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ANALYTICAL DESCRIPTION OF RECURRENCE PLOTS 
ОЕ WHITE NOISE AND CHAOTIC PROCESSES 

M. Thiel, M.C. Romano, J. Kurths 

№е present ап analytical description of the distribution оё diagonal lines in 
Recurrence Plots for white noise апа chaotic systems, and find that фе latter one is linked to 
the correlation entropy. Further ме identify two scaling regions in the distribution оЁ 
diagonals for oscillatory chaotic systems that are hinged to two prediction horizons and to the 
geometry of the attractor. These scaling regions cannot be observed with the Grassberger- 

Procaccia algorithm. Finally, we propose methods to estimate dynamical invariants from RPs. 

Dedicated to the 60" Birthday of Prof. Dr. Vadim Anishchenko 

1. Introduction 

Recurrence constitutes a fundamental property of dissipative chaotic systems. As 
Poincaré showed т his recurrence theorem in 1890 [1], if а system restricts its dynamics 
10 а bounded subset of the phase space, е system will almost certainly, 1.е. with 
probability one with respect to the natural measure, return arbitrarily close to any given 
initial condition. 

Recurrence Plots (RPs) visualize 1 а two-dimensional binary matrix the 
recurrences of the system in phase space. The Recurrence Quantification Analysis (RQA) 
quantifies structures found in RPs to yield a deeper understanding of the underlying 
process from а given time series [2,3]. However, this method is widely applied [4 - 10] 
but in а rather pragmatic way. First steps in the direction of ап analytical description were 
made by Faure et al. [11], Gao and Cai [3] апа Casdagli [12]. 

In this contribution we give an analytical expression for the distribution of 
diagonals т RP in the case of stochastic processes and extend фе results of [11,3] ю 
chaotic flows. Further we compare our approach with the well-known Grassberger- 
Procaccia (G-P) algorithm [13] and show some advantages of the RP method for the 
estimation оё some invariants оё the dynamics, such ав the correlation entropy. Опе of the 
most remarkable differences between our approach and the G-P algorithm is that we find 
two different scaling regions for oscillating chaotic flows, such ав the Rossler system, 
instead of the single one obtained with the G-P algorithm. This new scaling region can be 
linked to the geometry оё the attractor and defines another characteristic time scale of the 

system. Beyond we propose optimized measures for the identification of relevant 
structures in the RP. 
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The outline of this paper is as follows. In Sec. 2 ме briefly introduce RPs. After 
considering in Sec. 3 фе RPs ов white noise, we proceed ю general chaotic system (Sec. 4). 
Then, we exemplify опг theoretical results for the Rossler system (Sec. 5) апа present the 
two different scaling regions that characterize the system. Finally, we propose 10 estimate 
main characteristics of nonlinear systems from RPs which extends the importance оё @е 
RQA (Sec. 6). 

2. Recurrence Plots and Recurrence Quantification Analysis 

RPs were introduced to simply visualize the behavior of trajectories in phase space 

[2]. Suppose we have а dynamical system represented by е trajectory {x, } for i=1,....N 
in a d-dimensional phase space. Then we compute the matrix 

R,=0(-l-x)), i,j=1..N, ) 
where ¢ is а predefined threshold and ©(.) $ the Heaviside function!. The graphical 
representation of R, , called Recurrence Plot, is obtained encoding the value one as 

«black» апа zero ав «white» point. A homogeneous plot with mainly single points may 
indicate a mainly stochastic system. Paling away from the main diagonal may indicate a 
drift i.e. non-stationarity of the time series. A main advantage of this method is that it 
allows to apply it to nonstationary data [4]. 

To quantify the structures that are found in RPs, the Recurrence Quantification 
Analysis (RQA) was proposed [6]. There are different measures that can be considered in 
the RQA. One crucial point for these measures is the distribution of the lengths of the 
diagonal lines P (/) Фаг are found in the plot. In the case оЁ deterministic systems the 
diagonal lines mean that trajectories in the phase space are close to each other on time 
scales that correspond to the lengths оё the diagonals. In the next sections we show that 
there 15 а relationship between P (/) апа the correlation entropy. On the other hand уе 
compute @е distribution оё diagonals for random processes 10 see Таг even in this case, 
there are some diagonals which can lead to pitfalls in the interpretation of the RQA 
because noise is inevitable in experimental systems. A more detailed discussion of this 
problem is given in [14]. 

