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MULTISTABILITY, IN-PHASE AND ANTI-PHASE 
CHAOS SYNCHRONIZATION IN PERIOD-DOUBLING SYSTEMS 

V. Astakhov, А. Shabunin, P. Stalmakhov 

We consider mechanisms оё multistability formation апа complete chaos synchro- 
nization loss in mutually coupled period-doubling maps. Cases of in-phase and anti-phase 
synchronization are investigated. Influence оё non-identity оё partial oscillators is also 
discussed. 

1. Introduction 

Phenomenon of complete synchronization оЁ chaos has being intensively 
investigated for the last time. Majority of authors consider a case of in-phase 
synchronization when oscillations of subsystems are equal or almost equal to each other 
in the every moment оЁ time [1, 2]. The оег case оЁ complete synchronization is 
antiphase synchronization when the subsystems oscillate identically but with opposite 

signs: x, () =-x,(¢). The antiphase synchronization оё chaos was considered in е work 
[3]. The authors investigated «master - slave» synchronization [4], when one subsystem 
unidirectionally influences on the other one. 

Bifurcational mechanisms of both in-phase and antiphase complete chaotic 
synchronization are in close connection with bifurcations оЁ saddle periodic orbits 

embedded in the synchronous chaotic attractor. In а system оё symmetrically coupled 

identical oscillators а limit set relating 10 synchronous oscillations locates in the 

symmetric subspace (х, = X,) (for е in-phase synchronization) ог in the antisymmetric 
subspace (X, =- X,) (for the antiphase synchronization) оё the whole phase space оё the 
system, where X, and X, are vectors оЁ identical dynamical variables of interacting 

subsystems. If а chaotic set 15 attracting in the normal 10 the subspace direction, namely 

when its largest transversal Lyapunov exponent is negative, the synchronous oscillations 

are observed in experiment. When the exponent changes its sign to the positive, the 

chaotic attractor becomes non-attracting т the normal direction and transforms to а 

chaotic saddle. The synchronous oscillations are not observed in experiment further. 

However, the case is possible when the largest transversal Lyapunov exponent оп the 

chaotic attractor is negative, but the exponents оп some limit sets encapsulated in the 

attractor are positive. In this case е synchronous regime remains stable but becomes 

unrobust. Any infinitesimal noise ог the parameters mismatch can lead 10 the «bubbling» 

оЁ the attractor. Time-series of the oscillations related to motions in the normal to the 

subspace direction becomes an intermittency process when the phase point moves in 
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vicinity of the symmetric subspace for a long time (laminar phase) and leaves it from 
time to time (turbulent bursts) [12]. The bubbling of attractor is the first step to the 
desynchronization of chaos. Then, with changing of the controlling parameters more 
quantity of encapsulated cycles lose their stability in the normal direction. This enforces 
the process of bubbling and then the averaged on the attractor largest normal Lyapunov 
exponent can become positive. As a result, the chaotic set in the symmetric subspace 
becomes non-attractive. This phenomenon is called the blowout bifurcation [5]. The 
bubbling of attractor can be followed also by the riddling of its basins when «holes» from 
the basins of another attractor appear in infinitesimly small vicinity of фе attractor . In 
this case, the presence of small noise or the parameters mismatch leads to leaving of the 
phase point to the another attractor. Regimes which accompany the process of chaotic 
synchronization loss in the coupled logistic maps were described in works [13], [14]. 

In the paper ме detaily describe phenomena and mechanisms оЁ in- and anti-phase 
complete synchronization of chaos in period-doubling maps with symmetric diffusive 
coupling. The paper is organized as a follows: The section one describes bifurcational 
mechanisms of destruction of in-phase synchronization and formation of multistability in 
system of symmetrically coupled cubic maps. The found regularities are compared with 
Ваг in other systems. In the second section ме consider the influence ов small 
parameter’s mismatch on mechanisms of synchronization loss in logistic maps. In the 
third section we hold comparing mechanisms of in-phase and anti-phase synchronization 
of regular regimes in coupled cubic maps. We propose a method of control for anti-phase 
chaos synchronization and describe the phenomena which accompany it. The conclusion 
summarises main results of the paper. 

2. Mechanisms of destruction of in-phase synchronization 
and formation of multistability in coupled cubic maps 

Let’s consider а system of two identical discrete maps with symmetrical diffusive 
coupling: 

ха ЛС +1 ГО - f () 1) 

Yo =F ) +1F(x) L)) @) 

It is seen, that this system is invariant to е transformation (x <> у) and therefore 
the subspace (х=у) is invariant ю е operator оЁ the evolution оЁ the system. For 
investigation of the stability properties of symmetric solutions it is convenient to use 
«normal» variables: u= (x+y) /2, v= (x-y) /2. 

