

Изв. вузов «ПНД», т.11, № 4-5, 2003

УДК 621.385

РЕЗОНАНСНЫЕ ЭФФЕКТЫ И ДИНАМИКА ИНТЕНСИВНОГО ЭЛЕКТРОННОГО ПУЧКА ПРИ УЧЕТЕ ПОПЕРЕЧНЫХ ТЕПЛОВЫХ СКОРОСТЕЙ ЭЛЕКТРОНОВ

Ю.Г. Гамаюнов

Рассмотрены резонансные эффекты и динамика электронного пучка в области транспортировки, обусловленные влиянием начальных поперечных тепловых скоростей электронов.

Введение

Специфика тонких интенсивных электронных пучков в протяженных цилиндрических каналах в значительной мере обусловлена поперечными тепловыми скоростями электронов, эмитируемых термокатодом. Хотя средняя тепловая энергия электронов на катоде составляет доли электрон-вольта, а реальные ускоряющие напряжения достигают единиц киловольт и более, тепловое движение электронов, тем не менее, оказывает существенное влияние как на структуру пучка, так и на его динамику. В работе [1] была предложена модель и изложен подход для анализа электронных пучков с максвелловским распределением начальных поперечных скоростей электронов на катоде в рамках параксиального приближения. Этот подход был затем развит в работе [2], в которой получены уравнения, позволяющие исследовать характеристики теплового пучка в более широкой области его параметров. Сопоставление результатов, получаемых в рамках этого подхода, и результатов численного моделирования многоскоростного ансамбля частиц [3] показало их соответствие, но в то же время выявило и ту область параметров, где имеются различия. Последнее объясняется учетом в [2] сил пространственного заряда через осевую объемную плотность заряда, что завышало действие этих сил. Поэтому в [4] модель теплового пучка была скорректирована путем использования в уравнениях усредненной объемной плотности пространственного заряда по сечению пучка, что позволило устранить указанные выше различия. В рамках моделей теплового пучка как с осевой, так и с усредненной объемной плотностью заряда было обнаружено, что при величинах фокусирующих магнитных полей, близких к бриллюэновскому, в области некоторых значений компрессии холодного пучка и параметра тепловых скоростей максимальная амплитуда огибающей теплового пучка по отношению к радиусу холодного пучка заметно увеличивается, хотя, казалось бы, она должна изменяться монотонно при изменении этих параметров.

106

Такое поведение огибающей указывает на изменение динамики теплового пучка, вызванное, например, резонансными эффектами в пучке, природа которых, однако, не выяснена. В настоящей работе сделана попытка исследования механизма, приводящего к аномальной зависимости огибающей в области некоторых значений параметров пучка при использовании фокусирующих магнитных полей, близких к бриллюэновскому, на основе модели теплового пучка с усредненной объемной плотностью заряда по сечению.

Основные уравнения, результаты

В модели теплового электронного пучка [1] поперечное движение любого электрона, стартующего из произвольной точки катода с произвольной поперечной ско; эстью, описывается совокупностью движений в этом пучке двух характерных электронов, один из которых покидает кромку катода с нулевой поперечной скоростью (нетепловой электрон), а второй вылетает из центра катода с отличной от нуля поперечной скоростью (тепловой электрон). Через траектории этих электронов выражаются основные интегральные характеристики пучка, такие как распределение плотности тока по сечению, огибающая пучка с заданным токосодержанием, доля тока в пределах определенного радиуса пучка. Уравнения, описывающие траектории характерных электронов в тепловом пучке, представляют собою систему из двух нелинейных дифференциальных уравнений второго порядка [2,4]. Для электронно-оптических систем (ЭОС) с магнитным на катоде эту систему уравнений можно свести ĸ одному полем интегродифференциальному уравнению относительно траектории нетеплового электрона, через которое удается также выразить и траекторию теплового электрона. Тем самым задача анализа процессов в тепловом пучке в этом случае оказывается связанной с определением только одного движения - движения нетеплового электрона в тепловом пучке, что в некоторых случаях упрощает задачу при приближенном рассмотрении влияния тепловых скоростей электронов на характеристики пучка. Будем следовать этому подходу и рассматривать только такие ЭОС.

