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ANALYTICAL DESCRIPTION OF RECURRENCE PLOTS
OF WHITE NOISE AND CHAOTIC PROCESSES

M. Thiel, M.C. Romano, J. Kurths

We present an analytical description of the distribution of diagonal lines in
Recurrence Plots for white noise and chaotic systems, and find that the latter one is linked to
the correlation entropy. Further we identify two scaling regions in the distribution of
diagonals for oscillatory chaotic systems that are hinged to two prediction horizons and to the
geometry of the attractor. These scaling regions cannot be observed with the Grassberger-

Procaccia algorithm. Finally, we propose methods to estimate dynamical invariants from RPs.
Dedicated to the 60 k Birthday of Prof. Dr. Vadim Anishchenko
1. Introduction

Recurrence constitutes a fundamental property of dissipative chaotic systems. As
Poincaré showed in his recurrence theorem in 1890 [1], if a system restricts its dynamics
to a bounded subset of the phase space, the system will almost certainly, i.e. with
probability one with respect to the natural measure, refurn arbitrarily close to any given
initial condition.

Recurrence Plots (RPs) visualize in a two-dimensional binary matrix the
recurrences of the system in phase space. The Recurrence Quantification Analysis (RQA)
quantifies structures found in RPs to yield a deeper understanding of the underlying
process from a given time series [2,3]. However, this method is widely applied [4 - 10]
but in a rather pragmatic way. First steps in the direction of an analytical description were
made by Faure et al. [11], Gao and Cai [3] and Casdagli [12].

In this contribution we give an analytical expression for the distribution of
diagonals in RP in the case of stochastic processes and extend the results of [11,3] to
chaotic flows. Further we compare our approach with the well-known Grassberger-
Procaccia (G-P) algorithm [13] and show some advantages of the RP method for the
estimation of some invariants of the dynamics, such as the correlation entropy. One of the
most remarkable differences between our approach and the G-P algorithm is that we find
two different scaling regions for oscillating chaotic flows, such as the Rossler system,
instead of the single one obtained with the G-P algorithm. This new scaling region can be
linked to the geometry of the attractor and defines another characteristic time scale of the
system. Beyond we propose optimized measures for the identification of relevant
structures in the RP.
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The outline of this paper is as follows. In Sec. 2 we briefly introduce RPs. After
considering in Sec. 3 the RPs of white noise, we proceed to general chaotic system (Sec. 4).
Then, we exemplify our theoretical results for the Rissler system (Sec. 5) and present the
two different scaling regions that characterize the system. Finally, we propose to estimate
main characteristics of nonlinear systems from RPs which extends the importance of the
RQA (Sec. 6).

2. Recurrence Plots and Recurrence Quantification Analysis

RPs were introduced to simply visualize the behavior of trajectories in phase space

[2]. Suppose we have a dynamical system represented by the trajectory {x, } for i=1,....N
in a d-dimensional phase space. Then we compute the matrix

R,=0(e-l-x)), i,j=1..N, 1)

where ¢ is a predefined threshold and ©(-) is the Heaviside function!. The graphical
representation of Ru, called Recurrence Plot, is obtained encoding the value one as
«black» and zero as «white» point. A homogeneous plot with mainly single points may
indicate a mainly stochastic system. Paling away from the main diagonal may indicate a
drift i.e. non-stationarity of the time series. A main advantage of this method is that it
allows to apply it to nonstationary data [4].

To quantify the structures that are found in RPs, the Recurrence Quantification
Analysis (RQA) was proposed [6]. There are different measures that can be considered in
the RQA. One crucial point for these measures is the distribution of the lengths of the
diagonal lines P (I) that are found in the plot. In the case of deterministic systems the
diagonal lines mean that trajectories in the phase space are close to each other on time
scales that correspond to the lengths of the diagonals. In the next sections we show that
there is a relationship between P (I) and the correlation entropy. On the other hand we
compute the distribution of diagonals for random processes to see that even in this case,
there are some diagonals which can lead to pitfalls in the interpretation of the RQA
because noise is inevitable in experimental systems. A more detailed discussion of this
problem is given in [14].