Adding апа subtracting equations (1) and (2) and then linearizing results in е 
vicinity of the symmetric subspace we get: 

Uy = 7 (4,). 3) 

оа = (1-2) 7 ()0, - ) 
The equation (3) describes the dynamics inside the symmetric subspace. It is 

evidently the equation of the single map. The tangent stability of the synchronous 
solution is described by the tangent Lyapunov exponent: 

й N 
Al =lim__ (UN) ЗА Р (). (5) 

The equation (4) describes the dynamics 1 е normal direction to the symmetric 
subspace т its small vicinity. The transversal stability оё the synchronous solution is 
determined by the transversal Lyapunov exponent: 
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A =limy __ (UN) Zh Il (1-29) £ (1), (6) 

Comparing (3) and (4) we see that the tangential and the transversal Lyapunov 
exponents satisfy the relation: 

ли = А/ +Inll2y ™ 

and hence, for small positive coupling (0<y<0.5) the normal Lyapunov exponent is 
smaller than the tangent one. Any in-phase regular oscillations are normally stable and in- 
phase chaotic oscillations are stable only аг sufficient large coupling. Let the single тар 
be a period-doubling one. In this case in the symmetric subspace a cascade of period- 
doubling bifurcations leading ю formation of synchronous chaos takes place. The 
resulting chaotic attractor contains infinite number of saddle periodic orbits taken part in 
its formation. According to (7) every orbit in the cascade can undergo one more period- 
doubling bifurcation which takes place in the normal direction 10 the symmetric subspace. 
As а result the saddle orbits which undergo фе bifurcation become repellers апа saddle 
orbits of double periods appear in their neighborhood. Then, the new saddle orbits 
become stable with further .parameter changing. Hence, if first period-doubling 
bifurcations lead to complicating оё synchronous oscillations, the second ones lead both 
to multistability and to transforming synchronous saddles into repellers. 

In the Fig. 1 we built an example of a scheme of bifurcations that begin the 
formation оё multistability. For better clarity we use here the following notation: the first 
index denotes the period of the orbit (or Cycle), the upper number is the number of steps 
оп which oscillation in у тар is delayed from that т х one. Obviously, synchronous 
oscillations have zero upper index. The bottom index identifies the orbit # there are 
several ones. Firstly, we observe the situation (Fig. 1, а) when there are two saddle orbits: 
period-one С°), period-two (2С°) and one stable period-four orbit (4С°) м the 
symmetrical subspace. Then, the saddle orbit (С°) undergoes the second period-doubling 
bifurcation in е normal to the subspace direction. As а result it becomes а repeller and а 
saddle orbit оё period-two 2С! appears outside the diagonal (x=y) (Fg. 1, b). With fur- 
ther parameters change it undergoes pitchfork bifurcation in the result оЁ which е orbit 
2C" becomes stable апа two symmetrical orbits 2C,*! апа 2C,* appears пеаг it (Fig. 1, ¢). 
Then, similar series оё bifurcations occurs with orbits of higher periods (Fig. 1,d). 

The considered scheme is a typical one. It is observed for a number of different 
period-doubling oscillators. Here we consider а coupled cubic maps system: 

7( = (а-1) х-аг. ®) 

We investigate bifurcations оё the periodic orbits located inside фе symmetrical subspace 
and of periodic orbits appeared from them. The structure of lines of tangential and trans- 
versal period-doubling bifurcations оп the parameters plane is represented т the Fig. 2. 

Horizontal lines I, I, оз marks period-doubling bifurcations оё periodic orbits 
€%, 2С° апа 4С° inside the symmetric subspace. On the line /, the periodic orbit С° 
undergoes tangent period-doubling bifurcation. As а result, it transforms to saddle and а 
stable periodic orbit оё double period 2C° appears in its neighborhood. Then, оп the line /, 
the saddle С° undergoes the transversal period-doubling bifurcation. As а result, it loses 
stability in transversal direction and transforms to repeller. In its neighborhood, outside 
the symmetrical subspace а period-two saddle orbit 2C* appears. With further parameter 
change this orbit becomes stable through pitchfork bifurcation оп line /,. The similar 
bifurcations take place with other periodic orbits in the symmetric subspace (see lines /y;, 
1, 1, апа lines /y,, /). Choosing value of the coupling we сап observe different sequences 

of tangent апа transversal bifurcations with the parameter а change. For example, the 
scheme described in the Fig. 1 corresponds to y = 0.18. Further increasing of the 

65



ВО R NN WU SUR S Y S 
14с° ° 12с° 1 1е 1 1 t 

a 

et 
Y 2С! 

В TEPE TR R 1l W ОНО A B 
taco  taco 1 іс" ! 1 1 

b W 

S S S у 
tae 't ос! 't 263 

О А NS S SN SR S 
taco  taco 1 beo ! ! t 

S S 
с В t t 

U ЛОНх S S 
“Yac:  tact tac' 12сй YT 

Y SR RN SN SR SN AN S 
tace 126° 1 с° 1 i 1 
— —- 

а ! рт 
Fig, 1. Scheme оё multistability formation beginning in the system of two logistic maps. Orbits С ° (о) 
208 () 4С° (&) are located inside the symmetric subspace. Orbits 2С! (Ф) 4С? (V) 2С, (+) апа 2C, 
(x) are outside it 

parameter of nonlinearity (line /, т the Fig. 2) leads 10 transition to synchronous chaos 
2МА° (2МА* is 2V -band self-symmetric chaotic attractor originated оп the base оЁ the 
periodic orbit 2¥C*). Inside chaotic region band-merging bifurcations and windows оЁ 
periodicity are observed. On the line /,; е system transits to one-band synchronous 
chaos А. 

