы 
осуществляются через общедоступную точку на границе. Сложная структура 
путей внутри локально-несвязанных фрактальных границ определяется иерархией 
гомоклинических первоначальных седел. Наиболее вероятная траектория выхода с 

регулярного аттрактора к фрактальной границе найдена для каждого типа границы 
с использованием как статистического анализа флуктуационных траекторий, так и 
Гамильтоновой теории флуктуаций. 
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