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NONLINEAR PROBLEMS OF MOLECULAR PHYSICS 

А. Chetverikov, W. Ebeling 

A survey оп investigations of some nonlinear problems оЁ molecular physics carried 
out by molecular dynamics simulations is given. Among them there are problems of 
elementary excitations т fluids, the dynamics оё chemical reactions in solutions, dynamical 
properties of dilute plasma, dynamic phenomena in phase transitions in mesoscopic systems, 
structural properties of chains оЁ nonlinear oscillators. Several new results about the 
distribution оё clusters and of а method of identification of clusters are presented. 

1. Introduction 

The paper reviews some recent results of investigations of modern nonlinear 
problems concerning molecular physics, physics of condensed matter, plasma physics and 
others. All of them use the same method of the study - computer simulation based on the 
molecular dynamics method (molecular dynamics simulation, MDS) [1-3]. The paper 
does not claim for complete coverage of all problems of mentioned fields of science, the 
selection 15 restricted mainly 10 subjects оЁ the researches performed within а 
collaboration between groups in Berlin-Moscow-Saratov. The purpose of the survey is to 
give ап insight into modern problems оЁ studies of nonlinear phenomena, observed, for 
example, in elementary excitations, in phase transformations of matter, in chemical 

reactions, in plasma processes. The main subject is preceded by brief explanation оЁ the 
basic principles of intermolecular interactions and the molecular dynamics simulation 
method. 

2. Interaction of molecules and molecular dynamics simulations 

Let us first consider a problem: what is the minimal number N of particles of a 
substance necessary 10 explore И5 physical, chemical, thermodynamic etc. properties? On 
the first sight, billions and billions оё molecules ог atoms are required. However, there is 
a number of phenomena when ensembles of only a few thousand or even hundreds of 
particles exhibit almost the same properties as large volumes of a substance. Besides, 
study оё processes in ensembles оё rather small number of particles (clusters, mesoscopic 
systems (see, for example, [4])) апа the observation of evolution of their propertics with 
increasing number of a particles often yield a key to understanding of what happens in 
real volumes of substances - macroscopic systems. These observations allow to offer a



method of the theoretical analysis based on 
the direct numerical simulation оё а motion 
of particles in rather small ensembles and 
calculation оЁ different macrocharacteristics 
by means of statistical treatment [1-3]. 

The important feature of molecular 
dynamics simulations is the application of 
periodic boundary conditions in studies of 
macroscopic  systems.The influence оЁ 
boundary conditions (requirements оп а 
surface) should be minimal. Let us first 
consider a molecular system consisting of N 
particles in a one-dimensional (1D) space. 
In this case periodic boundary conditions 
are equivalent to placing the particles on a 
ring (Fig. 1). Let us discuss now the 
interaction оЁ 2 particles аг а distance r. If 

the average distance is o (which plays the role of the specific volume) the simplest 
interaction model is а linear spring described by the parabolic potential (Fig. 2) 

Vo(r) = thmog(r - о)?, (0] 

where standard notations are used. A standard model for a description of nonlinear 
interactions is the Toda model (Fig. 2) 

VI (1) = (@b)e- 1] + a(r - o) @ 
with constant parameters а апа b. In higher dimensions the process is supposed 10 take 

place in а parallepiped оЁ sizes L , L., L_ т 3D model ог L, L, in 2D one, accordingly, 

and the space outside its limits 18 supposed ю be filled with its precise copies 
immediately adjacent to each other (Fig. 3). Each particle has infinitely many copies in 
the space located оп distances L, L , L. in the relevant directions. If а particle abandons 
the field considered in a numencal modeling by crossing any boundary of the 
parallepiped, its copy enters the field through an opposite boundary. In calculations of 
forces оЁ particles interaction taking place in the vicinity оё boundaries, the interaction 
with particles located outside of the field is taken into account if they are apart smaller 

Fig. 1. A molecular system in a one-dimensional 
space with periodic boundary conditions 
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Fig. 2. Several models of the interaction potential Fig. 3. A molecular system in а two-dimensional 
V(7): (1) - Toda potential, (2) - Lennard-Jones po- space with periodic boundary conditions 
tential, (3) - harmonic oscillator potential and ©) - 
Morse potential



than some effective radius (see below). The periodic boundary conditions allow formally 
to assume N—+oo already for N~2°-2'°. In investigations оЁ mesoscopic systems with 
limited number N the interaction space is considered as unbounded. 

