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SPECIAL APPROACHES TO GLOBAL RECONSTRUCTION 
OF EQUATIONS FROM TIME SERIES 

B.P. Bezruchko, Ye.P. Seleznev, V.I. Ponomarenko, M.D. Prokhorov, 
D.A. Smirnov, T.V. Dikanev, 1.М. Sysoev, A.S. Karavaev 

Some problems arising during global reconstruction from time series are illustrated by 
reconstruction of efalon equations and modeling оЁ real-world radiophysical systems. 
Efficiency оё specialized approaches oriented to modeling оё restricted classes of systems is 
demonstrated and new specific techniques are proposed. 

1. Introduction 

In practice, to obtain a mathematical model from general laws of nature (from «the 
first principles») by individualizing them with reference 10 the object оЁ investigation is 
often impossible. Typically, numerous phenomena of different nature which details are 
not clear affect the process under investigation ог the first principles (similar to Newton's 
laws т mechanics) for the field оЁ interest are not discovered yet. In such а case, 
experimental data become the main source of information about an object and the 
problem оё ап empiric model construction arises. П5 simplest example is approximation 
of a set of points on the plane (x,y) by a functional dependence y=f(x). Since results of 
observations' are presented, as а rule, in the form оё time series (sequences оё observable 
values, measured at discrete time instants), then the problem transforms into modeling 
from time series. It is relevant in physics, meteorology, seismography, medicine and 
physiology, etc. 

Here, ме mean modeling оё complicated (mainly, chaotic) behavior. Earlier this 
problem was solved with the help of statistical models [1], since complicated behavior 
associated only with very large numbers of degrees of freedom. However, in 1960-70s 
scientific community got to understand that complicated behavior can be exhibited even 
by simple (low-dimensional) nonlinear dynamical systems [2,3]. After that, there 
appeared a significant interest to construction of dynamical empiric models in the form of 

* difference equations х(і,):?(х(г_д)‚с), where x=(x,,%,,...,x,)ER® is а state 
vector, Ё is а vector-valued function, СЕЁ 15 а vector о 5 parameters, #, is discrete time 

[4-6); 

1 An experimentally measured quantity 15 usually called«an experimental observable» ог simply «an 
observable». 
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* ordinary differential equations (ODEs) x(1)=F(x(r).c) [4,7]; 
* delay differential equations (DDEs) [8,9]; 
* partial differential equations [10]. 
A peak оё interest to the problem оё global® reconstruction was observed т 1990s 

[11-36], which was followed by the appearance оё reviews оп this subject [37-40]. But 
then disadvantages of the developed approaches were shown and difficulties of empiric 
modeling determined to a significant extent by the use of universal structures and 
polynomial approximation became apparent. All that reduced, т part, attention to this 
research area. In the latest papers devoted to global reconstruction, one observes certain 
shift of focus to problems of dynamical variables and model structure selection [41-50], 
though there are also some works oriented to further development of universal structures 
and techniques [51-53]. 

The purpose о] this work is to illustrate some difficulties arising in global 
reconstruction from time series and to present approaches and technologic tricks for their 
overcoming. In section 2 we describe a general scheme for empiric mddeling and the 
standard approach and analyze peculiarities of its application. Our original results 
concerning different stages of the scheme are presented in the rest of the paper which is 
organized as follows. In section 3 the problem of dynamical variables selection is 
considered. In section 4 we demonstrate possibilities of a specialized model structure 
selection оп the example оё nonautonomous systems. A specific technique for parameter 
estimation, based on peculiarities of behavior of systems with delayed feedback and 
efficient in е case оё noisy time series, 15 shown 1 section 5. In section 6 we present а 
special method of model refinement which is based on some properties of transient 
processes and allows 10 optimize model structure by excluding superfluous terms from it. 
We summarize and present generalizing considerations on the problem of global 
modeling in section 7. 

2. Typical scheme of empiric modeling and standard approach 

Despite the variety of existing approaches and practical situations, it is possible to 
distinguish the following basic stages т Ше procedure оё modeling from а scalar time series. 

1. Organization of an experiment (if there is such a possibility) and obtaining a 
time series of ап observable quantity п) (а training time series): {n(z)},.,"", where ¢=t;+(i- 
1)ar, Atis а sampling interval, N, is the time series length. 

2. Choice of the model equations type (stochastic ог deterministic, difference ог 
differential, etc). 

3. Choice of model variables x,,...,x,. Here, one specifies the number оё variables 

D and the kind оЁ their relation with the observable n. As а rule, it 15 necessary 10 obtain 
time realizations of lacking (hidden) variables from the observable series. 

4. Selection of the forms оё approximating functions Ё, (i.e. components оЁ F), 
k=1,...,D, which will enter right-hand sides of model equations. On the stages 2-4, model 
structure is specified, after that only stages of calculation remain. 

5. Estimation оЁ model parameters s,y from а time series data. 

6. Diagnostic check-up of а model, i.e. investigation оё solutions 10 the obtained 
equations and their comparison with the observed process, criteria of quality being 
determined by modeling purposes. 