3. Results for white noise 

In this section we compute analytically the probability to find a black or recurrence 

point and the distribution of diagonals of length / in the RP in the case of independent 
noise. The probability to find a recurrence point in the RP is given by 

Pe)=lim,_, UN’S,_ R, @) i 

and the probability ю find а diagonal оё аг least length/ in the RP is defined а5 

N 1 

Р:() =lim_ 1/ № 2і‚і=1 ПноВ ат уу ©) 

where с stands for cumulative. Note that Р‚(е)=Р(1). 

! The norm used in Eq. 1 is in principle arbitrary. For theoretical reasons, that we will present later, it 

is preferable 10 use the maximum norm. However the numerical simulations of this paper are based оп the 

Euclidian norm to make the results comparable with the literature. The theoretical results of this paper hold 

for both choices of the norm. 
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We consider а random variable X with probability density p(x). Suppose фаг {x} 
for i=1,...,N is a realization of X and we are interested in the distribution of the distances 
of each point to all other points of the time series. This can be done by computing the 
convolution оё фе density p(-) 

в( = p(0)*p(2). @ 
P,(e) 15 then gained by integrating R (x) over [-&.¢] 

Р e 
Р(& = R(x)dx = A R (e ©) 

Note that P,(e) 15 invariant against shuffling оё the data. For [0,1] uniformly distributed 
noise, R(x) is given by 

1-М ifld<1 
в( = ©6) 

0 else 

апа hence the probability P,(e) for RPs and CRPs is given by 

Р{е) = 2в - € + ©(e-1)[1-2e+¢7]. (7) 

For Gaussian white noise one finds Р(е)=егКе/(2с)), where с 15 the standard 
deviation. 

Now it is straightforward ю compute P<() м the CRPs (т RPs only 
asymptotically). As the noise is independent, уе obtain 

Р2() =Pye). ®) 
The probability to find а recurrence point Р,(е) is in both RPs апа CRPs 

independent оё the preceding point оп the diagonal (except in the main diagonal). Ед. (8) 
shows Ваг the probability to find а line оё length/ decreases exponentially with /. 

For our example of uniformly distributed noise we get 

Р:() = (2e-e24+0(e-1)[1-2e4¢7]). ©) 

Note that in this case the exponential decay depends оп е. Hence the larger ¢, the 
longer are фе diagonal lines that one obtains. Usually one analyses the RP computed with 
only one threshold e. As long diagonals are interpreted as a deterministic feature of the 
system (good predictability), using only one е can lead 10 а misinterpretation of the 
dynamics of the system. 

In the next sections we will show that the distribution of diagonals decays also 
exponentionally for chaotic systems, but the decay is - at least in some region - 
independent оё the threshold е. 

4. Results for chaotic systems 

We present in this section ап approach for chaotic systems. It is ап extension оё the 
results presented in [11] for chaotic maps and also covers general chaotic flows. To esti- 
mate the distribution оё фе diagonals in the RP, ме start with the correlation integral [15] 

С(е) =Tim,,___ 1/N?x{number of pairs (i) with I, - х < в). (10) 

Note that the definition оЁ Р‚(е) coincides with the definition оЁ the correlation integral 
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C(e) = нп „Мх е( - %) - €)= lim,_ VNS, R, Р, (1) i1t 

This fact allows to link the known results about фе correlation integral to @е structures in 
RPs. 