3. Results for white noise

In this section we compute analytically the probability to find a black or recurrence
point and the distribution of diagonals of length / in the RP in the case of independent
noise. The probability to find a recurrence point in the RP is given by

P,()=lim,__ UN’Z, R, @)

ij=1""ij’

and the probability to find a diagonal of at least length/ in the RP is defined as

N -1
B :(1) = lim,\l’-om 1fNZEiJ=l Hm=0R1'+m,,l‘+m’ (3)

where ¢ stands for cumulative. Note that P,(e)=P ¢(1).

!The norm used in Eq. 1 is in principle arbitrary. For theoretical reasons, that we will present later, it
is preferable to use the maximum norm. However the numerical simulations of this paper are based on the
Euclidian norm to make the results comparable with the literature. The theoretical results of this paper hold

for both choices of the norm.
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We consider a random variable X with probability density p(x). Suppose that {x}
for i=1,...,N is a realization of X and we are interested in the distribution of the distances
of each point to all other points of the time series. This can be done by computing the
convolution of the density p(*)

R(x) = p()*p(2). @
P,(e) is then gained by integrating R (x) over [-¢.¢]
E E
P (e) = J R(x)dx = 2f R(x)dx. (5)
Note that P,(¢) is invariant against shuffling of the data. For [0,1] uniformly distributed
noise, R(x) is given by
1-kd ifldd <1
R(x) = (6)
0 else

and hence the probability P,(e) for RPs and CRPs is given by
P(¢) = 2 - €% + ©(e-1)[1-2e+€?]. 7

For Gaussian white noise one finds P,(¢)=erf(e/(20)), where o is the standard
deviation.

Now it is straightforward to compute P<(/) in the CRPs (in RPs only
asymptotically). As the noise is independent, we obtain

PE(D) = P(e)- (8)

The probability to find a recurrence point P,(e) is in both RPs and CRPs
independent of the preceding point on the diagonal (except in the main diagonal). Eq. (8)
shows that the probability to find a line of length/ decreases exponentially with /.

For our example of uniformly distributed noise we get

Pa(l) = (2e-e*+0(e-1)[1-2e+¢7]). )

Note that in this case the exponential decay depends on e. Hence the larger &, the
longer are the diagonal lines that one obtains. Usually one analyses the RP computed with
only one threshold . As long diagonals are interpreted as a deterministic feature of the
system (good predictability), using only one & can lead to a misinterpretation of the
dynamics of the system.

In the next sections we will show that the distribution of diagonals decays also
exponentionally for chaotic systems, but the decay is - at least in some region -
independent of the threshold e.

4. Results for chaotic systems
We present in this section an approach for chaotic systems. It is an extension of the
results presented in [11] for chaotic maps and also covers general chaotic flows. To esti-
mate the distribution of the diagonals in the RP, we start with the correlation integral [15]
C(e) = Tim,, .. 1/N2x{number of pairs (i,j) with I, - ¥/ < ). (10)

Note that the definition of P (&) coincides with the definition of the correlation integral

g7



N - = Eg. 1 N
C(e) = lim, N, (lx, - x| - ¢) = lim,_ LN?S, R, = P,(c). (11)
This fact allows to link the known results about the correlation integral to the structures in
RPs.

