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RIDDLING IN THE PRESENCE OF SMALL PARAMETER MISMATCH 

Serhiy Yanchuk and Tomasz Kapitaniak 

Riddling bifurcation leads to the loss of chaos synchronization in coupled identical 
systems. We discuss here the manifestation of the riddling bifurcation for the case of a small 
parameter mismaich between coupled systems. We show that for slightly nonidentical 

coupled systems, the transverse growth of the synchronous attractor is mediated by transverse 
bifurcations of unstable periodic orbits embedded into the attractor. 

Introduction 

Consider two symmetrically coupled identical systems dv/dr=f(x) апа dy/dt=f(y) 
and х, yER” which evolve оп ап asymptotically stable bounded chaotic attractorA, 

ака = f{x) + C(y-x), dyldt=f(y)+ C(x-y). 1) 

Complete synchronization occurs when the coupled systems asymptotically exhibit 
identical behaviour, i.e., x(¢)-y(¢)!—0 ав 7->со, The synchronous behaviour takes place on 
the synchronization manifold x=y, which is invariant in the phase space of the coupled 
system (1) and has half the dimension of the full system. The synchronization loss in 
system (1) is initiated with the riddling bifurcation [1] when е first unstable periodic 
orbit (UPO) embedded into chaotic attractor A loses $ transverse stability. In this рарег 
ме discuss the manifestation of the riddling bifurcation for the case оЁ а small parameter 
mismatch between coupled systems. We give evidence that for slightly nonidentical 
coupled systems, the transverse growth оЁ the synchronous attractor is mediated by 
transverse bifurcations of unstable periodic orbits embedded into the attractor. The 
desynchronization mechanism is shown to be similar to the bifurcation of chaos- 
hyperchaos transition [2]. We also note that the parameter mismatch leads 10 the increase 
of transverse instabilities after the riddling bifurcation. 

Model 

Without loss оЁ generality, а small difference between coupled systems can be 
incorporated in (1) as 

аа = f(x) + a(x) + C(y-»), dylde=fy) + C-y) () 
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where a(x) describes parameter mismatch. 
transverse directions For sufficiently small , the evolution оЁ the 

о-0 small @ — system (2) сап be considered as the 
perturbed evolution of the system (1), so 
the ‘motion of the system can be 
asymptotically close to the synchronization 
manifold fx-yl<e with small e.! т these 

invariant manifold cases, the attractor of the system (2) is 
located in the neighborhood of the invariant 

Fig. 1. Small parameter mismatch implies small manifold x=y of system (1). For 
perturbation оЁ stable and unstable manifolds оё syfficiently small e, transverse stability оё 
saddle periodic orbits embedded in an attractor orbits embedded т A is also preserved in 

system (2). 
It is also meaningful 10 speak about transverse and longitudinal stability оё saddle 

periodic orbits embedded in е attractor A since а sufficiently small mismatch will cause 
only small perturbation оё the local unstable and stable manifolds and will not affect 
stability properties of the UPOs, as sketched in Fig. 1. 

Therefore, the moment of riddling bifurcation will correspond to the loss of 
transverse stability оё some orbit embedded in the attractor. Here, оё course, the situation 
may arise when the above mentioned orbit leaves the attractor before its transverse 
destabilization ав it was described in [5]. In this situation, we may consider е remaining 
orbits that lose transverse stability with decrease оё а coupling coefficient. In general, for 
nonidentical systems, we are dealing with a chaotic attractor which is no longer located in 
low-dimensional synchronization manifold but remains т the neighborhood of it. 
Moreover, periodic orbits embedded into this attractor are proved to lose transverse 
stability with the decrease оё coupling [6]. Therefore, we have the same situation а5 for 
chaos-hyperchaos transition [2,4] where the growth of the attractor is mediated by doubly 
unstable orbits embedded in it. It was shown in [2] that this growth can be either smooth 
or abrupt depending on the type of «riddling» bifurcation. 

In фе following а5 the numerical example, we consider two coupled Rassler 
systems 

ака = f(x) + & + C(d)(y~x), 

dyldt =f(y) + C(d)(x-y), 
where C(d)= diag{d-0.6,1.0,-3.1¢+0.7}, @=(0,0,a), 

К = (-х, - x5, х, + 0.42x,, 24+x,(x,-4))". 

