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SYNCHRONIZATION PHENOMENA IN MULTIMODE 
DYNAMICS OF COUPLED NEPHRONS 

О.М. Sosnovtseva, A.N. Pavlov, Е. Mosekilde, N.-H. Holstein-Rathlou 

The individual functional unit оё the kidney (the nephron) displays oscillations in its 
regulation оё the incoming blood flow а{ two different time scales: fast oscillations associated 
with а myogenic dynamics of the afferent arteriole, and slower oscillations arising from а 
delay in the tubuloglomerular feedback. The paper investigates the intra- and inter-nephron 
interactions of these two modes. Besides full synchronization, both wavelet analyses of 
experimental data and numerical simulations of a detailed physiological model reveal the 
occurrence ©Ё а partial entrainment in which neighboring nephrons attain а state оЁ 
synchronization with respect 10 their slow dynamics, but the fast dynamics remain 
desynchronized. 

Introduction 

The concept of homeostasis [1], i.e. the ability of the body to maintain a nearly 
constant internal milieu despite changes in фе external conditions, plays ап essential role 
in the description оЁ physiological control systems. It is sometimes assumed Фаг 
homeostasis implies that the physiological variables are kept near a stable steady state by 
means оё effective feedback regulation. While this may be the case т certain situations, 
biological systems in general should be considered as open dissipative systems that are 
maintained under far-from-equilibrium conditions [2]. Regular and irregular oscillations 
associated with various forms of instability are common features of behavior that can be 
observed during normal functioning or arise in connection with particular states of 
disease [3]. 

The kidneys play an important role in regulating the blood pressure and 
maintaining a proper environment for the cells of the body. It is well-established that 
renal autoregulation is mediated by at least two mechanisms, the tubuloglomerular 
feedback (TGF) and the myogenic response оЁ the afferent arteriole [4]. The TGF 
mechanism produces a negative feedback control that regulates the nephronal blood flow 
and, hence, the single-nephron glomerular filtration rate and the tubular flow rate in 
dependence of the NaCl concentration of the fluid that leaves the nephron. Experiments 
by Leyssac and Holstein-Rathlou [5,6] have demonstrated that this feedback regulation 
can become unstable and generate self-sustained oscillations in е proximal intratubular 
pressure with a typical period of 30-40 s. With different amplitudes and phases the same 
oscillations are manifest т the distal intratubular pressure and in фе chloride 

concentration near the terminal part оЁ the loop оё Henle [7]. While for normal га the 
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Fig. 1. Regular tubular pressure oscillations from а normotensive rat (a) апа irregular pressure variations 
from a spontaneously hypertensive rat (b) й 

oscillations have the арреагапсе оё а limit cycle with а sharply peaked power spectrum (Fig. 1, 
@), highly irregular oscillations are observed for spontaneously hypertensive rats (Fig. 1,6) [5]. 

The myogenic mechanism represents the intrinsic response of the smooth muscle 
cells т the the vascular wall 10 changes ш the TGF-signal ав well а5 Ю other stimuli. This 
mechanism operates at 0.1-0.2 Hz. An increase of the transmural pressure elicits a 
contraction of the vascular smooth muscle causing a vasocontriction and an increase in 
the resistance of the afferent arteriole. Since both mechanisms act оп the afferent arteriole 
to control its hemodynamic resistance, the activation of one of the mechanisms modifies 

the response of the other [4]. 
Different forms of entrainment between the tubular pressure variations in adjacent 

nephrons were described in a couple of recent publications [8,9]. Observation of both in- 
phase and anti-phase synchronization was reported for the regular pressure oscillations in 
normal rats while spontancously hypertensive rats revealed signs оЁ chaotic phase 
synchronization. 