We consider a trajectory x(7) in the basin of an attractor in the d-dimensional phase
space and the state of the system is measured at time intervals v. Let {1,2,...M(¢)} be a
partition of the attractor in boxes of size e. Then p(i,....,;,) denotes the joint probability

that x(#=t) is in the box i;, x(t=27) is in the box i,,..., and x(t=lx) is in the box i, The
order-2 Rényi entropy [16,17] is then defined as

K, =-lim_lim_lim__U(i)InE, |, p(i,,....0). (12)

We can approximate p(i,...,;,) by the probability P, _J(x_: ¢) of finding a sequence
of points in boxes of length ¢ about x(z=t), x(r=27), ..., x(t=lt). Assuming that the system
is ergodic, which is always the case for chaotic systems as they are mixing, we obtain

4 ¢ N ; i N =%
Eil,..,,.-,Pz(‘v"-":) =UNZ_ p(iss....i) ~1UNZ_ P [x,¢), (13)

where p,(i,....{) represents the probability of being in the box 7, at time r=v, in the

box i, at time r=2t, ... and in the box i, at time ¢=/v. Further we can express P, (x, £) by
means of the recurrence matrix

P(6ie) = UNE TT, 0@t - %)) = UN E0 T R o (14)
Hence we obtain an estimator for the order-2 Rényi entropy by means of the RP
A N I-I
K, (e,)) = U(l) In (UN’Z, _T1,oR s o) (15)

)
Note that (*) is the cumulative distribution of diagonal lines P (/) (Eq. (3)). Therefore, if
we represent P(/) in a logarithmic scale versus / we should obtain a straight line with

slope -K, (e)x for large /’s.
On the other hand, in the G-P algorithm the /-dimensional correlation integral is
defined as

. N -1 - —
C(e) = lim,_ VN2, _, O(e-(Z, %, (- X, 4)"). (16)

Grassberger and Procaccia [18] state that due to the exponential divergence of the
trajectories, requiring

21::} l";;& 3 ’_r:'ﬂ‘lg se? (17)
is essentially equivalent to L
Ixf+k—xj+ki<e fork=1,....[ (18)
which leads to the ansatz:
C,(g) ~ e¥exp(-hK,). (19)

Further they make use of Takens embedding theorem [19] and reconstruct the
whole trajectory from / measurements of any single coordinate. Hence they consider

N

C (e) = lim,,_ 1N’E,_0(e - (5, x, ;- X, P)'?) (20)
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and use the same ansatz Eq. (19) for G (€). Then, the G-P algorithm obtains an estimator
of K, considering

K,(&,l) = L 1n (C (e)/C,,(€))- (21)
Due to the similarity of the RP approach to the G-P one, we state
P =%, , p(iysi) = C (&) ~ e'exp(-hK)). (22)

The difference between both approaches is that in P(/) we further consider

information about ! vectors, whereas in C,(e) we have just information about /
coordinates. Besides this, in the RP approach/ is a length in the plot, whereas in the G-P
algorithm it means the embedding dimension. As X, is defined for /-, the RP approach
seems to be more appropriate than the G-P one, as it is always problematic to use very
high embedding dimensions [20].

A further advantage of the RP method is that it does not make use of the
approximation that Eq. (17) is essentially equivalent to Eq. (18). The quantity that enters
the RPs is directly linked to the conditions Eq. (18) and hence uses one approximation
less than the G-P method.

One open question for both methods is the identification of the scaling regions. It 1s
somewhat subjective and makes a rigorous error estimation problematic. For the cases
considered in this paper we have found that 10,000 data points assure reliable results for
both methods. Even 5,000 data points allow for a reasonable estimation, whereas 3,000
data points or less yield small scaling regions that are difficult to identify. However, the
RP method is advantageous for the estimation of K, as the representation is more direct.
The most important advantage is presented in the next section: RPs allow to detect
another scaling region in the Réssler attractor that cannot be observed with the G-P
algorithm.

5. The Réssler System

We analyze the Rossler system with standard parameters a=b=0.2, c=5.7 [21]. We
generate 15,000 data points based on the Runge-Kutta method of fourth order and neglect
the first 5,000. The integration step is 2=0.01 and the sampling rate is 20.