Every transversal period-doubling bifurcation for а periodic orbit 2V С° located in 
the symmetric subspace, which 18 accompanied by its transformation to repeller adds 
points of local transversal instability ю the chaotic attractor 2A°. From these points 
phase trajectory leaves the symmetric subspace at transversal perturbations. The regime 
оЁ synchronous oscillations becomes unrobust. Any small noise and mismatch оЁ фе 
subsystems lead to destroying of the complete synchronization. Time-series of the 
difference (x, -y,) becomes intermittency process (on-off intermittency), when motion 1 
the symmetric subspace is intermittent by bursts from it. As a result a boundary of the 

synchronous region 1 the system with any small noise is shifted relatively 10 one in the 
system without noise. We have hold numeric investigations оп determination оЁ the 
boundary of the synchronization region. In these investigations we define oscillations as 
synchronous if the time-series of the subsystems are equal with precision of (¢) during 
the whole time interval of observations:



max 1х. -y, | <e,n=123,.N,,. . 

аг chosen values: е =0.0001, М а =2000000 
iterations. In the Fig. 2 (о) mark the expe- 
rimentally determined boundary оё the 
robust synchronization region. From the 
right side оё it stable synchronous chaotic 
oscillations take place. Under the line /i 
the system demonstrates many-band syn- 
chronous chaotic attractors 2¥A°, over it 
there is one-band synchronous chaotic 
attractor А°. Adding small noise with 
intensity ~ 0.00001 to the system doesn’t 
lead to desynchronization. 

From the left side of this boundary 
and from the right side of the boundary 2‘900_0 o1 02 03 7 
marked by (<) there 15 а region оЁ unro- 
bust synchronous chaos. The synchronous Fig. 2. Location оё bifurcational lines оп the plane 

«coupling - nonlinearity» for the system of coupled 
cubic maps. о» оэ [y are lines of tangent period- 

has the form оЁ intermittency. Its duration 9°ubling bifurcations of orbits ©, 2С° апа 4Co 
respectively, /;, 1, and /5 are lines of transversal peri- 

essentially depends on the chosen initial МБ 5 2 
conditions. Adding very small noise 10 фе ЁЪЁТЁ;Ё““_ Ё':ЁЁШ"ЁС_ЦЁОЁ ‹;ЁЁ,ЁЁ‘…ЦЁ 
system destructs е synchronous regime. 4¢2. Line Iy, marks transition 10 synchronous chaos; 
The system demonstrates bubbling line [ - transition Ю one-band е synchronous 
behaviour. In the region from е left side chaotic attractor. Symbol smark destroying of chaotic 
оё the boundary (<) we observe riddling sbi‘s‘.chm"‘”"c’“: (0) - bubbling process, @©) - riddled 

. . ns 
of the basins of the synchronous chaotic 
attractor. The basins 18 riddled with holes that belong 10 basins оё other regular ог chaotic 
attractors. 

Comparing mechanisms оё multistability formation for different systems (coupled 
cubic maps, logistic maps [10, 11], Hennon maps [18], Chua’s self-oscillators [19], 
Rossler oscillators [20]) we have concluded that: 

1. It & common for period-doubling oscillators with diffusive symmetrical 
coupling including invertible and non-invertible discrete maps and continuous time 

oscillators. 
2. The same bifurcations of the same periodic cycles form the basis of both 

appearing оЁ new stable oscillatory regimes and destroying of е regime оЁ in-phase 
chaotic synchronization. 

3. The main mechanism of multistability formation and synchronization loss is 
based on the cascade of transversal period-doubling bifurcations which take place with 
orbits of main family forming the skeleton of the synchronous chaotic attractor. 

4. Bifurcations of synchronous periodic orbits initiate and then enforce the 
bubbling process оё е chaotic attractor. Bifurcations of unsynchronous orbits appeared 
from synchronous ones lead to riddled basins of the attractor. 

regime is observed only in the absence of 
noise. The transition process to this regime 

3. Synchronization of chaos in weakly non-identical oscillators 

Real oscillators are non-identical. Hence, there is а reasonable question: is it 

possible to apply theory оё synchronization based оп symmetry properties to real systems. 

At what conditions idealized pure identical systems will behave similarly to real objects. 

For investigation of the complete synchronization phenomenon identical interacting 
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systems are usually used ав mathematical models. Then obtained in the frameworks оЁ 

such idealization results are applied to explain behavior of real experimental systems. If 

the regime о synchronization is stable and the used mathematical model is rough it is 
observable in real experiments. Intervals of synchronization on the coupling parameter 
are practically similar for identical and slightly mismatched systems. In this sense the 
behaviors of the identical and slightly mismatched systems correspond to each other. 
However, when ме investigate more exact effects such ав mechanism оЁ the 

synchronization loss from the point of view of bifurcations of saddle periodic orbits 
embedded in the chaotic attractor, there are differences 1 the scenario for identical апа 
weakly non-identical systems. This situation can take place when е symmetry breaking 
bifurcations take part in the process оё synchronization loss. ог example this 15 the pitch- 
fork bifurcation. From е bifurcation and catastrophe theory it is well-known (see [21, 
22]) аг the point of this bifurcation is the cusp catastrophe. At slight non-identity 
between interacting systems the bifurcation is eliminated by the certain ways. Non- 
identity can qualitatively change behavior оё orbits in dependence оп а parameter оЁ the 

system. 
We consider this subject оп the example оё coupled logistic maps with weak non- 

identity between elements: 