Entrainment phenomena are of considerable interest from a physiological point of 
view. It is known, for instance, that epileptic seizures are related with the synchronization 
©Ё larger groups оЁ cells in the brain [10]. In their погта! physiological states, waves оЁ 
cytoplasmic calcium are known to propagate across cell assemblies such as, for instance, 

° smooth muscle cells and B-cells. For the kidney, the aggregate response оЁ the ensemble 
оё nephrons 15 expected to depend оп their state оё synchronization. While entrainment оЁ 
single-mode deterministic ог stochastic oscillations is well understood, the dynamics оЁ 

systems with several oscillatory modes 15 less studied. Living systéms often exhibit 
oscillations with different time scales. The thalamocortical relay neurons, for instance, 

сап generate either spindle ог delta oscillations [11]. It was recently found [12] that the 
electroreceptors in paddlefish can be biperiodic. In the present paper we describe е 
individual nephron а5 а two-mode oscillator demonstrating relatively fast oscillations 
associated with the myogenic regulation of the arteriolar diameter and slower oscillations 
related with the delay in the tubuloglomerular feedback. We study numerically as well as 
experimentally the entrainment between these time scales both within the individual 
nephron апа between neighboring nephrons. We apply the wavelet-based techniques 10 
describe features of entrainment in nonstationary dynamics of coupled nephrons. 

1. Nephron autoregulation 

1.1. Mathematical model. Over the years significant efforts have been made to 
develop mathematical models that can account for the observed regular and irregular 
pressure variations and describe the physiological processes that occur along the tubular 
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system [13,14]. A particular aspect о this research has been to show that the transition 
from regular oscillations to irregular variations in the tubular pressure can be explained in 
terms of parameter changes within the framework of well-established physiological 

mechanisms. A review of the work may be found in the recent contribution by Andersen 
et al. [15]. Here, а model оё nephron-nephron interaction was developed and it was 
shown that this model can produce а уапе!у оё different synchronization phenomena. 
Autoregulation of the pressures and flows in the individual nephron may be described by 
the following model [14]: 

P=(UC, ), (Pyr)-F - (P-PYIR,), 

F=v, 

¥, = (Ua)(P,(Pyr) - P, (r¥(X;,0).T) - оа, @ 

X, = (P,-P)IR, - 3X,IT, 

X, = BN, -X,), 
X, = BIT)(X,-X,). 

The first equation represents the pressure variations in the proximal tubule in terms 
of the in- and outgoing fluid flows. Here, Р, is the single-nephron glomerular filtration 
rate and С.„ is the elastic compliance of the tubule. The flow into the loop оЁ Henle 18 
determined by the difference (P,-Pd) between the proximal and the distal tubular pressures 
and by е flow resistance R,,. The reabsorption in the proximal tubule Р„ is assumed 10 
be constant. 

The following two equations describe the dynamics associated with the flow 
control in the afferent arteriole. Here, г represents the radius оЁ the active part оЁ the 
vessel and v_is its rate оЁ increase. @ is а characteristic time constant describing the 
damping оё the oscillations, @ 15 а measure оё the mass relative to е elastic compliance 
оё the arteriolar wall, and P, denotes the average pressure in the active part оё the 
arteriole. Р„ 18 the value of this pressure for which the arteriole 15 in equilibrium with its 
present radius and muscular activation . The expressions for Р, P, апа P, involve а 
number оё algebraic equations [аг must be solved along with the integration of Eq.(1). 

The remaining equations 1 the single-nephron тоде! describe the delay T in the 
TGF regulation. This delay arises both from the transit time through the loop of Henle 
and from the cascaded enzymatic processes between the macula densa cells and the 
smooth muscle cells that control the contractions of the afferent arteriole. The feedback 
delay, which typically assumes a value of 12-18 sec, will be considered a bifurcation 
parameter in our analysis. Another important parameter is the strength a оё the feedback 
regulation. This parameter takes а value of about 12 for normotensive rats, increasing 10 
about 18 for hypertensive rats [16). For а more detailed explanation оё the model апа фе 
parameters, see Ref. [15]. 