First, we estimate K, by means of the G-P algorithm. Fig. 1 shows the results for
the correlation integral in dependence on ¢. There is one well-expressed scaling region for
each embedding dimension />3. Then we get from the vertical distances between the

lines an estimate of K, (Fig. 2),
K,=0.070£0.003. Next, we calculate the
cumulative distribution of the diagonal lines
of the RP in dependence on the length of
the lines /. We then represent the number of
diagonals of length I, i.e. N°({)=N*xP “(l),
where N is the length of the time series
(Fig. 3). For large / and small ¢ the scaling
breaks down as there are not enough lines
10-6 : in the RP. The most remarkable fact

Er——— - p o obtained here is the existence of two well
10 10 10 10 10 € differentiated scaling regions. The first one
Fig. 1. G-P algorithm for the Rissler system; [ varies 1S found for 1</<84 and the second one for
from 3 (top) to 27 (bottom) in steps of 3 I>285. The existence of two scaling regions
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Fig. 2. Estimation of K, , for the Rossler system with Fig. 3. Number of diagonal lines of at Jeast length /

the G-P algorithm. The line is plotted to guide the in the RP of the Rossler system (N°(1)=NxP° (1),

eye where N is the length of the time series); € varies
logarithmically from 102 to 10.0 (bottom to top)

is a new and striking point obtained from this analysis and is not observed with the G-P

method. The estimate of K,/ from the slope of the first part of the lines is KZJr ~(.225+0.03

(Fig. 4) and the one from the second part is K,=0.0675£0.004 (Fig. 5). Hence, K,/ is

KZ ; : Kg 3

7 008 3

02 3 i

o1t ; 0.04 } .

0.0t . o r |3
0.00 -

1072 107! 10° e 102 10-1 100 ¢

Fig. 4. RP method for the Rossler system: slope of  Fig. 5. RP method for the Rossler system: slope of
the curves N °(/) in the first region for three  the curves N_“(I) in the second region for three

different choices (x:[E[1,84], A:l€[1,40], (0:  different choices (x: / €[88,108], A: [ & [88,200],
I€[16,80]) of the scaling region in/ O : / €[108,160]) of the scaling region in /

between 3-4 times higher than K. As K, is defined for /-, the second slope yields the
estimation of the entropy.

However, the first part of the curve is interesting too, as it is also independent of e.
The region 1</<84 characterizes the short term dynamics of the system up to three cycles
around the fix point and corresponds in absolute units to a time of =16.8, as we use a
sampling rate of 8=0.2. These three cycles reflect a characteristic period of the system
that we will call recurrence period T, It is different from the dominant «phase period»
T, which is given by the dominant frequency of the power density spectrum. T
however, is given by recurrences to almost the same state in phase space.

Recurrences are represented in the plot by vertical (or horizontal, as the plot is
symmetric) lines. Such a line occurs at the coordinates, j if

1 ifm=-1
R.. =10 formegl0,...,0-1} (23)

ijem
1 ifm=L



The trajectory x, for times n=j-1,...,j+ is compared to the point x, Then the
structure given by Eq. (23) can be mterpreted as follows. At time n=j-1 the trajectory

falls within an e-box of x, Then for n=j,...y+/-1 it moves outside of the box, until at
n=j+1 it recurs to the e-box of x,. Hence, the length of the line is proportional to the time

that the trajectory needs to recur close to x .

In Fig. 6 we represent the distribution of vertical lines in the RP. The period of
about 28 points corresponds to T',. However, the highest peak is found at a lag of about
87 points (the second scaling reglon begins at /=85). This means that after this time most
of the points recur close to their initial state. This time also defines the recurrence period
T.,.. For the Réssler attractor with standard parameters we find T =3T

For predictions on time scales below the recurrence penod rl}h 1/K{ is a better
estimate of the prediction horizon than t=1/K,. This mterestmg result means that the
possibility to predict the next value within an e-range is in the first part by a factor of
more than 3 times worse than it is in the second part, i.e. there exist two time scales that
characterize the attractor. The first slope is greater than the second one because it is more
difficult to predict the next step if we have only information about a piece the trajectory
for less than one recurrence period. Once we have scanned the trajectory for more than
T .. the predictability increases and the slope of P £(I) in the logarithmic plot decreases.
chcc the first slope, as well as the time scale at which the second slope begins, reveal
important characteristics of the attractor.