Under statistical modeling, one uses, ав а rule, ARMA-models [1] which are linear 
stochastic difference equations where subsequent values of ап observable are model 

i=1 

2 The term «global» means that model equations (written down in а closed form) describe behavior of 
an object in the entire phase space (globally). 
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variables. Under nonlinear dynamics approach to modeling, one can imagine (in contrast 
to linear case) arbitrarily many different forms of equations. They differ from each other 
by both function kinds and kind оЁ relation between dynamical variables х ...,x, and ап 
observable n. Therefore, the problems оё variables апа model structure selection become 
more difficult. This situation became easier after Takens [54] and Sauer et а! [55] had 
shown that it 18 possible to obtain from а scalar time realization n(f) оЁ а dynamical 
system such vectors х(г) that are related 10 the original state vectors in one-to-one and 
smooth fashion. So, they «legalized» theoretically the use of sequential values of an 
observable [n(z)n(7+7),...n(1+(D-1)7)] (& ® а constant delay) ог its sequential 

derivatives [n(z);#(1,),....d°m(1)/di*] ав coordinates оЁ vectors X(z), given D22m+1 
(sufficient but not necessary condition), where т is а dimension оё the manifold which 
the phase orbit of an original system belongs to. Even though it does not mean that 
employment оЁ different variables (e.g., obtained by integration [56]) is necessarily less 
effective for modeling. 

The choice of variables often dictates а model structure. For example, if sequential 
derivatives are used for reconstruction from a scalar time series, then model equations 

assume the form 

X, =X, 

Xy =Xy, 

@ 

х = F(x,%,...%p), 

where x, (£)=n(?), i.e. they involve the only function Ё. 
After the equation type and the way of dynamical variables reconstruction are 

chosen, one should select the forms of functions entering right-hand sides. Under global 
modeling, а required function Ё is most commonly looked for т the pseudo-linear form, 
i.e. linear combination оё nonlinear basis functions /: 

F) =5 o (). о 
One widely uses the standard polynomial basis: 1,%,,...,%, %%, X,X.... X%, . 

representation оё F in the form оё the multivariate algebraic polynomial оё some orderK. 
Coefficients c;are estimated, аз а rule, via the least-squares routiné’, 1.е. by minimization 

N 
of the quantity e>=1/NZ_, (x,(2)-F(x(t)))* 

Choice of dynamical variables and model structure is often oriented to construction 
оё models т а universal form. Thus, widely exploited model ODEs (1) with а polynomial 
in the right-hand side аге often called standard [17,18]. This term could be referred to all 
the other cases when no information on specific features of an object is incorporated into 
the model structure. Their pretensions to universality are theoretically validated [55]. 
Nonetheless, all the achievements* in modeling of real-world objects we are aware of are 

3 One could also employ the more general maximum likelihood principle [57]. But it is reasonable 
only under the high noise levels that 15 not our case. So, we have used the least-squares approach. 

Global model ODEs with polynomials are used for control [11,26], attractor characteristics 
estimation from short and noisy time scrics [30], signal classification [23,24], апа confidential transmission 
оё information [31]. Under @е standard approach, there were obtained models qualitatively reproducing 
complex dynamics оё Belousov - Zhabotinski reaction [21], electrochemical process оё copper dissolution 11 
sulphuric acid [19], а certain regime оё vortex fluid movement [20}. 
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isolated гаге instances. A blunders аг any оё the stages оё modeling scheme can become 
an obstacle. Choice of variables can be unfortunate. But even suitable variables can not 
help if the form оЁ functions is inappropriate. Thus, е popular standard structure can not 
be the best one for the entire multitude of real-world systems and situations. As a rule, it 

provides very cumbersome equations exhibiting divergent solutions (polynomial & is 
especially inefficient in high-dimensional spaces). 

Seemingly, a promising way of the further development of global reconstruction 
methods is rejection of the pretensions to model structure universality and creation of 
specialized approaches oriented 10 some classes оЁ objects. It is reasonable 10 consider 
sufficiently important classes which specific features are known. But development оЁ 
specialized techniques for parameter estimation and model refinement seems also quite 
useful. АП these considerations are illustrated in the next sections. 

3. Dynamical variables selection: preliminary testing for 
single-valuedness and continuity 

As it has been already mentioned, in constructing model equations in the form 

y())=F(x()) from а time series {n(z)}, one forms the series оЁ state vectors {x(r)}, where 

x=(x,,%,,....x,)ERP, x, аге dynamical variables, D is а model dimension. Coordinates of 

vectors X can be obtained аз sequential derivatives, time delays, etc. Then, the series оЁ 

quantities to enter left-hand sides оё model equations {y(r)} is obtained from the series 

{x(r,)} according 10 the chosen model туре: either by numerical differentiation of {x(r,)} 

for ODEs dx(1)/di=F(x(r)), ог just by фе shift of {x(z)} along the time axis for discrete 

maps X(t,,,)=F(x(¢,)). Finally, the forms оё approximating functions Ё, are specified and 
their parameters are estimated. 

An uncontrolled choice оЁ the variables can make approximation of the 

dependencies y,(x) with a smooth function extremely problematic [58] or even make 

these dependencies non-unique. Here, муе describe the method of estimating suitability 

and «convenience» of the chosen variables x, for constructing а global dynamical model. 

It is based оп testing the series {x()} апа {y(t,)} ог single-valuedness апа continuity оЁ 

each dependency y,(x) in the entire region оё ап observed motion [46]. Importantly, we 

use local characteristics rather than averaged ones [35, 59]. 
Our technique is based on the following consideration. If a dependency y(x) is 

single-valued and continuous in а domain У, then the difference ly(x)-y(x,)! tends 1 zero 
when lIx-x;/|I—0 for each x,€V. In practice, violation of this condition may be viewed as a 

sign оЁ non-single-valuedness ог discontinuity оЁ the dependency y(x). Since the 

observable time series has а finite length, the above-mentioned limit, strictly speaking, 

cannot be found. However, it is possible 10 trace а tendency ш variations of the quantity 
|y(l,.)-y(lj)\ when the vectors x(r.) апа х(і]) are made closer and closer, down to a certain 
finite distance. Given sufficienfiy large amount оё data N, , high accuracy оЁ measure- 
‘ments, and low noise level, this distance can be made small enough for each region оЁ the 
observed motion. 