‘We consider а trajectory ;(г) in the basin оЁ ап atiractor in the d-dimensional phase 
space and the state оЁ the system 18 measured at time intervals . Let {1,2,...„М(е)} be а 
partition оё the attractor in boxes оЁ size е. Then рн denotes the joint probability 

that Х(Г“т) 15 in the box i;, \’(1-21:) is in the box iy..., апа x(t К) 15 in the box i, The 
order-2 Rényi entropy [16, 17] is then defined as 

K, = -lim,_glim,_glim,_ V(R)INZ, | p(ipe. o). (12) 

We can approximate p(i,...,i,) by the probability Р‚_,(хТ &) оё finding а sequence 

оё points in Бохев о? length е about x(r=t), x(1=2t), ..., x(t=Ft). Assuming that the system 
is ergodic, which is always the case for chaotic systems as they are mixing, we obtain 

5 & N 5 я N — 
Е‚Х___д’р7(11‚…,1,) =UNZ_ p(iy..i) ~UNZ_ Р (, ), (13) 

where р/(?,...эй) represents the probability of being т the box 7, at time —. in the 

box i, а time 1=2х, ... and in the box /, аг time ¢=/x. Further we can express P, ,(t #) by 
means of the recurrence matrix 

= N мм 
P (x,e)=UNZ_TI, ,De(s [‹„‚„ ті) = ИМ ®П ао е (14) 

Hence ме обта ап estimator for the order-2 Rényi entropy by means оё the RP 

^ N О 

K, (&) = М(к) In (UN?Z, аП оК s o) (15) 

© 

Note Фаг (*) 15 the cumulative distribution of diagonal lines P (/) (Eq. (3)). Therefore, 1Ё 
we represent Р.2(!) in а logarithmic scale versus 7 we should obtain а straight line with 

slope X (&) for large 5. 
On the other hand, in the G-P algorithm the /-dimensional correlation integral 15 

defined as 

C[e) =lim,, 1/N2>: — @(2- (EH, ж .‚_дг)т) (16) 

Grassberger and Procaccia [18] state that due ю the exponential divergence of the 
trajectories, requiring 

S, T Rse (17) 
is essentially equivalent to L 

v, -x,l<e fork=1,../ (18) 

which leads to the ansatz: 
C(&) - e'exp(-hK,). (19) 

Further they make use of Takens embedding theorem [19] and reconstruct the 
whole trajectory from / measurements оё any single coordinate. Hence they consider 

C (o) = т Мх ае( - (%) ylx, ;- )) (20) ts=1 
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and use the same ansatz Eq. (19) for Ё,(е). Then, the С-Р algorithm obtains ап estimator 
оё К, considering 

R,(e) = 11 в C )T, (e))- (21) 

Due 10 the similarity оё the RP approach 10 the G-P one, we state 

PED =3, _, pliyi) = С(е) ~ evexp(-HiK,). (22) 
The difference between both approaches is Фаг т Р(!) we further consider 

information about / vectors, whereas in C,(¢) ме have just information about [ 
coordinates. Besides this, in the RP approach / 15 а length in the plot, whereas in the G-P 
algorithm it means е embedding dimension. As К, 15 defined for />, the RP approach 
seems to be more appropriate ап the G-P one, ав it 15 always problematic 10 use very 
high embedding dimensions [20]. 

A further advantage of the RP method is а! it does not make use of the 
approximation that Eq. (17) is essentially equivalent to Eq. (18). The quantity that enters 
the RPs is directly linked to the conditions Eq. (18) and hence uses one approximation 
less than the G-P method. 

One open question for both methods is the identification оЁ е scaling regions. It 15 
somewhat subjective and makes a rigorous error estimation problematic. For the cases 
considered т this paper муе have found that 10,000 data points assure reliable results for 
both methods. Even 5,000 data points allow for a reasonable estimation, whereas 3,000 

data points ог less yield small scaling regions that are difficult to identify, However, the 
RP method is advantageous for the estimation оЁ К, ав the representation is more direct. 
The most important advantage is presented in the next section: RPs allow to detect 
another scaling region т the Réssler attractor аг cannot be observed with the G-P 
algorithm. 

5. The Réssler System 

We analyze the Rossler system with standard parameters a=b=0.2, с=5.7 [21]. We 
generate 15,000 data points based on the Runge-Kutta method of fourth order and neglect 
the first 5,000. The integration step 15 /=0.01 апа the sampling rate 15 20. 