ха пА о-) 

Vo= № -) +1 0 -х?) 
here & is а detuning parameter. The considered system has no more subspace оЁ 
symmetry. Hence, ме can not define synchronous oscillations as motions inside the 
surface x=y. In 5 case we must use «experimental» description of oscillating regimes in 
asymmetric system. In the frameworks оЁ @е present description we call the chaotic 
regime synchronous, # lx - y | < A, а! any moment of time л, where А 15 а suitable given 
value that is small with respect to the intensity of the chaotic oscillation. In our 
investigations we use the following value of the parameters: A=1.56, 8=1 (identical 
oscillators) апа 0.995s8<1 (non-identical oscillators). These values correspond 10 regime 
оё one-band chaotic attractors т both oscillators аг zero coupling. 

Let’s consider firstly the identical case (8=1). In the system (9) е 
synchronization region has а finite interval. The stability loss of the symmetric one-band 
chaotic attractor А° in the transversal direction occurs both аг decreasing (y<0.5) and аг 
increasing (y>0.5) of the coupling coefficient y. The synchronization loss is induced by 
bifurcations оЁ saddle orbits 2VC® which are embedded in the chaotic attractor and form 
its skeleton. In е both cases of coupling increasing and decreasing е loss оЁ stability 
begins with а bifurcation оё the saddle point 1С°, which induces the bubbling transition in 
the system. 

With у decreasing the saddle point 1С° undergoes the period-doubling bifurcation. 
In the result it becomes а repeller and the saddle period-2 orbit 2C" appears in its vicinity 
outside the symmetric subspace. This bifurcation induces the bubbling transition in the 
system. With further у decreasing the saddle orbits 2VC? of higher periods undergo the 
same bifurcations. This enforces the bubbling phenomenon. 

Then the saddle orbit 2С! located outside the symmetric subspace undergoes one 
more bifurcation. It becomes stable and a pair of period-2 saddle symmetric to each other 
orbits appear in its vicinity (at inverse parameter changing this bifurcation is the 
subcritical pitch-fork bifurcation). The bifurcation of the orbit 2C! induces the riddling 

transition in the system. With further decreasing of the coupling the chaotic attractor 
gradually «loses» its basins and transforms into a chaotic saddle. The described 
mechanism fully repeats one of the cubic maps. At the coupling increasing we observe 
the other mechanism: The point 1С° undergoes the pitch-fork bifurcation. In the result it 

) 
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becomes а repeller апа in 5 vicinity а pair of saddle points С and С, symmetric 10 each 
other appear. This bifurcation induces е bubbling transition. With further increasing ofy 

other saddle orbits 2C? undergo фе period-doubling bifurcations similarly as in the case 
оё coupling decreasing. The riddling phenomenon of the А° basins is а result оЁ @е 
bifurcation of the saddle points С, and С,. They become stable and in their vicinities 
saddle orbits оЁ double period appear (at inverse parameter changing this bifurcation is 
the subcritical period-doubling bifurcation). In е cases оё both the coupling decreasing 
and the coupling increasing bifurcational scenario of the synchronization loss are very 
similar. The difference is only in the following. At weak coupling 1С° undergoes the 
period-doubling bifurcation, but at strong coupling - the pitch-fork bifurcation. Other 
saddle orbits 2YC® undergo the period-doubling bifurcations in the both cases. Aty 
decreasing the process of riddling basins оЁ А° begins with the pitch-fork bifurcation оЁ 
the orbit 2C", but а{ у increasing - with the period-doubling bifurcations of C, апа С,. 

The depended on coupling sequence of bifurcations of periodic orbits which begin 
the bubbling of the attractor ап then the riddling of its basins 15 built in the Fig. 3,a. 

Let’s now consider the parameter mismatch effect оп the bifurcational scenario of 
the synchronization loss оЁ the system (9) when 8#1. We consider the synchronization 
loss both аг decreasing апа increasing оё the coefficient оЁ couplingy. At small value оЁ & 
we investigate bifurcations of unstable periodic orbits which lead to breaking of regime of 
nearly identical chaotic oscillations in the coupled systems. 