The method оЁ testing consists in the following (Fig. 1, а). The domain V is 
partitioned into identical hypercubic boxes оЁ the size 8, all boxes containing а! least two 
vectors аге selected (they are denoted s, ,:1,‚..‚:М). Difference between maximal and 

minimal values of y inside a box s, is calfed local variatione,=max ¢ y(x)-min,c y(x). 
Maximal local variation e =max, e, and $ graph emtb) are used аз the main 
characteristics of the investigated dependency. The suitability of the considered variables 
х and у for global modeling 15 assessed in the following way. 

1) If a dependency y(x) is single-valued and continuous, the value оЁ ¢ 15 
sufficiently small ог small & and tends 10 zero when 5—0 (Fig. 1, b, filled circles).aft is 
not hard (0 show аг а graph e, (8) is а straight line for sufficiently small &. 

2) If a single-valued and continuous dependency has a region of very steep slope 
(а «jump»), then е „, remains rather big for sufficiently small 8, since that region is 
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Fig. 1. а - Illustration for а technique оЁ testing а dependency у(х) Юг single-valuedness апа continuity in 
the case D=2. b - Possible appearance of graphs ¢, (8) for different variants оё dynamical variables 

situated within one box. However, the further decrease of & leads 10 Ше decrease оЁ ¢ 
because the region of а jump becomes divided into several boxes. The graph ¢, 
exhibits а «breakpoint» а! the value of ё equal 10 the size оЁ the region оЁ steep"?fope 
(e.g., Fig. 1, b, white circles). In such a case, the dependency y(x) is also difficult to 
approximate with a smooth function. 

3) If ¢, remains rather large and does not decrease а! 6—0 (Fig. 1, b, filled 
squares), then the considered variables are not appropriate for global modeling. Such a 
situation can be related both with non-uniqueness оЁ the dependency and high noise level. 

So, dynamical variables should be selected so а! the graph e (8) tend ю the 
origin gradually, without breakpoints, апа with small slope (Fig. 1, b, Яеа circles). The 
most important feature distinguishing the proposed approach and providing its usefulness 
for global modeling is employment of local (not averaged) characteristics. Let us 
illustrate it by modeling а real-world radiophysical system: а nonlinear electric circuit 
(harmonically driven RLC-circuit with switched capacitors) which scheme is shown in 
Fig. 2, а. The element K is ап electronic key, а microscheme comprising dozens оЁ 

1.0 1.0 

R L K ра _5- * 
. : L. # ы 

В s .4, 
сБ Gyl ан Sl „) S оЙ онеь 

Uycos(f) 

/ 
0.0 0.5 0.0 05 

a b 8 © 8 

Fig. 2. a - The scheme for the circuit with switched capacitors: C;=0.1 uF, C,=4.4 uF, L=0.03 Н, R=10Q, 

U,,=02 М, U;=2344 М, driving frequency equals 298 kHz, sampling frequency equals 250 kHz. 
ь- Тве graphs а() for different variants of фе model structure (for the dynamical variable.x,=/): 1 - Юга 
dependency iJ(xl.xz.x’) оё а model (3), white squares; 2 - for а dependency 5(x; X, x3) of a model (1), 

white circles; 3 - Юга dependency i, (x; &) of а model (4), filled circles. The graphs &(8) look similar 
for all the examples (the graph for the first опе is shown with the dashed line). с - The graphs Ena(®) for 

different variants оё the model structure (when the dynamical variable х, 15 ап integral of the current/): 

4 - Юг а dependency x;(x,; x,,%3) оЁ а model (1), white circles; 5 - for a dependency X, (x;.%,.%;) of a 

model (3), while squares; 6 - for а dependency x,(x,%,,) о  model (4), filled circles 
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transistors and other passive elements which is fed from а special source оё dc-potential. 
At small values о voltage U оп the capacity C,, the resistance оё the key 15 very large and 
linear oscillations occur in the circuit RLC,. When е voltage U achieves а threshold 
value U, , the resistance оЁ the key decreases abruptly and the capacity С, becomes 
connected to е circuit. Back switching occurs approximately аг е same value of U (in 
fact, at somewhat smaller value - hysteresis takes place). As a result, the system is 
nonlinear and exhibits complex dynamics (in particular, chaotic oscillations) аг big values 
of driving amplitude [60,61]. 

We employ а chaotic time realization оё the current / through е resistor R (see 
Fig. 2, а) ав ап observable time series {n(z,)}. The data аге recorded with the айа of a 12- 
Ы! ADC, е sampling interval 15 Ar=4 psec, the driving period is T=84A¢, the length оЁ 
the series is N, =3-10*. Six examples are considered below (three variants оё the model 
ODEs structure for two different observables). The results оё the application оЁ the 
proposed method (Fig. 2, b, с) апа оЁ the model construction are presented. The graphs 11 
Fig. 2 are numbered in agreement with the numbers of the following examples. 

1 - A popular model structure 

% =f00x%), 

%, = f(X%p%3), (3) 

"}3 =А(С >) 

where x, (2)=n(%,), x,(1,)=n(t+7), x;(¢,)=n(t+27) аге time delay coordinates, t=21At is the 
first zero of the autocorrelation function. A smoothing polynomial is constructed for 

numerical differentiation. All three dependencies x,(x,,x,,x;), k=1,2,3 are analyzed. The 
value оЁ ¢, does not tend 10 zero when 6 decreases for all . All graphs ¢__ (8) look 
similarly, one оё them 15 presented т Fig. 2, b with white squares (for k=3). It indicates 
the impossibility оё constructing ап efficient global model that is confirmed т practice 
completely. 