First, муе estimate K, by means of the G-P algorithm. Fig. 1 shows the results for 
the correlation integral т dependence оп &. There is one well-expressed scaling region for 
each embedding dimension />3. Then we get from the vertical distances between the 

lines ап estimate оЁ K, (Fig. 2), 
G Е К,=0.070+0.003. Next, ме calculate е 

cumulative distribution of the diagonal lines 
of the RP in dependence on the length of 

107° the lines /. We еп represent the number оЁ 
diagonals оё length / i.e. N())=N*xP (1), 
where N is the length оё the time series 

1074t (Fig. 3). For large / апа small ¢ the scaling 
L breaks down as there are not enough lines 

10-6 ш the RP. The most remarkable fact 
3 <2 51 о т obtained here 1$ the existence of two well 

10 10 10 10 10 € differentiated scaling regions. The first one 
Fig. 1. G-P algorithm for фе Rossler system; / varies is found for 1</<84 and the second опе for 
from 3 (top) to 27 (bottom) in steps оЁ 3 285. The existence оЁ two scaling regions 
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Fig. 3. Number оё diagonal lines of at least length / 
in the RP оё the Rossler system (N‘(l):Nsz‘” (, 
where N 15 the length of the time series); е varies 
logarithmically from 102 to 10.0 (bottom to top) 

is a new and striking point obtained from this analysis and is not observed with the G-P 
method. The estimate оё K/ from the slope оё the first part оё the lines 5 К/=0.225+0.03 
(Fig. 4) and the one from the second part is K,=0.0675+0.004 (Fig. 5). Hence, K,/ is 

Fig. 2. Estimation of K, ‚ Юг the Rissler system with 
the G-P algorithm. Thé line is plotted 10 guide the 
eye 

14 K 

008 
0.2 

РО 004 

0.0 Ё 0.00 
1072 107! 10° e 107° 107! 100 ¢ 

Fig. 4. RP method for the Rossler system: slope оЁ 
the curves N,°(!) т the first region Юг three 

different choices (x:/E[1,84], Ae[140], О: 

Fig. 5. RP method for the Rossler system: siope оЁ 
the curves N (/) т the second region for three 

different choices (x: / €[88,108], A: [ € [88,200], 

1€[16,80]) of the scaling region in/ 0 : / €[108,160]) of the scaling region 1 / 

between 3-4 times higher than K,,. As К, 15 defined for /-, the second slope yields the 

estimation of the entropy. 
However, @е first part оё the curve is interesting 100, а5 it is also independent of e. 

The region 1</<84 characterizes the short term dynamics of the system пр 10 three cycles 

around the fix point апа corresponds in absolute units 10 а time of =16.8, ав we use а 

sampling rate оЁ 8:=0.2. These three cycles reflect а characteristic period оё the system 

that we will call recurrence period T, It is different from е dominant «phase period» 

Т, which is given by the dominant frequency of the power density spectram. T, 

however, 18 given by recurrences 10 almost the same state in phase space. 

Recurrences are represented in the plot by vertical (or horizontal, ав the plot 15 

symmetric) lines. Such а line occurs at the coordinates , j if 

1 ifm=-1 

0 for тЕ(0,.../-1} 

1 ifm=L 

К = (23) 
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The trajectory x for times n=j-1,...,j+ is compared to the point; Then the 
structure given by Eq. (23) can be mterpreted ав follows. At time n=j-1 the trajectory 

falls within ап e-box оЁ х, Then for n=j,...j+/-1 it moves outside оЁ the box, until аг 

n=j+1 it recurs 10 the e-box оё х,, Hence, the length of the line is proportional to the time 

that the trajectory needs 10 recur close 10 Х. 
In Fig. 6 we represent the distribution оё vertical lines in the RP. The period оЁ 

about 28 points corresponds 10 T . However, the highest peak is found а! а lag of about 

87 points (the second scaling region begins at /=85). This means that after this time most 

оЁ the points recur close to their initial state. This time also defines the recurrence period 
Т „.. For the Rossler attractor with standard parameters we find7, =3T 

For predictions on time scales below the recurrence penod r'?‘ К, is а better 

estimate оЁ the prediction horizon than t=1/K,. This interesting result means that the 

possibility to predict the next value within ап e—range is in the first part by a factor of 

more than 3 times worse than it 15 in the second part, i.e. there exist two time scales that 

characterize е attractor. The first slope is greater than the second one because it is more 

difficult to predict the next step if we have only information about а piece е trajectory 

for less than one recurrence period. Опсе муе have scanned the trajectory for more than 

Т „.› the predictability increases and the slope оЁ P, (1) in the logarithmic plot decreases. 