The kind оЁ а theoretical model for ап analysis is determined by physical properties 
оЁ ап explored system, and the type of forces of intermolecular interaction is principal 
among them. In this paper we consider only simple models with classical dynamics. The 
force of interaction between any two molecules is supposed to be depended only on the 
their distance r. The interaction potential in various models may be different (Fig. 2), but 
the methods оЁ its calculation are not а subject оё фе analysis оЁ this article. The models 
in which interaction of molecules takes place due to Van der Waals forces are defined by 
the Lennard-Jones potential 

VH(r) = 4e[(olr) - (olr)’] ©) 

ог й$ modification, more suitable for computer modeling, the finite-range Lennard-Jones 
potential 

VLG (r) = A[(olry - 1]exp[(rlo - 32)"] # r< (l)o, 

VAG()=0 if r=Ch)o ) 

are examined here (Fig. 2). Here е 15 а well depth т minimum оё the potential well V(r), 
and V(r=0)=0. Also the models with particles interacting via conservative Morse forces 
described by the Morse potential 

VM(r) = (a2b)(e™ - 1)? - (al2b) ©) 

are considered. In №е models we study here parameters ¢, o, and а mass of interacting 
particles also are used as units of the relevant quantities, which are figured as 
dimensionless in the models. Note, the nonlinear potentials are «short-range» and V(r) is 
close 10 zero а! r21.5. It allows to introduce ап effective radius / ~1.50 50 interaction оЁ 
particles located more than [ from each оег can be neglected. Therefore in calcula- 
tions of, for example, complete potential energy оё е system 

N 

=3, V() ©) 1 

account. Неге › 15 а distance between particles numberi and numi 
An initial position of particles and sizes L, L, L. as уег depend оп а type of a 

problem. If the system with random structure (gas, plasma) 15 studied, е sizes оЁ the 
interaction space are chosen based оп density аг given number of particles p=N/(L,L L Эй 
and it & usually L=L=L.. If the initial structure is а crystal lattice, for example, 
quantities L , L, L. must match each other, depending оп the type of symmetry оЁ а 
lattice. Let us discuss now the problem how thermodynamic equilibrium for the system 
can be realized. The velocity distribution оё the particles ensemble in а study оё processes 
which proceed should be Maxwellian so that the average kinetic energy of particles 
defines temperature and is uniformly distributed among all coordinates, and the velocity 
distribution function of particles is Gaussian. Additional requirements to the problem are 
also possible. For example, for processes in a crystal lattice the average potential energy 
and the kinetic one should be the same at small temperature. To satisfy these 
requirements т computer experiments, the calculations оЁ фе «equilibrium» perfor- 
mances of the system are preceded by modeling оё а nonequilibrium stage (stage оЁ «hea- 
ting»), when фе trajectory оЁ а motion оЁ each particle obeys а Langevin equation (n=1) 

v, =drjdt, dv,ldt=-0U(r,)/dr, - v, + (2D)"2¢(1). (7) 

only those potentials of two-particle interactions, for which r,<r, g, should be taken into 
ег j.



&)y =0 — (&(05(4)) = 58( - ). 

Here i is equal 10 x, y, z in 3D case, v апа л‚ ате the velocities апа coordinates оё а i х 
particle, у 15 а friction coefficient, D 15 а diffusion constant, ¢,(¢) is а random function 

modeling a white noise. In order to bring the system to ‘hermodynamw equilibrium at 

temperature 7, the Einstein relation 

D=k,gT ®) 

should be satisfied. Here К, is the Boltzman constant. After reaching the given tempe- 
rature, external sources are «swntched off» and modeling of an equilibrium stage starts. It 
is possible to estimate precision of calculations at this stage based on precision of 
satisfaction оЁ а conservation law of a total energy of a system E=T+U, where T 15 kinetic 
energy. In further, speaking about energies, we shall mean energy per one particle, if it is 
not stipulated other. Let us consider now specific applications of molecular dynamics 

simulations. 

3. Elementary excitations in fluids 

In fluids the typical dynamical phenomena are collective excitations 1 ensembles 
of particles. It is common to suppose that phonons and solitons are most important among 
them. Suitable model for investigation оё their properties is the one-dimensional lattice 
(chain) оё oscillators, in particular, оё nonlinear Toda oscillators [5]. The Toda chain 15 
chosen as one of basic models because many macroscopic characteristics can be 
calculated analytically due to unique properties of defined in section 1 Toda potential 
despite of the nonlinearity of the underlying processes [6]. In addition, such data can be 
served ав а fine test instrument in computer simulations оё processes 11 nonlinear chains. 