2 - A standard model (1,2) with x, ()=n(z,). The dependency x,(x,x,,x,) is tested. 
€,.(8) decreases when 6 decreases (Fig. 2, b, white circles) that points ош to the possible 
single-valuedness. The result of modeling: an efficient model, which right-hand sides are 
algebraic polynomials, can not be obtained. Obviously, a polynomial is inappropriate to 

fit the dependency %,(x,,x,,%;). Another form оЁ the approximating function 15 necessary 
here. Its choice is а difficult problem which is not а subject оё the present рарег. 

3 - Following the recommendations on the reconstruction of nonautonomous 
systems [33,34], we construct а model in the form 

.f] =x, 

© 
X, = F(x,,%,,9), 

where x,(#)=n(z,) and g is the phase оё driving. The dependency “:Z(XI X,,9) is tested. The 
time series оЁ the phase ф 15 obtained ав ¢(#)=wt, (mod2x), the angular frequency @ is 
assumed to be known. The graph e (8) (Fig. 2, b, filled circles) shows that the 
dependency is, possibly, single-valued. However, ап efficient model with harmonic 
driving and polynomial fit can not be obtained. Again, one needs to select a special form 
оЁ the function F. 

4 - A standard model (1,2) with x,(z) = fl: n(r)dt. This variable makes physical 
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sense, it 15 the summed charge оп the capacities C, ап С,. The time series |x,(1)} is 
obtained via the numerical integration of the measured time series оё the current/ (using 

the method оё trapeziums). The value of ¢_ () for the dependency х( ,x,,x;) does not 
decrease when ё decreases (Fig. 2, ¢, white circles) апа remains large. An effective 
model can not be constructed. 

5 - A model (3) with x,(t) = Л_' ч(да апа delayed coordinates x,(z,)=x, (#4t) апа 
x,(t)=x,(#2), where т is again the first zero оЁ the ACF. All three dependencies 

x;(x,%,%,), k=1,2,3 are tested. The graphs €, ($) do not tend ю the origin when & 
decreases in all three cases. Опе оё them (for k=1) & shown т Fig. 2, ¢ with white 
squares. An effective model can not be constructed. 

6 - A model (4) with x,(7,) = f,"‘n(f)dt. А graph ¢ (8) shows аг the dependency 

%,(x,,%,,0) is single-valued and, moreover, varies «gradually» (Fig. 2, c, filled circles). A 
reconstructed model (4) with additive harmonic driving and bivariate polynomial of the 
11th order demonstrates a chaotic attractor qualitatively similar to the experimental one 
(see also section 4s) and provides an accurate forecast 5T ahead. 

1t is significant that ап optimistic estimate according 10 the criterion ¢, (8) and 
good results of the global reconstruction are achieved only in the last (the sixth) case. 

The graphs for averaged over all the boxes local variation & (8) are, however, practically 
the same for all above-mentioned choices ов variables (one о them is shown т Fig. 2,b 

with the dashed line). It means that the average quantity ¢ does по! provide all 

information necessary for global modeling. Therefore & can be used т dynamical 

modeling only а5 ап additional characteristic. 

4. Model structure selection: nonautonomous systems 
under regular external driving 

Here, we consider another cause of the standard approach inefficiency. In fact, its 
failure is inevitable «payment» for the generality of model structure. Probability to guess 
optimal model form without using а priori information ог special preliminary 
investigation of the object is quite low. Therefore, we suggest to choose some classes of 

systems and modify the standard structure with reference to that classes. Here, we 

propose such а modification for modeling systems under regular external driving. It 

consists in the use оё nonautonomous ODEs. That is function explicitly depending оп 

time are incorporated into the model equations. First, we consider the simplest case of 

harmonic additive driving. Model is suggested to be constructed in the form 

Xy = X3 

‚ © 

Х, = Р( Xy %) + асо5(2лаТ) + bsin(2xt/T), 

where F 15 ап algebraic polynomial оЁ some order K (at D=2, this is just ап equation оЁ 

harmonically driven oscillator). However, it is insufficient only 10 incorporate the driving 

into the last equation (5), а necessary condition for the success оЁ modeling 15 Ю estimate 

driving period T from a time series with high accuracy. 
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Fig. 3. а - Typical арреагапсе оё the power spectrum for harmonically driven chaotic systems: there 15 @ 
pronounced peak. b - Approximation error for а model (5) versus trial уаше of driving period T’ 

Prerequisites for construction of model equations т the form (5) can be а priori 
information ог the presence of а discrete peak in the power spectrum оё ап observed time 
series (Fig. 3, a). Location of the latter can also serve as a rough estimate of driving 
period. Given а precise value оЁ T, parameters а and b апа polynomial coefficients are 
easily estimated via the linear least-squares routine. But to estimate Т is not 50 simple 
since it enter equation (5) in а nonlinear way. Therefore, it is estimated individually using 
а special procedure [33] (it is illustrated in Fig. 3, b where е graph оё ап approximation 
error versus trial value оЁ T 15 shown). Importantly, error in its estimation АТ=Т-Т, 
(where T, is ап unknown «truth» value) leads 10 а significant «phase shift» between the 
truth driving and its model fit if фе training time series is long. The following 
relationships between relative error of driving approximation ¢,, and quantities АТ/Г, and 
T,/T, (where T, is the duration of the observed time realization) hold 

& = 203 (ATIT ) (T I Ty). (6) 
1t follows that the driving period should be estimated more accurately for longer training 
time series, otherwise incorporation of explicit time dependence is useless. 