Пусть тепловой пучок, сформированный электронной пушкой, входит в область однородного магнитного поля. Начало этой области совместим с нормированной продольной координатой *x*=0. Тогда интегродифференциальное уравнение траектории нетеплового электрона в тепловом пучке при использовании модели пучка с усредненной плотностью объемного заряда по сечению будет иметь вид

$$\varphi_{\rm H}^{\prime\prime} + i_0 \varphi_0^{2} / (4\varphi_{\rm H}^{3}) [n_0^{2} (\varphi_{\rm H} / \varphi_0)^4 - (n_0^{2} - 1)] = i_0 / (4\varphi_{\rm H}) [1 - \Phi(x)], \tag{1}$$

где $\Phi(x) = 1 - J/Q^2;$

$$\begin{aligned} Q &= [-\ln(1-J)/P(x)]^{1/2} \exp\{0.06[2P(x)]^{1/2}(1-[2P(x)]^{1/2}/6)\} + \\ &+ J^{1/2}\{1-\exp(-0.23[2P(x)]^{1/2})\}; \end{aligned}$$

$$P(x) &= P_{\min}/\sin^{2}\{[(n_{0}^{2}-1)i_{0}/4s]^{1/2}\int_{0}^{x} [d\xi/\phi_{\rm H}^{-2}(\xi)] + \psi\}; P_{\min} = 440\lambda i_{0}(n_{0}^{2}-1)/s; \end{aligned}$$

 $\varphi_{\rm H}(x)$ - функция, описывающая траекторию нетеплового электрона; n_0 - превышение фокусирующего магнитного поля над бриллюэновским для ламинарного пучка радиусом r_0 ; $\lambda = p_{\mu}U_0/T$ - параметр тепловых скоростей, p_{μ} - микропервеанс, U_0 - ускоряющее напряжение, T - температура катода; $i_0 = 0.0605 p_{\mu}/\mu^2$, $\mu = \Phi_0/l$, Φ_0 , l - нормировочные величины поперечных и продольных размеров;

Уравнение (1) записано для случая, когда осевой потенциал постоянен и имеет нормированное (на ускоряющее напряжение) значение U(x)=1. По виду уравнение (1) аналогично дифференциальному уравнению параксиальной траектории граничного электрона ламинарного пучка и отличается от него наличием в правой части функции Ф(x). Эту функцию, учитывающую тепловое движение электронов, можно рассматривать как возмущение объемного заряда ламинарного пучка, поскольку правая часть уравнения (1) связана с плотностью пространственного заряда электронов. Выясним, как изменяется функция $\Phi(x)$ при изменении продольной координаты. Из выражения для $\Phi(x)$ видно, что это изменение проявляется опосредованно через функцию P(x). Поэтому дальнейшее рассмотрение проведем в следующем приближении: представим $\phi_{\mu}(x) = \phi_{s}[1 + \alpha(x)]$, где φ_s - некоторое равновесное значение $\varphi_{\mu}(x)$, $\alpha(x) << 1$, но при вычислении P(x) в подынтегральном выражении вместо $\varphi_{\mu}(x)$ будем использовать φ_{s} . Это не должно привести к заметным качественным и количественным отличиям значений P(x) от истинных, поскольку величина интеграла при вариации подынтегральной функции изменяется в меньшей мере, чем сама функция и, кроме того, при этом сохраняется основное свойство P(x) - ее периодический характер, определяемый синусом. В этом приближении период функции P(x) оказывается равным L= = $2\pi\varphi_s^2/\{\varphi_0[i_0(n_0^2-1)]^{1/2}\}$. Периодической с тем же периодом будет и функция $\Phi(x)$. Разлагая эту функцию в ряд Фурье и линеаризуя уравнение (1), получим алгебраическое уравнение для φ_s и линейное дифференциальное уравнение для $\alpha(x)$

$$\begin{split} \varphi_{S}^{2}/\varphi_{0}^{2} &= (1 - 0.5a_{0})/(2n_{0}^{2}) + [(1 - 0.5a_{0})^{2}/(4n_{0}^{4}) + (n_{0}^{2} - 1)/n_{0}^{2}]^{1/2}, \\ \alpha'' + \alpha [\Omega^{2} - \omega_{0}^{2}/(2(2n_{0}^{2} - 1))(\varphi_{0}^{2}/\varphi_{S}^{2}) \sum_{\kappa=1}^{\infty} a_{\kappa} \cos(\kappa \omega x + \beta_{\kappa})] = \\ &= -i_{0}/(4\varphi_{0}^{2})(\varphi_{0}/\varphi_{S})^{2} \sum_{\kappa=1}^{\infty} a_{\kappa} \cos(\kappa \omega x + \beta_{\kappa}), \end{split}$$

$$(2)$$

где $a_0...a_{\kappa}$ - коэффициенты Фурье, зависящие от параметров пучка (λ , n_0 , p_{μ} и пр.); β_{κ} - фазы гармоник, также зависящие от параметров пучка и фазы ψ ;

$$\Omega = \omega_0 \{1 + \varphi_0^2 / (\varphi_s^2 (2n_0^2 - 1)) [\varphi_s^2 / \varphi_0^2 - (1 - 0.5a_0)] \}^{1/2}; \quad \omega_0 = [i_0 (n_0^2 - 0.5)]^{1/2} / \varphi_0;$$