In chains each particle interacts with two adjacent only, executing oscillations in a 
potential well formed due to interaction. The equation of motion (7) in combination with 

the Einstein relation (8) becomes 

(@&1а?)г,= [У '(r,))-2V'(r) + У '(r, )] + ® 

YRR )R8 (1) - °(а ). 

At small oscillation amplitudes (small temperature) the potential 15 parabolic 

V(r) =ab[(172)(r - 0)¥]. (10) 

In this case each particle executes simple harmonic motions, and the collective 
excitations of a chain are phonons. The frequencies and wave numbers of them obey the 
dispersion equation 

o = 20gin(ko/2). (11) 

In the other limiting case, at high temperature, interaction of particles is mostly 
repelling, and the collective excitations are soliton-like. As a result the transformation of 
the thermodynamic properties оЁ а lattice is observed in heating up. Most characteristics 
(the mean specific volume, the pressure, the specific internal energy, the mean potential 
energy et al.) can be calculated for ап unlimited Toda chain analytically [5]. In particular, 
the specific heat per molecular at constant volume ¢, ав the function оЁ temperature 15 
represented in а Fig. 4. It shows аг ¢, varies from the value k,, relevant to the ideal 
phonon gas, up to 0.5k,, relevant to the ideal soliton gas. There is the transition region 
near the temperature 7, defined by а relation ¢, (T, )=0.75k, (c,(T,) 15 equal Ю average 
value of two limiting values), where a set of interesting properties initiated by interaction



оЁ nonlinear collective excitations is ¢y /kg 
observed. Some оё them are explored by a | 
molecular dynamics simulations in ring 

chains with quite small number (М=10-20) 0.9 
of particles. 

Н N В even, М2-1 of waves OS[ 
(phonons), running оп the right, and the 7 ! 
same, running on the left, are excited in the ! 

ring а small temperature. Also, the phonon — 0.6 ! 
with frequency equal 10 ап upper frequency 5 3 1а i л у 
оЁ а phonon band ап@ «а zero phonon» 10° 10° 710° 10° — 10° Ка 
with а frequency and а wave number close 
10 zero, corresponding 10 very slow rotation 
of a ring as a whole, are excited. So the 

frequency distribution of non-zero phonons 
modes contains N/2 discrete peaks. When 
temperature increases and nonlinear effects 

are developed, the phonons begin to interact with each other, and then to transform to 
nonlinear (cnoidal) waves, also interacting with each other. The wave length оё cnoidal 
waves оп а ring is restricted by its length, and only аг increasing number оё particles they 
will @ег ever less from solitons in а boundless chain. 

The interaction of nonlinear excitations is most strong near to the transition 
temperature. In particular, it follows from the spectrum (FF)_, defined ав the Fourier 
transform of the time correlation function (ACF) of the force acting on a particle. The 
АСЕ is calculated from molecular dynamic simulations т order 10 identify thermally 
activated soliton-like excitations in е spectrum (Fig. 5). We can observe а noisy range 
of the spectrum near to a region containing frequencies of phonons, and also a broadband 
coloured noise of а 1/f type at low frequencies. The last implies а hierarchy оё beatings 
where periods with more energetic compression pulses are more probable to appear аг 
longer time intervals. Its appearance is associated also with diffusion processes in the 
system and testifics ап opportunity оё transformation оё white noise оЁ а surrounding 

Fig. 4. Specific heat per molecularc,, а! constant lenth 
of the Toda chain. In the region around the transition 
temperature Т, (defined by c (T, )=(3/4)k;) we 
observe the most interesting physical effects due 10 the 
interaction between solitary waves. For chosen 
parameters v=0 and b=100/c, we obtain Т„_ =0.16 е 

medium 10 coloured noise. 
Some details of the process оЁ inte- 

raction оЁ nonlinear excitations are cla- 
rified by the analysis of a dynamic structure 
factor (DSF) of a chain [7]. It is defined as 
follows [8] 