Hence the first slope, as well as the time scale at Wwhich the second slope begins, reveal 

important characteristics оё the attractor. 
To investigate how the length of the first scaling region depends on the form of the 

attractor, we have varied the parameter с оё the Rossler system with fixed а=5=0.1, 50 
that different types of attractors appear [22] Especially муе have studied the cases с=9, 
which yields Т =27, and с=30, which gives T, .=4T . In both cases the length of the 
first scaling reglcm corresponds as expected to Trec 

On the other hand, the existence of the two scalings may be linked to the amplitude 
fluctuations and the phase diffusion of the Réssler system, because the same two time 

- ; scales have been also recently found by 

Ne Anishchenko et al. based on a rather subtle 

2.010%F 4 method [23 - 25]. There, the first scaling 
region was linked to the amplitude 
fluctuations and е second опе to the 

1.0105Ё 1 — phase diffusion. 
The effect of the two scaling regions 

1 in the distribution оЁ diagonal lines is also 
М Ь detectable in оег oscillating nonhyper- 

00 bolic systems like the Lorenz system and 
300 400 ! our simulations suggest a connection to the 

Fig. 6. Number of vertical ines in the Recurence CORClusions presented in [23]. We will 
Plot оё the Rossler system with standard parameters, Героп our results 1 more detail in a 
£=0.05 апа based оп 60,000 data points forthcoming paper. 

6. Dynamical invariants for the RQA 

With regard 10 our theoretical findings т Sec. 4 we have 10 assess the quality of the 
possible results of the RQA. 

The measures considered in the RQA [6] are not invariants оЁ the dynamical 
system, i.e. they usually change under coordinate transformations, and especially, they 
are in general modified by embedding [26]. Hence, we propose new measures 10 quantify 
the structures in the RP, that are invariants of the dynamical system. 
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The first measure we propose, is ж 
the slope оЁ the cumulative distribution оЁ D, 
the diagonals for large /. We have seen that 
it is (after dividing by т) ап estimator оё the 2.0 
Rényi entropy оЁ second order K,,, which is * R iR s ЙМЬ 
a known invariant of the dynamics [27]. On 
the other hand, we also can consider the 

slope оё @е distribution for small /s, а5 

this slope shows a clear scaling region, too. 
The inverse оё these two quantities, 18 then 0.0 
related to the forecasting time at different 0.0 05 1.0 15 20 ¢ 
horizons. Especially the transition point 
from the first to the second scaling region В. 7. Estimation оЁ фе correlation dimension D, 
. й N у for the Rossler attractor by фе RP method. The 
18 ап Interesting characteristic of №е parameters used for the Rssler system and the 

system. й integration step аге the same as in Sec. 5 
The second measure we introduce, 

# the vertical distance between Р.“(1) for different ¢’s. From Eq. (22) one can derive 

10 Р Е. 

Dy(e) = In(P< (1P, (D)(In(e/(e+Ac))) . (24) 

This is ап estimator ов the correlation dimension D, [17]. The result for the Rossler 

system is represented in Fig. 7. The mean value оЁ D,(¢) is in this case 1.86+0.04. This 
result 15 in good accordance with the estimation оЁ D, by the G-P algorithm given in [28], 
where @е value 1.81 15 obtained. With а modified G-P algorithm а value оЁ 1.89 was 
reported [28]. 