At у decreasing а period-doubling bifurcation of the saddle point С° induces е 
transition to the bubbling behavior. After this bifurcation а rebuilding оЁ е phase space 
structure occurs 1 the vicinity of the А°. Namely, inside the quasi-symmetric region е 
saddle С° transforms to repeller ап а saddle orbit 2C! appears outside it. Stable 
manifolds of the saddle 2С! lean оп the repeller С° апа unstable manifolds leave 10 the 
quasi-symmetric region. The appearance of such structure changes the character of 
motions from nearly identical oscillations to the bubbling behavior. At increasing of 
coupling scenario of е transition to the bubbling behavior is different. With increasing 
оё у firstly ме observe а gradual displacement of the saddle С° in the normal direction. It 
leaves the quasi-symmetric region. Other saddle orbits 2\С° practically do not change 
their locations. Then the saddle-repeller bifurcation takes place in the system. In the 
vicinity of №е quasi-symmetric region а repeller С,° ап а saddle C " appear. With further 
increasing оЁ у the fixed points diverge. The repeller С/ enters the quasi-symmetric 
region and the saddle С/ moves away from it. As а result there is the same structure оЁ 
the phase space т the vicinity оё the А° а$ т the case of identical oscillators, but it is 
formed on the base of other bifurcations. In the quasi-symmetric region there is the 
repeller С? оп which stable manifolds оё the saddles С° and С lean. Their unstable 
manifolds leave 10 the quasi-symmetric region. This phase space structure also leads 10 
the bubbling behavior. Then, with further coupling increasing both saddles С° and C° 
undergoes subcritical period-doubling bifurcations. As а result they become stable апа 
the trajectory from vicinity оё the ex-attractor А° transits 10 one оЁ them. This ргосе 15 
very similar to the case оё identical oscillators except the fact (аг now муе do not observe 
riddled basins more. A trajectory leaves А° from any И5 neighborhood. But the duration 
of the transition process can be extremely large and essentially depends on the initial 
values. The scheme of bifurcations that take place in the mismatched system are 
represented in the Fig. 3, b. 

Comparing the behaviors оё the system (9) аг §=0.995 and at 8=1 ме see good 
qualitative correspondence. The regime оЁ complete synchronization corresponds 10 
nearly identical chaotic oscillations. The bubbling transitions in the symmetric system 
corresponds appearance of bubbling behavior in the system with mismatch. With further 

coupling change the same stable orbits appear both in the symmetric and asymmetric 
systems. In the asymmetric systems there is no riddled basins but one can observe the 
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Fig. 3. The scheme of bifurcations оп coupling which initiate bubbling and then riddling ргосев in the 
system of identical (a) апа weakly non-identical (b) logistic maps 

sensitive dependence оЁ the transition process time оп initial conditions. However, 
comparing the results quantitatively one need take into account the following: At the 
coupling decrease the value L, - y,| exceeds the chosen threshold value A almost аг the 
same value of у аг corresponds to the bubbling transition in е identical systems. At the 
coupling increase the corresponding values of у are very different. This difference оЁ 
changing of left and right boundaries of the synchronization interval is a result of 
difference of behavior of unstable periodic orbits embedded in the chaotic attractor which 
takes place at decreasing and increasing of y. This difference appears as a result of 
elimination оё the bifurcation conditioned by the symmetry оЁ the system. Thus, if @е 
bubbling transition in the symmetric system is induced by «uneliminated» bifurcation 
(the period-doubling bifurcation of the saddle С° ак the coupling decreasing) weak 
asymmetry does not influence on the bifurcational scenario of the transition to the 
bubbling behavior. If the bubbling transition is determined by @е bifurcation conditioned 
by the symmetry оЁ the system (the pitch-fork bifurcation of the saddle С° аг е 
couplingin creasing) the weak non-identity of the subsystems eliminates it and the 
bubbling behavior appears according 10 another scenario.The determined structure оЁ the 
phase space in the vicinity of A° is formated not аз а result оЁ the bifurcation оЁ the saddle 
CY but after saddle-repeller bifurcation оё birth оЁ new unstable points, namely е 
repeller С? апа the saddle C . The completion оё the process оЁ the chaos synchro- 
nization loss occurs according to different scenario in the symmetric and non-symmetric 
systems. At the coupling decreasing slight non-identity eliminates the bifurcation of the 
saddle 2C". Besides it the saddle-node bifurcation оё the new stable period-2 orbits 2C, ' 
and 2C ! birth take place. Starting from the vicinity оЁ А° phase trajectories move 10 this 
stable orbit. At the coupling increasing the loss of synchronization in the non-symmetric 
system is completed by the bifurcation of the saddle С. After the bifurcation the point С° 
becomes stable. 

4. Antiphase complete synchronization of chaos 

In this section we consider another case of complete synchronization of chaos: the 
antiphase synchronization оп example of the coupled cubic maps (1, 2, 8). The single 
cubic тар has а symmetry to transformation оё фе coordinate: 

I xo-x. 
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The system оЁ the coupled maps posses е symmetric property оЁ the single тар to the 
transformation: 

L xo-x, ye-oy, 

апа due to the symmetric coupling and identity of the subsystem sit also posses symmetry 
to transformation: 

К: х > ). 

Because / and R commutate with each other, their combination is а150 а symmetric 
transformation for the system (1, 2, 8): 

То К: х <> -y, у <> -x. 

Consequence of Ше symmetry оё the system to the transformation R о / 15 а possibility оЁ 
existence there anti-phase oscillations, which are satisfied condition x=-y. 