S(0) = М2жМ) [, * ec)p(k0))dr (12) 
Here К and о are а wave vector and а 

frequency, р 1$ density оЁ а particles 
ensemble, фе angular brackets mean е 

operation of an average on a set of time 
series. DSF allows ю judge time behaviour 
of spatial (collective) structures of specific 
scales, generated on a ring. Setting quantity 

k, defining а frequency composition S(w,k) 
and estimating breadth of spectrum lines, it 
is possible to judge a stability of structures 
(nonlinear waves) and velocity of their 
motion on a ring. In particular, in a ring 
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Fig. 5. Spectra (FF), of single-particle forces F in 
uniform rings of N=10 (solid) and N=20 (dashed) 
Toda oscillators with oscillation frequency w, and 
stiffness Б=100/с т thermal equilibrium with а bath 
in е transition-temperature region (,7=0.26¢ 
corresponds to ¢, (T, )=0.73k, ). The friction para- 
meter is y=1070,. The spectra were obtained by 
Fourier transformation of the auto-corrclation 
function. We observe broad peaks around the 
second-phonon frequencies ав well а5 1/f tails аг the 
low end of the spectra
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The dynamic structure factorS(ew, k) /max S(w, k) versus frequency @ for а Hamiltonian ппа chain 
( , y=0) for Ше wave number &=)|=2л/М: а) at low temperature, the particles interactions 
correspond to the cubic weak nonlinear (Fermi-Pasta-Ulam type) potential; b) in the transition- 
temperature region at7=T, „ 

with N=10 it is possible to observe transformation оЁ dynamics when reaching а 
stationary temperature and «switching-off» оё ап external environment by calculating а 
dynamic structure factor аг different temperatures using MMS [9, 10]. It has been seen 
(Fig. 6, a), that at small temperature, when the nonlinearity is week, S(w) at a wave 
number corresponding to the resonant structure of the largest scale - to the first phonon- 
contains combination frequency components in addition to фе first phonon frequency о,. 
They arise due to interaction оЁ five phonons with frequencies @,, i=1,5 оп quadratic 
nonlinearity and have frequencies v =w,, -, j=1,4. With increasing temperature the first 
phonon (and еп others) transforms to a cnoidal wave with velocity more ап velocity 
of а sound. In particular, а! transition temperature it 15 approximately twice higher (Fig. 6, 
b). The nonlinear wave in this temperature range strongly interacts with other waves, but 
remains rather stable, а5 Раг а5 it is possible to judge from а spectrum S(w), consisting оЁ 
а small number оё narrow discrete peaks. This tendency is specific under further 
temperature increase also, when the spectrum displaces to the right as a whole because of 

10° а velocity rise оё nonlinear waves, and the 
region of combination waves is rared as the 

10" waves begin to resemble solitons more and 

i тпоге апа their interactions weaken. 
& 107 If the ring is not switched-off from 
Ё ыа i external environment after reaching 
g 10 equilibrium temperature, the dynamic 

> structure factor also indicates excitation of 
10 1/f of noise at low frequencies for small 
105 values of( a wave number k (Fig. 7). 

103 102 101„ 10° 10! However it 15 necessary 10 note, that the 
В й details of processes corresponding 10 1/ 

Fig. 7. The dynamic structure factorS(@X)/max S(.k) noice in the model dcscribzg ar:gstill п‹{; 
versus frequency o і‹]›г а ring chain in thermal equi- 1 d 1 d & 
librium (N=10, у=10`%)) for the small wave number €lcar and а тоге complete understanding 
k=0.1 in the transition-temperature region at 7=, of the matter calls for further study [51. 

4. Dynamic structure factor of plasma 

The problems оё structure evolution arise, а5 а rule, in studies оё phase transitions 
in gas-fluid, fluid-solid, gas-plasma and have many aspects. The distribution function,



certainly, is not the unique characteristic of such states. In particular, the use of the 
dynamic structure factor mentioned above (8) is effective in researches оЁ spatial 
structures and their time behaviour both т plasma and fluid. An important advantage оЁ 
DSF is that it can be defined experimentally and it 15 associated with several regular 
characteristics which on many occasions can be determinated only as by means DSF. For 
example, having known DSF, one may find the plasma electric inductivity and 
dispersion, including the case of such density when it is very difficult to calculate these 
characteristics by оег methods. Now let us discuss features оЁ simulation оё particles 
behaviour in plasma before we analyze results of DSF calculating. 