Considering the model equations (1) we can identify the two time scales in terms 
of (i) a low-frequency (TGF-mediated) oscillation with а period T, =2.2T arising from the 
delay in the tubuloglomerular feedback, and (ii) somewhat faster oscillations with a 
period T,=T, /5 associated with the inherent myogenic adjustment. 

To determine 7, and T, in опг numerical simulations we have used е mean return 
times of the trajectory 10 appropriately chosen Poincaré sections 

Т, =Ty о» Т, = Tl o0 @ 
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Fig. 2. Two-mode oscillatory behavior 1 the single nephron model. Black colored regions correspond 10 а 
chaotic solution 

Here, T ml‘w -о denotes the time between two subsequent crossings (from е same 

side) of the trajectory through the plane v =0. 
From these return times it is easy to calculate the intra-nephron rotation number 

(i.e., the rotation number associated with the two-mode behavior оЁ е individual 
nephron) 

г„ =T, T, () 

With varying feedback delay Т апа varying slope а of the open loop feedback 
curve, Fig. 2 shows how the two oscillatory modes can adjust their dynamics and attain 
states with different rational relations (n : т) between е periods. The regions оё high 
resonances (1:4, 1:5, and 1:6) are seen to exist in the physiologically interesting range of 
the delay time ТЕ[12 sec, 20 sec]. However, some оё these regions are relatively small, 
and there are neighboring regions with 2:11, 2:13, and chaotic dynamics. While the 
transitions between е different locking regimes always involve bifurcations, 
bifurcations may also occur within the individual regime. A period-doubling transition, 
for instance, does not necessarily change г „„ and the intra-nephron rotation number may re- 
main constant through a complete period-doubling cascade and into the chaotic regime [9]. 

1.2. Experimental data analysis. Physiological signals are generated by complex, 
self-regulating systems and may be extremely inhomogeneous and nonstationary. 
Processing of data series of this type by means of conventional techniques such as 
correlation and/or Fourier analysis can lead to misinterpretations of the results. That is 
why special techniques bascd оп wavelet analysis become of а high interest [17]. 
Wavelets provide us with the possibility of searching hidden periodicities in short, 
nonstationary data and follow the temporal evolution of different rhythmic components in 
the case of noisy multimode dynamics. 
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The wavelet transform оё а signal х(и) can be written as: 

T, (@f) = a2 [ (' (ut)ia)d @ 

Here v is а «mother» function that in general can have ап arbitrary shape provided it is 
soliton-like with zero average. T (ау) are the wavelet coefficients, а being а time scaling 

and ¢ a time displacement parameter. To investigate the presence of various rhythmic 
components, the Morlet wavelet is particularly useful. The given function consists оЁ two 
terms, however, in practice one of them is small enough and can be ignored. One 

typically uses the following simplified expression for the Morlet function: 

м@) = mWexp(-2kt)exp[-¥2]. © 
This wavelet represents а harmonic oscillation with frequency f=k/a and with ап 
amplitude that is modified т time by Gaussian factor describing how the wave arises and 
decays. For the frequency range being of interest in the dynamics of nephrons we can 
take k;=1". In such а case the frequency /15 the simple inversion of time scale а, and the 
expression for Ше wavelet transform can be rewritten as follows: 

т( = V2 L x(upy (D), =f (u-t). (6) 

The wavelet transform T (f,¢) measures е spectral contribution near the frequency f аё 

time ¢ of the observed signal. 
Some authors [18] prefer to consider other complex wavelet functions because of 

possible spurious effects (especially for time series with nonzero mean). To avoid such 

problems we have transformed all time series to zero mean value before applying the 

wavelet technique. 
Та addition to the wavelet transform coefficients T (f,r) we can estimate the energy 

density Е (f.0)=IT (f,)P. As the result there 15 а surface in а 3-dimensional space E(f,1). 