Let’s consider the stability properties of the antiphase motions т the coupled 
maps. In this case we also use normal variables.The equations in the small vicinity of the 
antisymmetric subspace (х=-у) have the form: 

u,=f'(v)u, (10) 

оу = (1-2)) (2,)- (11) 

In this case the dynamics inside the antisymmetric subspace is described by the 
equation (11). Contrary to the case of in-phase synchronization it depends on the 
coupling coefficient y. Stability of an antisymmetric solution to the tangent perturbations 
is determined by the tangent Lyapunov exponent: 

Ag=lim, _ (UN) 57 ni(1-29) £ (v, )l (12) 
The equation (10) determines dynamics in the normal direction to the 

antisymmetric subspace in its vicinity. It has no obvious dependence on the coupling 
coefficient y but it depend on it through the variable v,, which is determined by the eq. 
(11). The normal Lyapunov exponent which determines transversal stability оё the 
antiphase oscillations has е form: 

A2 =limy, __(UN) 5 Inlf (o). (13) 

It is seen а{ the normal апа tangent Lyapunov exponents аге connected with each 
other: р 

Аа= Л+ П-2у!. (14) 

This relation is №е opposite to е in-phase case. Here /“ < A “ and hence, the 
every antiphase oscillating regime firstly loses $ stability in the normal ю the 
antisymmetric subspace direction and secondly in the tangent direction. Because of 
relation (14) the antiphase self-synchronization of chaos is impossible in the considered 
systems. For а chaotic attractor A *>0 and therefore the normal Lyapunov exponent must 
be positive. Hence chaotic antiphase oscillations can not be transversally stable. 

Oscillating regimes inside the antisymmetric subspace are formed оп фе base оЁ 
the fixed points С, апа С, which appeared from the trivial fixed point Ср = (0; 0). 
Limit sets formed on the base of these points are identical up to symmetry transformation. 
Therefore we consider only one family оё the regimes (for example, near the pointC, ). 

The saddle fixed point C,, appears from the saddle fixed point Ср in the result оЁ 

the symmetry breaking bifurcation. It is unstable ю the perturbations directed 
transversally to the antisymmetric subspace. On the line lw1 (Fig. 4) it becomes stable 
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through pitchfork bifurcation. With chan- 
ging оЁ the parameters а апд у оп the base 
of this fixed point there is a cascade of 
period doubling bifurcations which leads to 
formation of a chaotic set inside the 
antisymmetric subspace. The every orbit 
undergoes the period-doubling bifurcation 
twice in the cascade. Firstly, ав stable orbit 
on the first multiplier, secondly as saddle 
orbit оп the second multiplier. As а result 

Cio оё фе first period doubling the orbit loses 
2.5 С its stability in the normal to the subspace 

direction. In its vicinity, outside the anti- 
symmetric subspace a stable orbit of double 
period appears. As a result of the second 

i period doubling the saddle orbit loses 
р stability in the tangent direction and 

б becomes repeller. In its vicinity, inside the 

1.5 antisymmetric subspace a saddle periodic 

0.0 0.1 0.2 0.3 у — orbit of double period appears. In the Fig. 4 
the lines of the first period doubling 
bifurcations are denoted: /,,! (for the orbit 
оё the period-one), 12 (for the orbit of the 

period-two), — 1,° (for the orbit of the period-four), and the lines оё the second period 
doubling bifurcations а5 [}, [ 2 [ respectively. Then, with further parameters 
changing, е appeared saddle antisymmetric orbits become stable through the subcritical 
pitchfork bifurcations. In the Fig. 4 these lines are denoted а5 12 апа 1„‚‘. Therefore, on 
the parameters plane there 15 а stable antiphase period-one orbit т the region between е 
lines 1, and /!, а stable antiphase period-two orbit between the lines /,2 and 1, and а 
stable antiphase period-four orbit between the lines /,* апа „'. Bifurcations оё orbits оЁ 
higher periods take place by similar way. Hence, on the plane оЁ the parameters there are 
bounds of stability for regular antiphase regimes, between which bounds of transversal 

instability exist. 
The considered bifurcational scenarium is very similar to the one for in-phase 

orbits. However, in the case of in-phase synchronization the bifurcations inside the 
symmetric subspace precede the bifurcations in the normal direction. Therefore, in the 
case of antiphase synchronization, contrary to the in-phase synchronization: 

* regions of transversal stability are divided by the regions оЁ transversal 
instability; 

* т the symmetrical subspace е transversally stable chaotic attractor is not 
formed. 

Antiphase synchronous system in the diffusively coupled period-doubling maps is 
impossible. However, for stabilization оё antiphase chaotic oscillations one can apply 
feedback controlling technics. We want to find фе controlling function in е form which 
does лог change the form оё antiphase oscillations, but changes their stability. Hence, the 
controlling function ¥ (x, у) must be equal to zero inside the antisymmetric subspace, na- 
mely: W(x, -x) = 0. п our work we suggest the function in the form: W(x .y)=r[f(x)+/(y)]. 
The controlling term is added to the right side оЁ the first equation of the system (1, 2): 

X, = () 17 G,) Ax)) +г (F(x,) +(3,) (15) 

Yo =F () + 0Кх,) -AY,))- (16) 

00 
1р 

Fig. 4. Bifurcational lines оЁ antisymmetric periodic 
orbits оп the pane of the parameters у - @ 
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-12.0 -0.2 н 
b -1.6 -1.4 -1.2 -1.0 0.8 -0.6 04 r 

Fig. 5. Dependence of the normal Lyapunov exponent for antiphase chaotic attractor on the controlling 
parameter г () at а=3., у =0.04. Dashed line denotes the values of the tangent Lyapunov exponent. In the 
(b) this dependence is presented in larger scale with regions оЁ the antiphase controlled synchronization 

The term r(f(x,)+f(y,)) can be considered ав another coupling loop with coupling 
coefficient r. 