Usually what is implied when one speaks about plasma, is the dense plasma. It is 
more similar to fluid than to gas by a number of properties. Really, Coulomb potential is 
more «long-range», than, for example, Lennard-Johnes potential, therefore in dense 
plasma each particle simultaneously interacts with several others particles, 1.е. the 
interaction is collective. The definitions «isotropic», «<homogeneous», «ideal» and 50 on 

аге used for namely this kind оё plasma. Its behaviour 15 oscillatory ог wave, ав а rule, 
and is studied within the framework of hydrodynamic or electrodynamic models. On the 
other hand, @е density т dilute plasma is small and particles interact pairwise, а5 in gas. 
Therefore the dynamics can be investigated using models developed for studies of gas 
properties. However collective phenomena are exhibited more and more in dynamics of 
such plasma under increasing density (it can not be called dilute already). The application 
оё MDS is most effective for study specifically these phenomena, evolution оЁ their 
properties, changes in dynamics taking place when density grows. Moreover, there are 
situations, when MDS is the unique effective method оЁ the analysis оё behaviour оЁ а 
plasma system. 

Two stages can be identified т studies using MDS т the general case: the stage оЁ 
determination of a potential share for each particular case of particles interaction and the 
stage of determination of the dynamics of the particles ensemble given by this interaction. 
First оё them 15 not а subject оё е present paper, we will not discuss that here. Note 
only, that а model оё interaction оЁ particles 1 plasma is developed as а rule based оп 
concepts of a quantum mechanics. At the second stage the computer simulation of the 
particles interaction is carried out and the results obtained are used for determination of 
the different performances of a system. Usually a classical Coulomb potential is used for 
presentation of charged particles interaction in the theory. The point is that very high 
accelerations are developed when opposite-charged particles are coming together in the 
numerical model with the classical potential and calculations become illconditioned. As a 
matter of fact, the quantum phenomena come into force when particles close to each other 
аг а distance exceeding аг comparable ап atomic scale, and they lead 10 а little bit other 
behaviour in compprison with «Coulomb» one. But the quantum models are very 
complicated and it is not efficiently to apply them to simulation of phenomena, in which 
«quantum» interactions take only а small part оЁ а total duration оЁ the process. That is 
why quasi-classical models are developed, in which е classical motion obeying the 
Coulomb potential force takes place, and only when particles are getting to close the 
specific shapes of a potential defined on the basis of quantum mechanics laws are applied 
[8]. We do not discuss details оё those models, but the results obtained by а MDS in the 
frame of quasi-classical models, are very interesting. 

In a Fig. 8 the data оё calculation [8] оё а certain coefficient R(k,w), proportional 
S(k,w), for plasma within е framework of а quasi-classical model developed in that 
work are represented. (The difference between R and 5 is not basic for опг consideration, 
see the details ш [8]). The cases ов both moderate coupling (Г=1), when фе 
autocorrelation function (ACF) falls monotonically to zero, апа strong coupling (Г=100), 

when АСЕ shows oscillations with а frequency close ю the plasma frequency ©„ have 
been explored. Here Г 15 @е coupling strength parameter. The results are given а$



dependencies R as a function of dimen- 
tionless frequency o for different wave- 
vectors g=ka, where a is a characteristic 
space scale of the system. As we see the 
peak аг o = @, (plasmon) is observed only 
for smallest ¢ Value (defined by the size of 
simulation space). The effect is not 
unexpected, ав just the particles clusters оЁ 
size comparable with big enough scale, 
corresponding to small values g, have an 
sufficient effect on motion of a individual 
particle at small coupling. Therefore the 
plasmon does not manifest itself really at 
small coupling in this case. However with 
increasing Г (density) the plasmon peak 
rises although does not reach the same 

magnitude а5 аг small k. The peak is close to ® , but under change т а wave number it is 
shifted distinctly. It allows to determine the dispersion that may be both positive and 
negative. The peak is identified even in the region of the strong Landau attenuation, 

where it is impossible ш fact 10 determine dispersion by ordinary technique. 
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. 8. The loss functionR(¢,v) versus frequency 0/о, 
for different wavevectors д at I'=100 