Sections of this surface аг fixed time moments ¢=f, correspond ю the local energy 

spectrum. To simplify the visualization оё the two-dimensional spectrum E, (/) ме can 

consider only the dynamics of the local maxima оЁ E (f¢,), i.c., е peaks оё the local 

spectra. 
Fig. 3 shows the different components detected in the time series оё Fig. 1. (Here, 

aiming to illustrate the complex nonstationary dynamics of real nephrons, we demonstrate 

ай maxima оЁЕ (ft,) independently оё their magnitudes). Inspection оё the figure reveals 

that the slow oscillations, whether they are periodic or chaotic, maintain a nearly constant 

fHz 7 Нг 

03 

Fig. 3. Wavelet analysis of the two time-series presented in Fig.1 

The value k, allows to search some compromise between localization оё the wavelet function in 

both, time domain апа frequency domain. 
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Fig. 4. Power spectrum obtained from the wavelet analysis for the two time-series presented in Fig.1. Two 
peaks, representing the fast myogenic oscillations and the slower tubuloglomerular oscillations, are well- 
distinguished 

frequency through the observation time. The fast oscillations, on the other hand, fluctuate 

significantly, particularly for the hypertensive rat. This may be related to a complex 
modulation оЁ the fast oscillations by the slow dynamics ог to the influence оЁ noise 
(since the fast oscillations are small т amplitude, they are more sensitive ю fluctuations). 

The presentation in Fig. 3 does not provide information about the dominant 
spectral components. This information can be obtained, for example, from a so-called 
scalogram, i.e., а time averaged power spectrum, being ап analogue to the Fourier power 
spectrum. Such а scalogram is illustrated in Fig. 4 where а well-pronounced peak around 
0.03 Hz, corresponding to the slow TGF-mediated mode, is distinguishable. The other 
peak at 0.15-0.2 Hz derives from the fast myogenic dynamics. It is interesting to note 
how clearly these oscillations can be detected from the tubular pressure variations. Since 
both the above frequency components are of physiological interest we extract them from 
the original wavelet transformation for further analysis of their coherence properties. 
Fig. 5 displays the relation between fast апа slow oscillations in а single nephron. For the 
periodic oscillations observed for normotensive rats (Fig. 5, а), the fast and slow 
components adjust their periods in accordance 10 one another ю maintain а 1:5 
entrainment during the observation time. For the chaotic oscillations observed for 
hypertensive rats (Fig. 5, b), the гапо changes more randomly in time. 

We conclude that besides being regular or chaotic, the self-sustained pressure 
variations т the individual nephron can be classified аз being synchronous ог 
asynchronous with respect to the ratio between the two time scales that characterize the 
fast (arteriolar) mode and the slow (TGF mediated) mode, respectively. As we shall see, 
this complexity in behavior may play an essential role in the synchronization between a 
pair of interacting nephrons. 
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Fig. 5. Ratio of the internal time-scales for a normotensive rat (a) and for a hypertensive rat (b) 
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2. Entrainment of oscillatory modes for interacting nephrons 

2.1. Simulation results. Neighboring nephrons can influence each other’s blood 

supply either through vascularly propagated electrical (or electrochemical) signals ог 

through а hemodynamic coupling arising via а direct redistribution оё the blood flow 
between the coupled nephrons. While the hemodynamic coupling depends mainly on the 
flow resistances in the arteriolar network, the vascularly propagated coupling is 
associated with signal transmission between smooth muscle cells. The result is that only 
nephrons situated close 10 one another can interact via ®е vascularly propagated 
coupling. Nephrons situated farther apart but sharing а common piece оЁ interlobular 
artery may interact via the hemodynamic coupling. 