To investigate how the length of the first scaling region depends on the form of the
attractor, we have varied the parameter ¢ of the Rossler system with fixed a=b=0.1, so
that different types of attractors appear [22] Especially we have studied the cases ¢=9,
which yields T __ _2T and ¢=30, which gives T, =4T ,. In both cases the length of the
first scaling reglon corresponds as expected to Tm

On the other hand, the existence of the two scalings may be linked to the amplitude
fluctuations and the phase diffusion of the Rossler system, because the same two time
w , i , : scales have been also recently found by
e | 1 Anishchenko et al. based on a rather subtle

3

method [23 - 25]. There, the first scaling
region was linked to the amplitude
fluctuations and the second one to the
phase diffusion.

The effect of the two scaling regions
in the distribution of diagonal lines is also
detectable in other oscillating nonhyper-
bolic systems like the Lorenz system and
our simulations suggest a connection to the

Fig. 6. Number of vertical lines in the Recurrence conclusions presented in [23]. We will

Plot of the Rossler system with standard parameters, T€POrt our results in more detail in a
¢=0.05 and based on 60,000 data points forthcoming paper.

0 100 200 300 400 l

6. Dynamical invariants for the RQA

With regard to our theoretical findings in Sec. 4 we have to assess the quality of the
possible results of the RQA.

The measures considered in the RQA [6] arc not invariants of the dynamical
system, i.e. they usually change under coordinate transformations, and especially, they
are in general modified by embedding [26]. Hence, we propose new measures to quantify
the structures in the RP, that are invariants of the dynamical system.
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The first measure we propose, is ”
the slope of the cumulative distribution of Dy ' ' : ‘ ]
the diagonals for large /. We have seen that - ’
it is (after dividing by t) an estimator of the 50 -
Rényi entropy of second order K,, which is B a2 ouiaiiis aen
a known invariant of the dynamics [27]. On :
the other hand, we also can consider the
slope of the distribution for small /’s, as
this slope shows a clear scaling region, too. s
The inverse of these two quantities, is then 0.0t . . . : :
related to the forecasting time at different 0.0 05 10 15 20 ¢
horizons. Especially the transition point

from the first to the second scaling region Fig- 7- Estimation of the correlation dimensionD,
21 Ot TR (pemysmer & fgth for the Rossler attractor by the RP method. The
ening oty O e parameters used for the Rossler system and the

system. _ integration step are the same as in Sec. 5
The second measure we introduce,

is the vertical distance between P (/) for different ¢’s. From Eq. (22) one can derive

Tr™
1

D,(e) = In(P< (1)/P<,, . ())(In(e/(e+Ae)))". (24)

This is an estimator of the correlation dimension D, [17]. The result for the Rossler

system is represented in Fig. 7. The mean value of D,(e) is in this case 1.8620.04. This
result is in good accordance with the estimation of D, by the G-P algorithm given in [28],
where the value 1.81 is obtained. With a modified G-P algorithm a value of 1.89 was
reported [28].

The third measure we suggest, is an estimator of the generalized mutnal
information of order 2,

1,(x) = 2H, - H,(x) (25)
where
H,=-InZ.p? H,(z) =-InZ,p, X(x) (26)

are the generé]ized Rényi’s second order entropy (also correlation entropy) and ifs
corresponding joint second order entropy [29]. This measure can be estimated using the
G-P algorithm as follows [30]

I,(e,1) = In(C,(&,v)) - 2In(C,(e)). (27)