The equations in the normal variables for the system with е control have е form 
(near the antisymmetric subspace): 

иа = 14) f'(v,)u, (17) 

оа =120 f(v,) +f' (0 - (18) 

In the case of antiphase oscillations и =0 and equation (18) transforms to the (11). 
The normal Lyapunov exponent for the system with the control is: 

лйс = Н, _(UN) S Inl (1+) £ () (19) 
'L contr = 

and hence: 

л° 
L contr = A, аП. (20) 

№е chose parameter г near value -1 ю make the normal Lyapunov exponent 
sufficiently small and hence, the synchronous chaotic regime transversally stable. The 
Fig. 5, a represents the dependences of the normal Lyapunov exponent on the controlling 
parameter г. Values оё the other parameters corresponds to the regime оЁ the developed 
chaotic attractor: а=3.8, у =0.04. To transit to regime оё antiphase synchronization we use 
the following procedure: We chose initial conditions from the basins of the chaotic 
attractor. In the every moment оё time we appreciate Ше distance between the phase point 
апа the antisymmetric subspace: р =lx, + y|. The distance was compared with е chosen 
value е. If p>e, е phase point 15 far from е subspace and the controlling influence is 
switched off. The trajectory evolves on the unsynchronous chaotic attractor. When phase 
point appears пеаг the antisymmetric subspace (р < 8), the controlling influence 15 
switched on. If the controlling parameter r locates in the interval where A, <0 the 
chaotic set inside the antisymmetric subspace becomes stable to transversal perturbation 
апа the trajectory is attracted to the subspace. After this the controlling influence tends (0 
zero. In our numerical experiments we chose е =0.01. In the Fig. 6 phase portraits оЁ the 
oscillations without control (a) ‚ with control (с, е) ап correspondent time-series of 
x,+y, (b, а, f) are represented. The original chaotic attractor (Fig. 6, а) corresponds 10 the 
regime оё unsynchronous chaos. The phase trajectory draws с square-like region. With 

applying small controlling influence фе diagonal line x=-y appears оп the region (Fig. 6, 
с). The time-series has interval оё synchronous behavior (Fig. 6, @). With further 
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changing  the interval оё synchronous behavior grows and ав а result е system transits 

to fully synchronous oscillations (Fig. 6, e, /). In this case е resulting chaotic attractor is 
а one-band attractor located in the antisymmetric subspace. In the Fig. 5, b the intervals 

оЁ the parameter r sufficient for complete synchronization аг different intensities оё noise 
are presented. The more dark color corresponds to larger noise. Without noise the interval 
оЁ the synchronization coincides with е interval оё х where the normal Lyapunov 
exponent is negative. With noise the controlled synchronization region becomes more 

narrow (Fig 5, b). 
As уе have demonstrated before the process оЁ the in-phase synchronization loss 

is accompanied by the bubbling phenomenon and riddled basins. It is reasonable 

question: Do these phenomena exist in the case of antiphase synchronization loss? To 
answer this question we consider the evolution оё the chaotic attractor with changing оЁ 
the coefficient . In фе numerical experiments ме chose initial values near the 

1.0 xty T 

Г 1 wf ] 

В __ : 0.0 Г й 

B 1 ol ] 

-1.0 L ГОМЕ N (T Y (S ] -2.0 L OO S T o S| DI | L S ] 

-1.0 1.0 0 200 400 600 800 л 

Fig. 6. The phase portraits and time-series of the oscillating regimes without control @, b), with partial 
control (¢, @) апа in the regime оё the complete antiphase synchronization @, f) 
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antisymmetric subspace. The conuolling influence is switched on during the whole time 
of observation (not depending on nearness p of the phase point to the subspace). At 
-1.46<r<-0.525 the chaotic attractor inside the antisymmetric subspace is stable to 
transversal perturbations. The synchronous regime is robust. Adding noise оё small 
intensity (~ 0.00001) doesn’t lead to visible changing 1 the systems behavior. With 
increasing оё the controlling parameter at г >-0.525 а bubbling attractor 15 observed in the 
system. The chaotic attractor remains stable (0 transversal perturbations but @е time оЁ 
transient process becomes extremely large (hundreds of thousands iterations) and it 
sensibly depends оп the initial values. Adding noise оё small intensity leads to essential 
rebuilding of the phase portrait of the oscillations. The attractor gets finite transversal 
size. Phase point begins to visit neighborhoods оё the both fixed points С апа С. The 
corresponding time-series оЁ x, + y, is the on-off intermittency process [12]. The Fig. 7 
demonstrates phase portraits оё фе attractor without noise () and with small noise (c). Г 