In the present work we shall focus our attention on the vascularly propagated 
coupling, assuming the hemodynamic coupling to be negligible. In the single-nephron 
model the equilibrium pressure in the afferent arteriole depends on the current radius r 
and оп the activation level ¥ of the smooth muscles surrounding @е arteriole апа 
controlling its diameter. The muscular activation arises at the juxtaglomerular apparatus 
апа travels upstream along the afferent arteriole in а damped fashion. When it reaches the 
branching point with the arteriole from the neighboring nephron, part of the signal may 
propagate down а! arteriole апа start 10 contribute to its TGF response. The coupling is 
considered nearly instantaneous since the time it takes for the vascular signal to reach the 
other nephron 18 very small relative to the period оё the TGF-oscillations. It has been 
observed [19] аг е signal decreases nearly exponentially ав it propagates. Thus only а 
fraction, y=e0<1, оё the original activation level reaches the vascular smooth muscles 

close 10 macula densa оё the neighboring nephron. In the expression for the vascular 

coupling parameter v, / is the propagation length оЁ the coupling signal, and =500 рг is 

the characteristic length scale of the exponential decay. In the model, the vascularly 

propagated coupling 15 represented by adding а contribution of the activation level in one 

nephron to the activation level in the neighboring nephron: 

W, =W,y () 

with у being the coupling parameter and ¥, №е uncoupled activation levels оё Ше two 

nephrons as determined by their respective Henle flows. In view оё the characteristic 

propagation length for the signal and of measured distances between neighboring 

nephrons along е arteriolar network, а typical value оё у is considered to be 0.1-0.2 

{19]. By virtue оЁ the two-mode dynamics оё the individual nephron, а number оё new 

and interesting results appear. 

The individual oscillatory system has two modes that can be locked with each 

other. However, ап interaction between functional units can break their mutual 

adjustment. It 15 also plausible that а coupling can асг in different manners оп е fast and 

slow oscillations. For the interacting systems we introduce two rotation numbers а$ 

follows: 

r=T Ty — 7 Таа ®) 

To provide more information, the variation of the phase difference is calculated 

separately for the slow / and for the fast v oscillations. 

Let us consider the case оЁ a=30.0 corresponding © а weakly developed chaotic 

attractor in the individual nephron. The coupling strength у апа delay time T, in the 

second nephron are varied. Two different chaotic states can be recognized а$ 

asynchronous апа synchronous (Fig. 6). For asynchronous behavior the rotation numbers 

r, апа r, change continuously with 7, while inside the synchronization region two cases 

can be distinguished. To the left, the rotation numbers 7, and r, аге both equal (o unity 
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ь Ty [ Fig. 6. Full and partial synchronization of fast and 
slow motions; Т) =13.5 sec, а=30.0 апа y=0.06 

since both slow and fast oscillations are 
synchronized. To the right (T,>14.2 sec), 
while фе slow А - тойе оЁ the chaotic 
oscillations remain locked, the fast v-mode 

drifts randomly. In this case the 
synchronization condition is fulfilled only 

12.0 13.0 14.0 T,s  for one of oscillatory modes. 
09 

2.2. Experimental results: frequency adjustments. Using anatomical criteria, 

neighboring nephrons having a high likelihood of deriving their afferent arterioles from 

the same interlobular artery were identified [19]. In these nephrons 29 out оЁ 33 pairs 
(i.e., 80%) were found to have synchronized oscillations. In contrast, nephron pairs not 

fulfilling these criteria only showed synchronous oscillations п one case out of 23 

investigated pairs (i.e., 4%). This observation shows а! synchronized oscillations are 

preferentially found in nephrons originating from е same interlobular artery. Fig. 7 

displays е tubular pressure variations in pairs оё neighboring nephrons for а 

normotensive гаг (@) апа for hypertensive rats (b)-(d). The oscillations presented in (b), 
(с) апа (d) are significantly more irregular than the oscillations displayed in (а). One can 
visually observe a certain degree of synchronization between the interacting nephrons. It 
is difficult, though, to separately estimate the degree of adjustment for the myogenic 

oscillations and for the TGF mediated oscillations without special tools. 
To study interactive dynamics in coupled systems the newly developed wavelet 