 $\omega = 2\pi/L$ или $\omega = (\phi_0/\phi_s^2)[i_0(n_0^2-1)]^{1/2}$ - частота возмущения.

Обсудим уравнение (2). Если не учитывать поперечные скорости электронов, то $a_0 = a_{\kappa} = 0$, $\varphi_s = \varphi_0$, $\Omega = \omega_0$ и уравнение (2) принимает вид

$$\alpha'' + \omega_0^2 \alpha = 0. \tag{3}$$

Уравнение (3) описывает известные поперечные колебания с частотой ω_0 граничного электрона ламинарного пучка относительно равновесного радиуса φ_0 , электрон подобен в этом случае гармоническому осциллятору. Если же учесть тепловые скорости электронов, то движение осциллятора существенно изменяется, так как изменяется его собственная частота, она становится равной Ω , а наличие в (2) сумм с периодическими членами формально можно связать с воздействием на осциллятор возмущения, обуславливающего как параметрическое возбуждение (сумма в квадратных скобках), так и обычные вынужденные колебания (сумма в правой части уравнения). Наиболее интересен случай, когда частота возмущения к ω близка к горячей собственной частоте Ω осциллятора. В уравнении (2) тогда можно оставить только члены с частотами к ω .

$$\alpha'' + \alpha [\Omega^{2} - \omega_{0}^{2} / (2(2n_{0}^{2} - 1))(\varphi_{0}^{2} / \varphi_{s}^{2}) a_{\kappa} \cos(\kappa \omega x + \beta_{\kappa})] =$$

$$= -i_{0} / (4\varphi_{0}^{2})(\varphi_{0} / \varphi_{s})^{2} a_{\kappa} \cos(\kappa \omega x + \beta_{\kappa}).$$
(4)

Уравнение (4) является неоднородным уравнением типа Матье, которое при условии $\Omega \approx \kappa \omega$ имеет нарастающее решение, то есть увеличение вдоль продольной координаты амплитуды колебаний $\varphi_{\rm H}(x)$, определяющей одно из движений электронов в тепловом пучке. Из условия $\Omega = \kappa \omega$ найдем номер резонансной гармоники возмущения

$$\kappa = \left[1 + \frac{1}{2} (\varphi_s / \varphi_0)^2 (1 - 0.5a_0) / (n_0^2 - 1)\right]^{1/2}.$$
(5)

Результаты расчета правой части соотношения (5) в области параметров, где наблюдается аномалия огибающей теплового пучка (рис. 1), представлены на рис. 2, из которого видно, что ближайшее целое число к значению правой части (5)

есть $\bar{\kappa} = \kappa = 2.0$. Поэтому можно полагать, что резонанс в рассматриваемой системе возникает на второй гармонике возмущения. Физически возникновение $\frac{\varphi_{\text{ог}}}{\varphi_0}$ резонанса можно объяснить следующим образом. Как уже указывалось, в рамках используемой модели тепло-

рамках используемой модели теплопучка поперечное вого движение любого электрона пучка, имеющего на произвольную катоде поперечную скорость, описывается совокупностью двух движений, одно из которых выражается через поперечное движение нетеплового электрона, а другое через поперечное движение теплового электрона. Иначе говоря, любой электрон теплового пучка одновременно участвует в двух движениях, периодичность которых вдоль продольной координаты различна. Влияние же сил пространственного заряда на эти движения определяется периодичностью огибающей пучка, которая в общем случае не совпадает с перио-**ДИЧНОСТЬЮ** указанных пвижений. Однако не исключено, что при некоторых параметрах пучка действие сил пространственного заряда может приводить к раскачке того или иного движения, если пространственные колебания объемного заряда будут находиться с ним в определенных частотных соотношениях - в условиях резонанса или близко к нему. В рассматриваемом случае это выполняется по отношению к движению электронов теплового пучка, описываемому через движение нетеплового

Рис. 1. Зависимость амплитуды огибающей в пучностях теплового пучка от компрессии холодного пучка: $n_0=1.005$, J=0.99; $\lambda=2$; 3; 4 для кривых 1, 2, 3, соответственно