A result оЁ application оЁ the proposed technique 10 modeling оЁ е above- 
mentioned (section 3) harmonically driven RLC-circuit with switched capacitors from 
the integrated time series оё current / (1.е. in the case selected а5 the best for modeling 
with the help of the testing method of section 3) are presented in Fig. 4. Obtained empiric 
model (5) with D=2 and K=11 (and excluded superfluous terms) behaves like the 
original system and provides sufficiently accurate forecast quite far ahead. 

Harmonic force represents an important but sufficiently narrow class of possible 
ways of driving. The proposed approach to modification of standard structure can be 
extended to more complex апа realistic situations, namely, for 

1. arbitrary way of entry of harmonic driving; 
2. arbitrary form of regular (i.e. periodic or quasiperiodic) driving. 

For the first situation, significantly bigger than for а model (5) degree of generality 
сап be achieved by using а polynomial F with alternating coefficients [44]: 

в = X 

В (7) 
% = Е (& KgyeeeXpsl)s 
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12 

1.4 . « й 42 * 1.4 

Fig. 4. а- Projection of an experimental orbit for the circuit with switched capacitors (shown in Fig. 2,a) 
onto the plane summed charge - current.b - A corresponding projection for the best reconstructed model, 
i.e. а model (5) with D=2 апа K=11 

where x,=n, апа F reads 

К о в оМ В Г F ххр = 2‚‘ АВ (с‚‘ оь ¥ Wiy, СОБОЕ + Ь!‚.ь… р Jnslnmt)l'lj.:l xh, 

®) 
о 

х1 <К. 

To estimate parameters оё а model (7, 8), опе сап exploit ап above mentioned procedure 
where accurate determination оё the driving period T 15 provided. 

To illustrate of efficiency and advantages оЁ the structure (7,8), we present а 
numerical example: reconstruction of equations from chaotic time series of Toda 
oscillator when driving is not only additive. Original equations read 

ц = Uy, 
: © 

й, = -0.45u, + (S+4cost)(e™-1) + Tsint. 

Time series is obtained here (and in all numerical examples presented below) by 

numerical integration of original equations with the help of Runge-Kutta routine. The 

best model (7, 8) is achieved at D=2, K=9, it exhibits chaotic attractor practically 

identical to the original one (Fig. 5, а, b). Such results can not be achieved with models 

(5) (Fig. 5, с). Standard models (1,2) demonstrate, as а rule, globally unstable orbits 

(Fig. 5, а). Prediction times for the best models (7,8), (5) апа (1,2) are equal ю 7Г, 1.5T 

and 0.15T, respectively. 

For the second situation (arbitrary regular driving), we propose to use the structure 

of equations (7) involving time dependence but not necessarily harmonic: 

F(, e Xpl) = х X0 %) + 2(0 (10) 

where f is ап algebraic polynomial, апа function g(r) describes the driving and involves 

also free parameters. Two approaches 10 е specification of g() are possible. The first 

опе is 10 guess а special formula оп the basis оЁ а priori information. The second 

approach is more universal апа сап be used in е absence оЁ detailed knowledge оЁ the 

form of driving which is approximated as 
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Fig.5.a 
(D=2 

Projection оё attractor оЁ Toda oscillator (9).b-d - Projections of phase orbits for а model (7. 8) 
=9), а model (5) (D=2, К=10) апа а standard model (D=4, K=6), respectively 

К Ky 
8(1)=ay+ 2, a,cosQujtlT, + @, ) + ... + Ха сов(2л/иТ„+ @, ). (11) 1 лу 

Here, m=1 for Ше periodic case, while quasiperiodic driving 15 described ав Ше sum оЁ 
т>1 trigonometric polynomials with different periods 7, and different orders k. 

Procedure of estimating parameters of the model (7, 10) also rests on the least- 
squares technique. But, since here several free parameters can enter the expression for the 
driving g in а nonlinear way, it is reasonable 10 use one оё well-known iterative methods 
for the solution 10 the nonlinear least-squares problem (we use а modified Levenberg - 
Marquardt routine [62]). 

Efficiency of the approach was verified in numerical experiments (reconstruction 
of equations from time series of Toda oscillator under different forms of driving: pulse 
periodic, periodic with subharmonics, quasiperiodic [63]). We note that efficient models 
with trigonometric polynomials (11) can be achieved for very large number of harmonics 
(that is necessary to describe uneven driving signal). This is an important advantage of 
the proposed approach, since instability оё models (1,2) with algebraic polynomials оЁ 
high orders seems the main reason for the standard approach failures. 

The considered stages (dynamical variables and model structure selection) are the 
key ones in modeling. However, efficient specialized techniques for parameter estimation 

and model refinement are also useful. Techniques of such a sort are presented in the 
following two sections. 
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5. Model parameters estimation: quick determination 
of delay time from noisy time series 

Here, we describe а technique оЁ parameter estimation for DDEs. The technique is 
based on some specific properties of time realizations of delayed feedback systems [47, 

48]. We consider one оё the most popular first-order DDE as ап object of investigation 

%(г = -x(1) + f(x(t - 7)), (12) 

where т is the delay time, f 15 а nonlinear 
function, and parameter e, characterizes  x(t-to) Delay х( 
inertial properties of Ше system. In general line 
case, Eq. (12) is a mathematical model of 
an oscillating system composed of a ring я 
with three ideal elements: nonlinear, delay, Filter 
and inertial ones. In a radiophysical version 

of the ring (Fig. 6), an amplifier with the Nonlinear 
transfer function / plays the role оЁ device /(е-то)) 
nonlinear device, а delay line provides а 
delay ), and а filter defines the parameter 

e, We develop а technique for estimating — Fig. 6. Radiophysical model оЁ time-delay system 
Ty Л апа g from the time series. 