1‚0_...',.…_ аа LAY LR LR оОЛ BN 
- - 10 - — 

y [ 1 о] й 

Г 1 аЁ ] 

ЛО ера T v ] -5 Йа g I §on | 
1.0 0 1000 2000 3000 4000 л 

-1.0 | 1 

10 1.0 0 1000 2000 3000 4000 — л 
х 

е f 

Fig. 7. The phase portraits and time-series оЁ antiphase oscillations without noise  b) апа with noise (¢, 
@). In (e, f) there 15 chaotic oscillations resulted from the blowout bifurcation 
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Fig. 8. А part оё the basins of Ше chaotic attractor 
le the antisymmetric subspace (white color) at 
.485. The black color denotes regions relating 

the (b, а) there are corresponding time- 
series. With small noise phase point moves 
along the antisymmetric subspace for a 
long time. Then, it 18 short burst apart from 
the subspace, after which the phase point 
return ю е vicinity оё е antisymmetric 
subspace. The averaged frequency оЁ the 
bursts increase with increasing оЁ the 
parameter r. Finally, at г =-0.406 е 
blowout bifurcation [5] takes place when 
the chaotic attractor is not already stable in 
the normal direction and it transforms (0 
the chaotic saddle. The synchronous oscil- 
lations are по! observed further in the 
system both with noise and without it. The 
phase portrait of oscillations looks like the 
bubbling attractor м presence оЁ noise 
(Fig. 7, e). 

to the basins of the attractor in е infinite With decreasing r от е synchro- 

nization region, аг r <-1.46 we observed the transition from the robust stable synchronous 
regime ю the bubbling behavior. Then, at г <-1.472 the basins of the synchronous 
attractor 15 riddled by holes оё the basins оЁ the attractor т е infinity. 

In the Fig. 8 ме present а fragment оЁ the basins оЁ the chaotic attractor in the 
antisymmetric subspace (white color) with holes from the basins of the infinity attractor 
(black color) wedged т it. This basins is represented in the normal coordinates и and v, 
the antisymmetric subspace is marked by the dashed line. The results were obtained for 
the parameters values: а =3.8, у =0.04, r=-1.485. 

Comparing in-phase and anti-phase synchronization оё chaos we demonstrate Фаг 
bifurcational mechanism inside the antisymmetric subspace is similar to the one in the 
symmetric subspace except the order of bifurcations taking place tangently and normally 
to the subspace. The anti-phase self-synchronization in similar systems is possible only 
for regular regimes. The chaotic synchronization can be achieved with applying methods 
of chaos control. We demonstrate that the process of loss of this type of synchronization 
can be similar to the case of in-phase synchronization. It demonstrates bubbling behavior, 
riddled basins and blowout bifurcation. 

Conclusion 

We consider in- and anti-phase complete synchronization оё chaos in dissipativelly 
coupled periodic-doubling oscillators. For in-phase synchronization cases оЁ purely 
identical and slightly mismatched subsystems are investigated. 

We demonstrate that the processes оЁ loss оЁ in-phase and anti-phase 
synchronization are very similar. The both ones go through stages оё bubbling attractor 
and riddled basins. Structures of bifurcations inside symmetric and antisymmetric 
subspaces are similar to each other except the order of their bifurcations. In the both cases 
every periodic orbit undergoes two period-doubling bifurcations: in tangent and normal 
direction 10 the subspace. In е case of symmeiric subspace фе tangent bifurcations 
proceed the transversal ones. In the case of antisymmetric subspace the transversal 
bifurcations proceed the tangent ones. Two period-doubling cascades lead to formation of 
multistability. The bifurcations inside the symmetric subspace form the synchronous 
chaotic attractor. The similar bifurcations in antisymmetric subspace form synchronous 
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chaotic saddle which can be stabilized in normal direction by using control of chaos 
technic. In the both cases the transversal period-doubling bifurcations lead to (a) loss оЁ 
transversal stability and (b) forming new periodic regimes outside the corresponding 
subspace. 

Comparison оЁ identical апа slightly mismatched systems demonstrates фаг in фе 
both cases the loss of in-phase synchronization goes through similar steps with small 
differences: bubbling attractor and riddled basins for identical systems and bubbling 
behavior and essential dependence of the duration of transition process to another 
attractor for mismatched ones. In the both cases we observe similar structure оё the phase 
space near the symmetric subspace. However, this structure can be following of different 
bifurcational mechanisms: pitch-fork bifurcation in the case of identical oscillators and 
saddle-repeller bifurcation in фе mismatched ones. 
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УДК 537.86 

Мультистабильность, синфазная и противофазная синхронизация 
в системах с бифуркациями удвоения периода 

В.В. Астахов, A.B. Шабунин, П.А. Стальмахов 

В статье рассматриваются механизмы образования мультистабильности и 
потери полной синхронизации хаоса в диффузионно связанных отображениях с 
бифуркациями удвоения периода. Рассматриваются случаи  синфазной и 
противофазной синхронизации. Для синфазной синхронизации исследуется влия- 
ние неидентичности между осцилляторами на механизм потери синхронизации 
хаоса. 
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