Рис. 2. Зависимость величины правой части уравнения (5) от превышения фокусирующего магнитного поля над бриллюэновским полем при различных λ и s. λ =2, s=7; λ =3, s=10; λ =4, s=14; J=0.99. Все значения правой части попадают в область, ограниченную кривыми

Рис. 3. Траектория нетеплового электрона *I*, теплового электрона 2 и огибающая пучка 3. Траектория теплового электрона под осью представлена симметрично в верхней полуплоскости. λ=3, s=10, J=0.99. Здесь и далее графики построены для следующих значений n₀: a - 1.05; δ - 1.035; ε - 1.02; ε - 1.005

электрона. Соответственно этому будет изменяться и огибающая пучка. Полученное приближенное условие возникновения резонанса в пучке было сопоставлено с численными расчетами при непосредственном интегрировании дифференциальных уравнений траекторий двух характерных электронов [4]. Расчеты проводились с учетом условий формирования электронного пучка в области пушки, подобно тому, как это было сделано в работе [2]: уравнения интегрировались по продольной координате от катода электронной пушки, распределение потенциала и магнитного поля в которой соответствовало согласованному вводу холодного пучка с компрессией *s* в область однородного магнитного поля. При интегрировании находились траектория $\varphi_{u}(x)$ нетеплового электрона и траектория $\varphi_{T}(x)$ теплового электрона, по которым рассчитывались огибающая пучка, пространственные спектры колебаний нетеплового электрона и возмущения $\Phi(x)$, проекция сечения Пуанкаре на плоскость $\phi_{H}(x)$, $\phi'_{H}(x)$ (выборка значений $\varphi_{u}(x)$, $\varphi'_{u}(x)$ проводилась в моменты, когда $\varphi_{\tau}(x)=0$ при $\varphi'_{\tau}(x)<0$, то есть в моменты пересечения оси траекторией теплового электрона). На рис. 3 показаны рассчитанные траектория нетеплового электрона (это движение определяет резонанс в пучке), траектория теплового электрона и огибающая теплового пучка для некоторых малых значений превышения no paбочего магнитного поля над бриллюэновским. Видно, что при некоторых no за несколько периодов пульсаций заметно возрастает по сравнению со значением в начальной плоскости лишь амплитуда траектории нетеплового электрона и огибающей пучка, что согласуется с результатами приближенного анализа условий возникновения резонанса. Дальнейшего нарастания амплитуды, которое следует из уравнения (4), не происходит, что связано с нелинейностью исходных уравнений теплового пучка. Спектры пространственных колебаний нетеплового электрона и функции $\Phi(x)$, определяющей возмущение объемного заряда пучка, представлены на рис. 4. Вертикальными черточками на оси абсцисс отмечены значения частоты возмущения ω и собственных частот ω_0 , Ω осциллятора (в нормированных величинах), рассчитанные по приведенным выше формулам. Видно, что они близки к соответствующим частотам пиков спектра. В спектре нас интересует прежде всего вторая гармоника возмущения и частота колебаний нетеплового электрона, близкая к найденной частоте Ω. Из рис. 4, а-в видно, что при изменении

Рис. 4 Спектр колебаний нетеплового электрона I и возмущения 2. Амплитуды ε_n спектра и частоты даны в нормированных величинах. $\lambda=3$, s=10, J=0.99

no от больших значений к меньшим, частотный интервал между второй гармоникой возмущения и частотой колебаний нетеплового электрона уменьшается, а амплитуда колебаний на этих частотах увеличивается, что свидетельствует о приближении системы к резонансу. Но приближение к резонансу при дальнейшем уменьшении n₀ здесь является причиной развития более сложных процессов в пучке и резкого изменения его динамики: она начинает демонстрировать признаки пространственных хаотических колебаний. Об этом свидетельствует изменение как вида спектра, так и вида проекции на плоскость $\phi_{\mu}(x)$, $\phi'_{\mu}(x)$ сечения Пуанкаре. Если ранее в спектре хорошо были видны отдельные пики (рис. 4, а-в), а сечения Пуанкаре соответствовали квазипериодическим движениям (рис. 5, а-в), то теперь спектр имеет вид сплошного (рис. 4, г), а сечение Пуанкаре представлено разбросанными точками (рис. 5, г). Как известно, подобное характерно для хаотических колебаний. Стохастизация пучка здесь, по-видимому, происходит следующим образом [5]. С приближением к резонансу амплитуда колебаний электрона-осциллятора, отображающего одно из движений нетеплового электронов теплового пучка, возрастает. В фазовом пространстве осциллятора этому будет соответствовать приближение изображающей точки к сепаратрисе, ограничивающей резонанс, но так как осциллятор находится также под воздействием возмущения на других частотах (см. рис. 4), то в окрестности сепаратрисы образуется стохастический слой, что и объясняет возникновение пространственных хаотических колебаний, а вместе с ними и разрушение резонанса.