The proposed method оЁ estimating e, exploits Ше features оЁ extrema shape and 
location in the temporal realization х(г) оё the system (12). The peculiarities оё extrema 
location т time are clearly illustrated by М(т) plot т Fig. 7. To construct it one has 10 
define for different т values the number N оё pairs of extrema in x(¢), that are separated in 
time by т. 1Ё N is normalized to е total number оё extrema, еп for sufficiently large 
extrema number, it can be used а5 ап estimation of probability to find а pair оё extrema in 
x(1) separated by the interval т. Let us explain the qualitative features оЁ М (х) for various 
values оЁ parameter e, 

In the absence оЁ inertial properties (¢,=0) differentiation оё Eq. (12) gives 

Ж(0) = () (x(t-5,) )dx(1-5,). (13) 

From Eq. (13) it follows that 1Ё Ж(е-т))=0, then x¥(f)=0. Thus, for ¢;=0 every 
extremum оё x(r) is followed within the time t, by the extremum. As the result, N(t) 
shows а maximum for t=v, @ Fig. 7, а. 

In the presence оЁ inertial properties (g,>0), which corresponds 10 real situations, 
the most probable value оё the time interval between extrema in x(¢) shifts from <, 10 
larger values. This effect can be explained using the ring system shown т Fig. 6; the f?lter 

10 02 Т 

I 
| 

| 
0.0 | 0.0 

a 0 " T b 0 P 

Fig. 7. Number N of pairs оё extrema in а realization оё Eq. (12) separated in time by <, ав а function of . 
N(x) is normalized 10 the total number of extrema in time series: а - g;=0, b - £,>0 
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introduces а certain additional delay in the system. As the result, the extrema 10 х(г) can 
be found most often аг the distance 7+t apart (Fig. 7, b). For instance, the computational 
investigation оё Eq. (12) with quadratic nonlinear function f{x)=A-x? allows us to obtain 
ап estimation t,~¢/2 for large values of the parameter оё nonlinearity A. 

For £,>0 the extrema in х(г) are close 10 quadratic ones and therefore J(r)=0 

апа x()=0 at the extremal points. It can be shown that in this case there are practically no 
extrema in х(г) separated in time by 7,. To prove this, let us differentiate Eq. (12) with 
respect 10 ; 

еа( = —( + Х(ч (x(t-ry) / ах(г-т)). (14) 

If for #(#)=0 in а typical case ¥(r)=0, Шеп, ав it can be seen from Eq. (14), for 

&#0 the condition’x(#-t,)#0 must be fulfilled. Thus, there must be no extremum separated п 

time by <, from а quadratic extremum and hence N(x,)=0. For t#t,, the derivatives x(f) 

and №(г-т,) can be simultaneously equal to zero, ie., it is possible ю find extrema 
separated т time by т. The proposed method of 7, determination does not need significant 
time of computation because only operations of comparing and adding can be used for the 
extrema definition and М(т) construction. 

To recover the parameter ¢, and the nonlinear function f of system (12) from the 

chaotic time series we plot in а plane а set of points with coordinates (x(¢-t,),eq¥(t)+x(1)). 
According to Eq. (12), which can be written in the form 

ex(1) + х( = flx(1-xy)), (15) 

the constructed set оЁ points reproduces е function f. Since е parameter ¢, 15 а priori 

unknown, one needs to plot ex(r)+x(z) versus x(-t,) under variation of ¢, searching for а 

single-valued dependence in the plane (x(¢-t,), e¥(r)+x(#)), which is possible only for 
e=g,. As а quantitative criterion of single-valuedness in searching for e, we use the 
minimal length оё а line L(e), connecting all points ordered with respect 10 x(#-t;) in the 

plane (х(г-т)), e¥()+x(7)). The minimum of L(¢) is observed аг e=g,. The set оЁ points 

constructed for the defined ¢, in the plane (х(1- t,), ex(#)+x(¢)) reproduces the nonlinear 
function, which can be approximated if necessary. In contrast to methods presented in 
[8,35] which use only extremal points ог points selected according 10 а certain rule for the 
nonlinear function recovery, the proposed technique uses all points of the time series. It 
allows one 10 estimate the parameter e, and to reconstruct the nonlinear function from 
short time series even in the regimes of weakly developed chaos. 

To test the efficiency of the proposed technique we apply the method to a time 
series produced by the Mackey-Glass equation 

(1) = -bx(1) + ax(t-ty)/[(1+2¢(t-1y)). (16) 

which can be converted to Eq. (12) with e;=1/b апа the function 

Кх(ет))) = ax(t-)/[b(1+x(r-x)))]. (17) 

The parameters оё the system (16) аге chosen to be а=0.2, b=0.1, ¢=10, то=300 to 

produce a dynamics on a high-dimensional chaotic attractor. 
Fig. 8 illustrates the reconstruction оЁ the system parameters. To construct the N(t) 

plot we use 10000 points of the time series оЁ .x(r). The time series exhibits about 600 
extrema and №(х) is normalized to their total number. The time derivatives
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Fig. 8. а - Normalized number N оё pairs оё extrema in е time series оЁ Eq. (16) separated in time by T 
for ©=1,...,400. b - Length L of a line connecting points ordered with respect 10 x(1-7y) in the plane 

(x(t-%g),&4(1)#x(1)) а5 а function of e. The inset showsL(e) in the neighborhood of the minimum.c - The 
recovered nonlinear function 

(0 are estimated from е time series by applying а local parabolic approximation. The 
absolute minimum of М(х) takes place exactly at v=v,=300, where N(300)=0. L(¢) is 
normalized to the most uncorrelated point set. To reduce the computation time one can 
choose а large initial step of е variation and then 10 reduce it in the neighborhood оЁ 
minimum L(e). Thus, in Fig. 8, b the step оё е variation is 1 and in the inset this step is 
reduced to 0.1. The minimum оЁ L(¢) takes place exactly а! e=¢;=1/b=10. The recovered 
nonlinear function (Fig. 8, с) coincides practically with е true function (17). Note, аг 
for the construction of the L(¢) plot апа for the recovery of the function / we use only 
1000 points of the time series. 