P, 

Fig. 7. Examples оЁ фе tubular pressure variation that one can observe 1 adjacent nephrons @) for 
normotensive and (b)-(d) for hypertensive rats 
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based coherence measures can be successfully used [20]. In the present paper, we modify 

the approach proposed by Lachaux ег al. [20] апа introduce а coherence measure that is 

more appropriate for the purpose of our analysis. Fig. 8 shows two examples where the 

slow oscillations remain quite stationary while the frequencies of the fast oscillations vary 

significantly with time (they may be non-synchronous similar to Fig. 8, а, but they may 
be also synchronous for neighboring nephrons!- see Fig. 8, b). To analyze such situations 
we introduce a formalism where we can adjust the control frequency of the wavelet 
function rather than assuming some fixed value defined a priori [21]. This approach 
resembles to well-known sliding window analysis [22]. However, within the framework 
of the wavelet technique the window size is varied depending on the frequency: We need 
a small window to study high-frequency changes of the time series with good precision 

and а large window to study low-frequency spectral information. To examine entrainment 

phenomena between two rhythms 1 coupled biological oscillators (e.g., between the slow 

TGF-mediated motions or between the fast motions in neighboring nephrons) we have to 
follow the temporal evolution оё rhythmic components (i.e., maxima оё local spectra 
associated with these modes) and their coherence. Because such peaks (instantaneous 
frequencies оё rhythmic components) may show large fluctuations relative to the mean 
value, we consider a coherence measure for two interacting modes that depends on both 

time and frequency. 
Let E_(fit) апа Е „(7.г) be the energy densities of signals x(¢) and y(¢). Let also in 

some range of frequencies A each of the processes х(г) апа y() has а clearly expressed 
rthythm (e.g., range of slow ог fast oscillations for the two nephrons). In this. case 

synchronization means that the corresponding frequencies forx(z) and у(г) will be locked 

(coincide). Such а situation corresponds to the value I',=1 for the function: 

2(8 = тах [Е (0P maxy, [E, () ]ча а[( ©) 

Here, Е, y(f,t) is the mutual energy density E)y(fit):ITw(f,t)Tyx' (Nl T,(2) 15 а function оЁ 
time аг allows us to follow the evolution оЁ the interactive dynamics of the two 
processes-in е chosen frequency range А. The more synchronous the rhythms оЁ these 

processes are е closer T',(#) will be to 1. 
Та general when two frequencies are coincide’ уе can speak about the property of 

coherence. To prove the presence of synchronization the phenomenon of phase or 

frequency locking should be studied. The advantage of nonstationary dynamics consists 

in the following. Because фе frequency associated to one rhythm changes in time, using 

wavelets we can clearly see whether the second frequency follow these changes or not. 

That is why we can speak about the synchronization phenomena besides the coherence 

properties. 
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Fig. 8. Examples оё nonstationary non-synchronous (а) ап nonstationary synchronous (b) dynamics оё 
the fast oscillatory modes. In both cases slow modes demonstrate stationary synchronous state 
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Fig. 9. Mutual wavelet analysis for е slow oscillations of @е two time-series presented in Fig.7: @) 
synchronous behavior, (b)) nonsynchronous dynamics, () and (d) synchronous behavior but during 
limited time intervals 
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Fig. 10. Mutual wavelet analysis for the fast oscillations extracted from time-series presented т Fig. 7. @) 
апа (c) illustrate synchronous behavior, () апа (d) nonsynchronous dynamics 
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Fig. 9 and 10 demonstrate different degrees оЁ coherence for the considered modes. 
For periodic oscillations (Fig. 9, a and Fig. 10, a), both the slow and fast modes of the 
interacting nephrons are perfectly locked during the observation time. For a system with 
complex oscillations subjected 10 noise one can speak about а certain degree оЁ 
synchronization if the periods оЁ locking are large compared with the characteristic 
periods оЁ oscillations [23]. Fully incoherent behavior with respect to both oscillatory 
modes can be observed in Fig. 9, b and Fig. 10, b. In many cases we can diagnose 
synchronization of the slow motions (Fig. 9, ¢, d) for relatively long time intervals where 
the frequencies remain almost equal. The fast motions, on the other hand, can 
demonstrate different coherence properties between nephrons. The oscillations can be 
locked during long periods оё time together with the slow oscillations (Fig. 10, с). We 
define this type of synchronization as full synchronization since all time scales of the 
system are locked. Another case, illustrated п Fig. 9, а апа Fig. 10, а, is when the fast 