The mismatch is introduced via parameter а. 
It was shown in [8] that the corresponding system оЁ identical coupled oscillators, 

ie. for a=0 loses complete synchronization with the decrease оЁ parameter 4. In 
particular, the riddling bifurcation occurs аг d=0.241 when the embedded period-1 cycle 
becomes transversely unstable via supercritical transverse period-doubling bifurcation. At 
d=0.192 the blowout bifurcation takes place when transverse Lyapunov exponent оЁ the 
synchronous attractor becomes negative. Note also, Фаг using numerical simulation оЁ 
coupled identical systems we were unable to detect bursts from the synchronization 
manifold for the parameter values d€(0.22,0.24), i.e. where synchronous attractor has 
already lost its transverse stability but is still weakly stable. 

©) 

! This 15 the case, Гог example, when Фе synchronous object in system (1) is normally а hyperbolic 
torus ог а saddle periodic orbit embedded into the attractor. Some generic cases where such estimation holds 
are also described in [3]. 
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In the case for systems with the 
mismatch @е above mentioned transverse 
period-doubling bifurcation persists and for 
a=0.003 it takes place at d=024. 
Numerically computed Lyapunov 
exponents for the system (3) are shown in 
Fig. 2. In the interval I the chaotic attractor 
A is located т the neighborhood оё the 
manifold x=y. We observe the growth of 
the second Lyapunov exponent what is 
connected with the riddling bifurcation at 
d=0.24 and initiation of the chaos- 
hyperchaos transition. As it was shown in 
[2], 5 transition is mediated by the 
transverse  destabilization of UPOs 
embedded in the chaotic attractor A. In the 
interval П, the system (3) has the stable 
hyperchaotic attractor with two positive 
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Fig. 2. Lyapunov exponents of system (3) versus d; 
=0.003: I - interval т which chaotic attractorA 15 
located in the neighborhood оЁ the manifoldx=y, П - 
interval in which hyperchaotic attractor exists, Ш - 
interval where the chaotic attractor A loses stability 
and solution switches into stable limit cycle (Ша) 
and torus (IIIb) 

Lyapunov exponents. At d=0.21 chaotic attractor A becomes unstable and disappears. 
The evolution of the system (3) switches ю the limit cycle (interval а) and torus 
(interval (ШЬ). Fig. 3 shows the behavior оЁ the synchronization error x,(1)-y,(¢) for 
different values of d. We can observe transverse bursts for the parameter values after the 
moment of riddling bifurcation (Fig. 3, b, с). More detailed information about the 
transverse size of the attractor can be seen in Fig. 4, where the maximum amplitude of 

bursts detected during time interval 7=200000 versus coupling coefficient 4 is shown. It 
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Fig. 3. Behavior of the synchronization егтог х -) 

for @=0.003; (a) d=0.25 аЦ UPO are transversely 
stable; (b) d=0.23, period-1 UPO is transversely 
unstable; (с) 4=0.22 
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can be seen that the attractor grows rapidly 
in transverse direction already after the 
riddling bifurcation. 

In the case of the ideal coupled 
systems е chaotic attractor A located at 
the invariant manifold x=y can have locally 
ог globally riddled basins of attraction. A is 
ап attractor® with focally riddled basin Ё 
there is neighborhood U of A such that in 
any neighborhood У of апу point in A, 
there is а set оё points in VNU оЁ positive 

018 020 022 024 026 028 @ measure which leaves U т а finite time. 
The trajectories which leave neighborhood 

Fig. 4. Transverse growth оЁ the апгасюг with U can either go '0 the other attractor 
decreasing of d; a=0.003 (attractors) or after a finite number of 
iterations be diverted back to A. If there is neighborhood U of A such that in any 
neighborhood V of any point in U, there is a set of points of positive measure which 
leaves U and goes to the other attractor (attractors), then the basin оЁ A is globally 
riddled. 

Conclusions 

In conclusion, we investigated the effect of riddling bifurcation on the chaotic 
attractor of the coupled systems with the parameter mismatch. After the onset of 
bifurcation, the system trajectory shows intermittency-like behavior with bursts away 
from the manifold x=y. These bursts grow rapidly resulting т е growth т size оЁ the 
chaotic attractor. Contrary to the case оё the coupled ideal systems we have not observed 
globally riddled basins of the chaotic attractor located in the neighborhood of the 
manifold x=y. 
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PMI[JIMHI‘ B HPI/ICYTCI‘BI/IH МАЛОЙ РАССТРОЙКИ 
ПО ПАРАМЕТРУ 

С. Янчук, Т. Kapitaniak 

Ридлинг-бифуркация приводит к потере синхронизации хаоса в связанных 
идентичных системах. В статье обсуждается проявление ридлинг-бифуркации для 
случая малой расстройки по параметру между связанными системами. Показано, 
что для немного неидентичных. связанных CHCTEM уширение синхронного 
аттрактора — обуславливается  трансверсальной — бифуркацией — неустойчивых 
периодических орбит, встроенных в аттрактор. 
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