To investigate the robustness оЁ the method 10 perturbations we apply it to the data 
produced by adding а zero-mean Gaussian white noise to the time series оЁ Eq. (16). We 
found ош that the method is still efficient for а noise level оЁ 10%. 

As another example, we consider an experimental time series from an electronic 
oscillator with delayed feedback. For е case when the filter (see Fig. 6) is а low- 
frequency first-order RC-filter this oscillator 15 given by 

RCV(1) = -V(1) + (V(t-v)), (18) 

where V(1) апа \ (г-т,) аге the delay line input and output voltages, respectively; R апа С 
are the resistance and capacitance of фе filter elements. Eq. (18) is оё form (12) with 
,=RC. In our experiment the nonlinear device has а quadratic transfer function. The 
proposed method allows us to define accurately the parameters of the system. 

The procedure оё the delay time estimation from the N(t) plot considered with 
systems like (12) can be successfully applied to time series gained from а more general 
class of time-delay systems 

Ж(0) = F(x(8), х(1-))). (19) 

Time differentiation of Eq. (19) gives 

F()(ty) ‚ ‚ дР(к(0-(е-ч) 
(1) + 

ox(1) дх(г-т,) 

Similarly to Eq. (14), Eq. (20) implies that in the case of quadratic extrema derivatives 

%(f) and Х(-т,) 90 not vanish simultaneously, i.e., if ¥()=0, then (t-7;)20. 
In principle, it 15 possible to extend the proposed method of t, definition from time 

series to high-dimensional time-delay systems having the following form 

х( = () (20) 

149



A1) + X V(0) + ... +а = РСО( @1) 
where x(")(7) 15 the derivative оё order л and are a,,...,a, Ше coefficients. Differentiation 

оё Eq. (21) with respect 10 t gives 

AN (1) + а®( +а = 

_ OFG(tw,)) N OF(x(1),x(t-7;)) s 
(1) 

ax(z) @ дх(г-т)) 

(22) 

о)- 

The сопф оп х(г-))#0 for xX(r)=0 will be satisfied if the left-hand side оё Eq. (22) does 
not vanish. In general, а probability to obtain zero in the left-hand side оЁ Eq. (22) is very 
small and therefore, the N(t) plot qualitatively must have а shape similar to Фаг inherent 
in the case оё first-order delay-differential equations like (12) апа (19). 

The proposed method оё estimation оё фе parameter ¢, and the nonlinear function 
can be also applied to a variety of nonscalar time-delay systems. For instance, the 
dynamics оЁ ап electronic oscillator with delayed feedback containing two identical in- 
series RC-filters 15 described by the second-order delay-differential equation 

2V (1) + 26V(t) = V(1) + V(1)) (23) 

where e;=RC. Plotting e2V(r)+2eV(1)+V(r) versus V(-t;) under variation оЁ e, we can 
estimate the parameter e, by the location о the minimum of L(¢) апа recover the function 
7 Thus, the proposed technique оЁ parameter estimation can be successfully applied to а 
wide class of time-delay systems. 

6. «Technologic trick»: model structure optimization using transients 

Usually, global models are constructed from time realizations of established 
motion corresponding to an attractor in phase space. Such an approach seems reasonable 
when the problem оЁ predicting future behavior оЁ ап object after establishing оЁ 
oscillations is addressed. However, for modeling object dynamics т wide region оЁ phase 
space, success is more probable when one uses time realizations of transient processes 
(when a phase orbit has not yet settled down onto an attractor). In this section we will 
show how this property of transients (to explore wider region of phase space) can be used 
to refine а model (to optimize its structure). 

To detect a part of a time series which is the optimal for modeling, we compare 
performance of global models obtained from different parts of a time series (some of 
them involve a transient while the others do not). Let us use etalon differential equations 
of Van der Pol - Toda oscillator as an object of modeling: 

X =X, 
(24) 

® = (1-х2)х, - 1 + exp(-x,). 

Reconstruction is performed form а chaotic scalar time series of the x, -coordinate with а 
transient (а phase orbit is shown т Fig. 9, а). Models оё the form (1) with D=2 are 
constructed 1 two variants differing from each other by the form оЁ а function F(x;,x,). 
In the first case, а bivariate algebraic polynomial of some order К is employed: 
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K 
Flox) =2 o0 

In the second case, Р is given by 

Flr ) = (h -2 + fi(x), (26) 

where fi(x,) is а univariate algebraic polynomial of the order К, which approximates 
exponential function. To assess a model quality, right-hand side reconstruction error o is 
calculated. This quantity compare functions entering right-hand sides of ап object Р and 
amodel F: 

o = // (F(xx,) - Fifx,,x,) ах с (27) 

where 5 15 ап integration domain containing the phase orbit (hence, much larger than the 
domain оё ап attractor). The lower 15 o, the better 15 а model. 