oscillations are incoherent while the slow oscillations are synchronized during the 
considered time interval. We refer to this phenomenon as partial synchronization. 

2.3. Experimental results: phase entrainments. As discussed above neighboring 
nephrons influence each other’s blood supply either through electrical signals that 
activate е vascular smooth muscle cells ог through а hemodynamic coupling. The two 
mechanisms depend very differently on the precise structure of the arteriolar network. 
Hence, variations of this structure may determine which of the mechanisms is the more 

important. This could be of considerable biological interest, because the effects produced 
by the two mechanisms tend to be shifted in phase, and their influence on the overall 
behavior of the nephron system may be very different. 

In an earlier paper [8], we studied phase relations between two signals using a 
Hilbert transformation. This approach works perfectly as long as we are not interested in 
the separated dynamics of different rhythmic activities in the oscillatory process. In our 
case, the multimode process has one dominant rhythm while the other rhythm is small in 
amplitude. To account for this situation we introduce phases via wavelet-transform 
coefficients: 

T.(f:) =T (f)rexpli (1), (10) 

where the phase function ф,(/г) depends оп е considered mode. As it was discussed in 
[18,20], муе can calculate the wavelet coefficients for the chosen central frequency / оЁ 
the wavelet function. The corresponding phases ¢ (f,,¢) are closely related to the phases 
introduced via Hilbert transform of the band-pass filtered signal [18]. An approach of 
band-pass filtration with the further definition of instantaneous phase was successfully 
used т [22]. The process оё filtration can cause some technical problems in the case оЁ 
nonstationary dynamics especially 1Ё two modes are close enough in the frequency 
domain. Such problems can be solved using sliding window analysis [22] or, 
alternatively, different aspects оё multimode phase dynamics can be studied with 
wavelets. 

Та general, а5 а result of wavelet transform we obtain two-dimensional arrays оЁ 
modulus [T (f,f)| and phases @ (f,). The latter means that the notion of phase is defined 
for each frequency / аг any fixed time moment 7. When considering two processes х(г) 
апа у(г) the wavelet transform allows us to calculate the phase differences ¢ (f,1)-9,(f,() 
and various synchronization factors [18]. In the case of clearly expressed rhythmic 
dynamics we don’t need to know the complete two-dimensional phase spectrum ,(7.t) 
because we are interesting only т phases related 10 the rhythmic contributions. In the 
case when instantaneous frequencies of modes demonstrate large fluctuations relative 10 
the mean value (similar to Fig. 8), it seems to be useful adjust the central frequency of 
wavelet function according to these fluctuations. Hence, in this work we shall follow the 
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Fig. 11. Phase differences for the slow (a) and fast (b) oscillations оё the coupled nephrons. The given 
results are obtained for the time series presented in Fig. 7, а (normotensive rat) 

time evolution оЁ each mode т the frequency domain and аг fixed moments of time 7, 
extract the phases related to the local peaks оё the power spectrum E (f,1,) (or IT,(f,t,)1)- 
For coupled nephrons this allows us to introduce phases for the slow and fast dynamics 
separately. To study synchronization phenomena in bivariate data it is possible to 
calculate the phase difference ог the distribution оё the cyclic relative phase [22]. 