The third measure we suggest, is an estimator of the generalized mutual 
information of order 2, 

() = 2H, - Hy(x) (25) 
where 

H,=-InZ,p?, Hy(x) =-InZ,p, X(v) (26) 

аге the generalized Rényi’s second order entropy (also correlation entropy) and its 
corresponding joint second order entropy [29]. This measure can be estimated using the 
G-P algorithm as follows [30] 

T(e) = In(Cy(en) - 2In(C, (&)). (27) 

Instead, we can estimate 1,(t) using the recurrence matrix. As discussed in the preceding 
sections, one can estimate Hz as 

H, = -n[UN’S,, R ]. (28) че 

Analogously we сап estimate the joint second order entropy by means of Ше recurrence 
matrix 

* N 

Hy(x) =-I[UN’E,_R, R .] (29) „е ЧА 

№е сотраге the estimation of /,(t) based оп the G-P algorithm with the one 
obtained by the RP method in Fig. 8. We see, that the RP method yields systematically 
higher estimates of the mutual information, as in the case of the estimation of the 
correlation entropy. However, the structure of the curves is qualitatively the same (it is 
just shifted to higher values by about 0.2). A more cxhaustive inspection shows, аг @с 
difference 15 due to the use оё Ше Euclidean norm. The estimate based оп the RP method 
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Fig. 8. Comparison of the estimators оё the mutual 

information for the x-component оё the Rossler 
system computed by the RP method (solid line) and 
the G-P algorithm (dashed line). The parameters 
used for the Réssler system ап the integration step 
are the same as in Sec. 5 

is almost independent of the norm, whereas 

the estimate based on the G-P algorithm 
clearly depends on the special choice. If the 
maximum norm is used (in G-P and RP) 
both curves coincide. 

Note that the estimators for the 
invariants we propose are different from 
the ones of the G-P algorithm. 

The three measures that we have proposed, are not only applicable for chaotic 
systems but also for stochastic ones, as the invariants are equally defined for both kinds 
of systems. 

7. Conclusions 

In this paper we have presented an analytical expression for the distribution of 
diagonals P (/) for stochastic systems апа chaotic flows, extending the results presented 
in [11]. We have shown that Р.(7) is linked to фе second order Rényi entropy rather ап 
to е Lyapunov exponent. Further we have found in the logarithmic plot of P (/) two 
different scaling regions with respect to &, that characterize the dynamical system and are 
also related to the geometry оё the attractor. This 15 а new insight provided by RPs that 
cannot be seen by the G-P algorithm and will be studied in more detail in a forthcoming 
paper. The first scaling region defines a new time horizon for the description of the 
system for short time scales. Beyond the ЕР method does not make use оЁ high 
embedding dimensions, and the computational effort compared with the G-P algorithm is 
decreased. Therefore the RP method is rather advantageous than the G-P one for the 
analysis of rather small and/or noisy data sets. Besides this, we have proposed different 
measures for the RQA, like estimators of the second order Rényi entropy K,, the 
correlation’ dimension D, апа фе mutual information, that are, 1 contrast to the other 

often used RQA measures, invariants of the dynamics [26]. 

We thank Vadim Anishchenko very much for the long-standing and very exciting 
discussions and his suggestions on this work. Moreover we thank Dieter Armbruster, 
Annette Witt, Udo Schwarz and Norbert Marwan for the fruitful discussions. The 

project was supported by the «<DFG Priority Program 1114». 
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УДК 519.6 

АНАЛИТИЧЕСКОЕ ОПИСАНИЕ ОТОБРАЖЕНИЙ ПОСЛЕДОВАНИЯ 
ДЛЯ БЕЛОГО ШУМА И ХАОТИЧЕСКИХ ПРОЦЕССОВ 

M. Thiel, M.C. Romano, J. Kurths 

Дано аналитическое описание распределения диагональных линий в 
отображениях последования для белого шума и систем с хаотической динамикой; 

показано, что это распределение связано с корреляционной энтропией. 
Идентифицированы две области скейлинга в распределении диагоналей для 
колебательных систем с хаотической динамикой, которые тесно связаны с двумя 
горизонтами предсказуемости и с геометрией аттрактора. Эти области скейлинга 
не могут быть получены с помощью алгоритма Грассбергера - Прокаччиа. В 
заключение предложены методы определения динамических инвариантов из 
отображений последования. 
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