Обратим внимание также на следующее. Как видно из рис. 1, каждому значению параметра тепловых скоростей λ соответствует интервал значений компрессии *s* холодного пучка, при которых наблюдается аномалия огибающей, причем в точках максимума кривых рис. 1 отношение λ/s остается примерно одним и тем же: $\lambda/s \approx 0.3$. То, что это отношение должно оставаться постоянным, следует и

Рис. 5. Сечение Пуанкаре; λ=3, s=10, J=0.99

из формулы (5). Действительно, правая часть этой формулы зависит от отношения λ/s , поскольку $a_0 = f_1(n_0, \lambda/s)$ и $\varphi_s/\varphi_0 = f_2(n_0, \lambda/s)$. Поэтому, если при фиксированном значении превышения n_0 магнитного поля над бриллюэновским резонанс появляется при некоторых λ и s, то, естественно, любые изменения этих величин (при условии постоянства отношения λ/s) не приведут к изменению правой части уравнения (5). Иначе говоря, при новых значениях λ и s в системе также будет наблюдаться резонанс. Расчеты по исходным нелинейным дифференциальным уравнениям [4] для ряда значений λ , s, отличных от приведенных на рис. 1, подтвердили этот вывод и показали, что резонанс и стохастизация пучка наблюдаются при $n_0 \approx 1$ и таких сочетаниях λ и s, при которых их отношение остается примерно постоянным.

Таким образом, проведенное рассмотрение указывает на сложную динамику теплового пучка, обусловленную влиянием пространственного заряда на движение электронов. При этом выявленный эффект резонанса в тепловом пучке и стохастизация пучка может явиться (наряду с другими известными факторами, например, неоднородностью магнитных полей, неточностью ввода пучка, несоосностями в ЭОС) причиной ухудшения токопрохождения пучка в пролетных каналах электродинамических структур усилителей и генераторов О-типа при использовании фокусирующих магнитных полей, близких к бриллюэновскому полю.

Автор выражает признательность В.С. Андрушкевичу и А.И. Торееву за обсуждение результатов работы и сделанные критические замечания.

Работа выполнена при поддержке РФФИ, проект № 01-02-16681.

Библиографический список

1. Киритейн П., Кайно У., Уотерс У. Формирование электронных пучков. М.: Мир, 1970. 2. Гамаюнов Ю.Г., Тореев А.И., Патрушева Е.В. Влияние прикатодных условий на возмущение и предельное сжатие интенсивных электронных пучков при наличии начальных тепловых скоростей электронов // Радиотехника и электроника. 2001. Т. 46. Выш. 5. С. 593.

3. Григорьев Ю.А., Журавлева В.Д., Морев С.П. и др. Программа анализа ЭОС с многоскоростным электронным пучком // Электронная техника. Сер. 1. Электроника СВЧ. 1988. Вып.3 (407). С.71.

4. Gamayunov Y.G., Toreev A.I., Patrusheva E.V. Intensive electron beam dynamics in the presence of initial thermal electron velocities // Proceedings of Eighth International Workshop Beam Dynamics and Optimization. June 25-29, 2001, Saratov, Russia. Saratov University Press, 2002. P. 78.

5. Заславский Г.М. Стохастичность динамических систем. М.: Наука, 1984.

Саратовский государственный университет Поступила в редакцию 14.01.03 после доработки 17.03.03

RESONANCE-EFFECTS AND DYNAMICS OF INTENSIVE ELECTRON BEAM IN THE PRESENCE OF TRANSVERSAL THERMAL ELECTRON VELOCITIES

Y.G. Gamayunov

The electron beam resonance effects in the transportation region, which are conditioned by the initial transversal thermal electron velocities, have been considered.

Гамаюнов Юрий Григорьевич - родился в Саратове (1938), окончил Саратовский госуниверситет (1960). В СГУ работает с 1962г. Защитил диссертацию на соискание ученой степени кандидата физико-математических наук (1971) в области вакуумной и плазменной электроники. Опубликовал более 60 работ по указанной тематике.