Fig. 11 shows an example of the (normalized) phase difference for the regular 
pressure variations in а normotensive rat. One clearly observes in-phase (Аф=0) 
synchronization for fast mode and anti-phase (Ag=x) synchronization for slow 
oscillations 1а nephrons branching from different arterioles. Note, that fast oscillation in 
our analysis were always locked in phase, but there may be characteristic phase slips of 
2л& because of the noisy conditions under which е nephrons operate. The case оё anti- 
phase synchronization for slow mode occurred rather seldom. More typical situation was 
when both the slow and fast oscillations were synchronized in-phase. (This situation 
takes place for nephrons branching from the same arteriole.)} 

Let us consider now how our phase approach is applied to chaotic dynamics as one 
typically observes for hypertensive rats. Fig. 12 illustrates examples of phase dynamics 
for time series presented in Fig. 7, b, с. The phase differences indicate synchronous 
dynamics in Fig. 12, а and nonsynchronous in Fig. 12, b. The results for phase 
entrainment correspond ю the results for frequency adjustments. Г the case оЁ 
synchronization for hypertensive rats we observed for all experimental data the in-phase 
regime (Ag=0). 

Аф/2ж Ц 

3.0 F 

0.0 [V T ] 

30f й 

-6.0 L 

0 400 800 в 0 400 800 18 
а b 

Fig. 12. Phase differences for the fast synchronous () апа for the fast non-synchronous dynamics (b). 
The given examples are obtained for the time series of hypertensive rats shown in Fig. 7, ¢ апа b, 
respectively 
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Conclusions 

Based on the analysis of experimental results we showed that the vascular 

dynamics ап фе tubuloglomerular feedback mechanism are responsible for two time 
scales associated with а fast and а slow oscillatory mode in the individual nephron. Both 
for periodic oscillations observed т normotensive rats and for е chaotic oscillations in 
hypertensive rats the two modes exhibit resonant behavior as well as nonsynchronous 
dynamics. 

To investigate different types of internephron mode entrainment we developed an 
approach based оп а mutual wavelet transformation that allows us 10 easily analyze 
frequency and phase adjustments between different time scales from nonstationary data. 
We observed simultaneous (full) locking for the slow and fast oscillations both for 
normotensive and for hypertensive rats. We also identified а state оЁ partial 
synchronization where the slow oscillations are synchronized while the fast motion 
demonstrates noncoherent behavior. Such a situation is typical for hypertensive rats. 

Numerical simulations for coupled nephron models demonstrate similar behavior. 
With varying time delay in the tubuloglomerular feedback and varying strength of the 
vascular coupling the experimentally observed forms of synchronous behavior were 
recovered. 
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УДК 519.6:577.359 

ЭФФЕКТЫ СИНХРОНИЗАЦИИ 
В МНОГОМОДОВОЙ ДИНАМИКЕ СВЯЗАННЫХ НЕФРОНОВ 

О.В. Сосновцева‚ A.H. Павлов, Е. Mosekilde, N.-H. Holstein-Rathlou 

Индивидуальная функциональная единица почек (нефрон) демонстрирует 
колебания в регуляции входящего потока крови с двумя различными временными 
масштабами: быстрые колебания, связанные с миогенной динамикой приносящей 

артериолы, и медленные колебания, обусловленные задержкой в канальцево- 

гломерулярной обратной связи. В данной работе исследуются взаимодействия этих 
двух мод в пределах одного нефрона и между нефронами. Помимо полной 
синхронизации, вейвлет-анализ экспериментальных данных и численные исследо- 

вания детальной физиологической модели позволяют обнаружить существование 
частичной ‚ синхронизации, при которой соседние нефроны демонстрируют 
синхронное поведение MO отношению K их медленной динамике, однако быстрая 
динамика остается несинхронной. 
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