Instead, we can estimate /,(t) using the recurrence matrix. As discussed in the preceding
sections, one can estimate Hz as

i N
H,=-In[IIN’Z,_ R, J.]. (28)
Analogously we can estimate the joint second order entropy by means of the recurrence
matrix
H(x) = n[UNE, R R ]. (29)

ig=1""iy " T

We compare the estimation of /,(t) based on the G-P algorithm with the one
obtained by the RP method in Fig. 8. We see, that the RP method yields systematically
higher estimates of the mutual information, as in the case of the estimation of the
correlation entropy. However, the structure of the curves is qualitatively the same (it is
just shifted to higher values by about 0.2Z). A morc cxhaustive inspection shows, that the
difference is due to the use of the Euclidean norm. The estimate based on the RP method
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Fig. 8. Comparison of the estimators of the mutual
information for the x-component of the Rossler
system computed by the RP method (solid line) and
the G-P algorithm (dashed line). The parameters
used for the Réssler system and the integration step
are the same as in Sec. 5

is almost independent of the norm, whereas
the estimate based on the G-P algorithm
clearly depends on the special choice. If the

Tt ’ 1 maximum norm is used (in G-P and RP)
0.0L. . et . 1 both curves coincide.
0 10 20 30 40 T Note that the estimators for the

invariants we propose are different from
the ones of the G-P algorithm.
The three measures that we have proposed, are not only applicable for chaotic
systems but also for stochastic ones, as the invariants are equally defined for both kinds
of systems.

7. Conclusions

In this paper we have presented an analytical expression for the distribution of
diagonals P, (/) for stochastic systems and chaotic flows, extending the results presented
in [11]. We have shown that P (/) is linked to the second order Rényi entropy rather than
to the Lyapunov exponent. Further we have found in the logarithmic plot of P (/) two
different scaling regions with respect to €, that characterize the dynamical system and are
also related to the geometry of the attractor. This is a new insight provided by RPs that
cannot be seen by the G-P algorithm and will be studied in more detail in a forthcoming
paper. The first scaling region defines a new time horizon for the description of the
system for short time scales. Beyond the RP method does not make use of high
embedding dimensions, and the computational effort compared with the G-P algorithm is
decreased. Therefore the RP method is rather advantageous than the G-P one for the
analysis of rather small and/or noisy data sets. Besides this, we have proposed different
measures for the RQA, like estimators of the second order Rényi entropy K, the
correlation dimension JD2 and the mutual information, that are, in contrast to the other
often used RQA measures, invariants of the dynamics [26].

We thank Vadim Anishchenko very much for the long-standing and very exciting
discussions and his suggestions on this work. Moreover we thank Dieter Armbruster,
Annette Witt, Udo Schwarz and Norbert Marwan for the fruitful discussions. The
project was supported by the «DFG Priority Program 11145».
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VIIK 519.6

AHAJIMTUYECKOE OIIMCAHUE OTOBPAXEHUI IIOCAEIOBAHUA
IS BEJIOTO IIYMA 1 XAOTHYECKHUX ITPOIIECCOB

M. Thiel, M.C. Romano, J. Kurths

JaHo aHaNUTHYECKOE OMUCAHWE paclpefelieHdsi [IHarOHANbHBIX JIMHHH B
0TOOpaXEHUSX NOCIENOBaHus st 6EJIOro IIyMa W CHCTEM C XaOTHYECKOH NHHAMHKOIL,
I0Ka3aHO, 4YTO 3TO paclpefe/ieHHe CBA3aHO C KOPPENSLMOHHON SHTPOIHEH.
HpentudmmpoBanbl [Be 00MacTH CKEMIMHr2 B PaclpeieNieHMH [HMaroHaiedt s
KosneOaTeNbHBIX CHCTEM ¢ XaOTHYCCKOM JUHAMIKOH, KOTOpBIC TECHO CBA3aHbl C IABYMS
TOPDH30HTaMH NPEJCKA3yEMOCTU H C FEOMETPHEll aTTpakTopa. T 00JacTH CKEIIMHTa
He MOryT ObiThb NOJy4eHbl ¢ momompio amropurma I'paccbeprepa - ITpoxkayuma. B
3aKJFOYEHHE TMPEJUIOKEHbl METOIbl ONpENeNieHHs] JHHAMHYECKUX HHBAapHAHTOB W3
0TOOpaXeHUH NocaeoBaHus.
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