A procedure of searching for an optimal for modeling part of the time series 
(reconstruction window) consists in following. A certain length of a window (M points) 
is specified. A reconstruction window can be denoted а5 [n(z))},_,"**!, where т 15 the 
number of its initial point. The initial point of the original time series coincides with the 
initial point of a reconstruction window for m=0. When m increases, a reconstruction 

window moves along а time series into е region of ап attractor. Models are constructed 
for different values оЁ т. Optimal location of the reconstruction window corresponds 10 
minimum оп е graph о(т). 

Graphs o(m) in Fig. 9, b show that the best results for а model (1,25) аге obtained 
with the use of the transient (the curve 1, small m). For а model (1,26) the results are 
better by an order of magnitude (the curve 2), but they are almost independent on the 
location of the reconstruction window. It can be explained as follows. The first model 
structure (1,25) includes variety оё «superfluous» terms, e.g., the terms x,x,, x,%,% x,%x,%, 
etc, which are not relevant for the original equation (24). Theoretically, model 
coefficients corresponding to superfluous terms should vanish. But in practice their 
estimated values differ from 0 due ю truncation errors and impossibility оё accurate 
approximation оЁ exponential function by а finite power series. Superfluous terms can 
become significant outside of reconstruction window and lead to essential differences 
between ап object and а model. For а model (1,25) involving superfluous terms, o 
depends essentially оп т (Fig. 9, b) that 15 induced by essential dependence оЁ 

ij, i+j<K. (25) 

% 

2.0¢- 

1.0 

1000 — 2000 3000 m 

Fig. 9. а- A phase orbit of the system (24).Ъ - Model error с (27) versus the location m of reconstruction 
window for а model (1,25) (the curve 1) and а model (1,26) (the curve 2) with polynomials оё 7th order 
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Fig. 10. Results оЁ reconstruction of the system (24) from а scalar time series. а - Dependencies оЁ 
coefficients (corresponding 10 presented near the graphs polynomial terms) of a model (1,25) оп the 
location т оё reconstruction window. b - Model error o versus the number of excluded terms, а «starting» 
model structure being (1,25) 

«superfluous coefficients» оп т (Fig. 10). For а model (1,26), the use of а transient does 
not have advantages because model refinement 15 due ю the absence оЁ superfluous terms 
rather than extension of the explored region in the phase space. 

Let us look again at Fig. 10, a where graphs for necessary terms are grouped on the 
left and for superfluous terms - on the right. The superfluous coefficients are obviously 
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less stable than the necessary ones, the instability appearing close to the beginning of the 
time series (in the region of a transient). Resting on these considerations, we propose a 
procedure of model structure refinement based on sequential excluding of terms with the 
less stable coefficients from е model. The degree оё stability (reliability) оё some 
coefficient а can be defined а5 the ratio оЁ its mean value to its standard deviation 
m,=(a)/((a<(a))?) ', where angle brackets designate average over the ensemble оё values 
оё а, obtained а! different m. 

Thus, 10 optimize а model structure, the less stable coefficient (with smallest m,) is 
found and a corresponding term is excluded from the model, reconstruction procedure is 
repeated for the simplified structure, and so on until exclusion of a new term leads to 
model deterioration. In Fig. 10, b we show а dependence оЁ е model error o оп е 
number of excluded terms obtained during reconstruction from time series of the system 
(24) starting from the model structure (1,25). The proposed procedure are shown 10 allow 
for essential enhancement of the model quality. 

7. Conclusions 

To construct dynamical models means 10 follow the path pointed by ап optimistic 
outlook of determinism. There is neither guarantee that the path will lead out to the 
highway, nor assurance that such a highway always exists. But even if a dynamical model 
оё ап object is possible, one needs accuracy and «technological purity» to achieve а 
success. An error at any stage of the empiric modeling scheme presented in section 2 can 
make obtaining ап efficient dynamical model impossible. Let us remember, by way оЁ ап 
analogy, how at the early stage of microelectronics underestimation of the role of dust 
particles and foreign microinclusions turned, e.g., production of a diode into art and did 
not allow to do with confidence such things that nowadays are being done routinely. So, 
let us hope for the absence оЁ principal and overwhelming obstacles оп the way оЁ 
empiric modeling. 

However, we believe that to progress in this field, one needs to develop not only 
original technical tricks but also (this is, possibly, the main thing) new approaches 
oriented to sufficiently narrow classes of systems. For the latter, a special preliminary 
analysis of time series and attraction of a priori information are necessary. Our work 
shows prospects and necessity of such а «specialization». The main results are following: 

1 the proposed technique for preliminary investigation of times series of 
dynamical variables (section 3) allows to find variants which are the most suitable for 
modeling. Its advantage is in the use of local characteristics which reveal even small 
regions of non-uniqueness or discontinuity in dependencies between dynamical variables 
and quantities to enter left-hand sides оё equations. However, even good choice оЁ 
variables does not guarantee a success: one needs to succeed in the choice of functions 
form and model parameters estimation; 

2 the proposed modifications оё the standard structure оё model equations (section 
4) allow to obtain efficient models of nonautonomous systems in the case of arbitrary 
regular driving, while the standard approach does not give satisfactory results; 

3 а special way оЁ estimating delay time for DDEs reconstruction is proposed 
(section 5). It is based оп peculiarities of time realizations оЁ delayed feedback systems 

and efficient even when dealing with highly noisy data; 
4 employed model structure often tumns out very cumbersome. Therefore, it 15 

rather important to delete «superfluous» terms (which carry only distortions) from the 
model. To detect such terms, we propose а special procedure which uses reconstruction 

from different parts of a transient process realization. 
АП the presented approaches are demonstrated by constructing models from 
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numerical solutions of etalon equations and from time realizations of real-world 
(radiophysical) systems. 
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