5. Distribution function of clusters and phase transitions 

The big number оЁ problems оЁ molecular dynamics is associated with 
investigations of properties of clusters. In molecular dynamics the term cluster is used for 
designation of an aggregation of particles located close enough to each other and bound 
by forces of an intermolecular interaction, in particular, of the Lennard-Jones or Morse 

type. For example, clusters are formed in rings of particles interacting via Morse forces if 
density оё particles 15 small [11]. The clusters are stable enough, i.e. their lifetime is long 
50 Фаг events in which clusters take part could be detected by spectroscopic methods, for 
example [4]. What е stability of а cluster depends on? Let’s consider, for example, 
conditions at which two particles (the neutral molecules) will form a cluster. Apparently, 
this couple will be stable if its summary kinetic energy is less than the potential energy - 
they are ш а potential well and can not overcome е potential barrier in the absence of ап 
external excitation. It is likely that the cluster will be stable if the total energy of the 
system is negative: E=T+U<0. Therefore, the clusters are produced in processes when 
kinetic energy of particles decreases. For example, if to open the cock of a vessel 
containing hot gaseous carbon, clusters will be formed in jet discharged owing to abrupt 
cooling оЁ the gas. The proportion of clusters containing given number л of particles 
(monomers, dimers etc.), is characterized by а distribution function f(n) (cluster size 
distributions, CSD [12]). Experimentally found f(n) for carbon, for example, under 
conditions mentioned above is given in Fig. 9 [13]. Note, the function characterizes a 
stationary, steady state. But there 15 а specific interest in evolution оЁ clusters in processes 
оЁ forming, dislocation, deformation, 1.е. in the function f{n,f). Let us now consider the 
procedure for theoretical calculation of the function, based on the geometric-energy 
approach. 

For the configuration of the ensemble of particles obtained during MD-simulation 

at some instant «geometrical» clusters are determined first on the basis of the agreement 
that the particle is considered belonging 10 а certain cluster, if it is аёа distance from any 
particle not exceeding the distance R=1.20. The latter is taken а5 а characteristic size of a 
particle. Then, after each of particles has been identified as belonging to any cluster and 

10



Fig. 9. Mass-spectrum of the carbon clusters [13], 
i.e. relative intensity as а function оё а number of - | 
carbon atoms in the cluster 

the number of clusters has been counted, 
the total energy of each cluster is 
calculated. If it is subzero, the cluster is 
regarded to be stable (though, of course, it 
can be abandoned by some particles later 
on). If it is not, the fastest оЁ particles 15 
«extracted» numerically from the cluster 
until the energy of the stayed aggregation 
does not become negative. If the number of 
the particles discarded is small (it is less, 
say, 10) it may be considered as a stable 
one, 1.е. it is а safe assumption that it does i 
not break down. But if the number of them d 
is big, we deal with a non-stationary phase ю 2 # ю ю ю 
- the phase of shaping ог active deformation of clusters. 

As an example of calculation of CSD in MD-simulation we will consider a 
problem about «spreading» of а «drop» оё а fluid (big cluster (Fig. 10)) owing 10 such 
change of surroundings, that the drop energy became close 10 zero at some instant. 
Because оё that the particles with high kinetic energy turned out 10 be а part of the cluster, 
and then they start leaving it. There is every indication that the result will depend 
critically оп friction in the system. In Fig. 11 е plots f{n,t) for three cases оЁ different 
values of a friction coefficient are represented. It is shown that at small friction the cluster 
in fact entirely collapses (Fig. 11, а) reaching fast the steady-state оЁ big number оЁ 
monomers, some dimers and insignificant number of clucters of big number of particles 
(Fig. 10). If the friction is appreciable (Fig. 11, b), the initial «big» cluster stays stable 
due to fast cooling (only some monomers and one-two clusters of a small number of 
particles break off). A steady state is established fast enough in this case also. And it is 
not a success 10 reach а steady state during carrying out оЁ the computer experiment т the 
intermediate case (Fig. 11, с) - fragments оё the cluster collapsed have not ceased 10 
deform. 

The phenomenon of transitions of matter from some phase to another one is 
associated also with the problems of clusters. A number of theoretical and experimental 
studies has been devoted to this problem having a great deal of aspects and items. Not 
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Fig. 10. Locations of interacting particles: а) at ап initial moment («drop» of а fluid) and b) а! stationary 
state at small friction 
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Fig. 11. Distribution function of clustersf(,() for three cases оё different values of а friction coefficient: 
) small friction, b) appreciable friction, с) intermediate case 

seeking to perform a complete overview and analysis of them, we will restrict ourselves 
to the discussion оЁ only those оЁ them, which are effectively explored by molecular 
dynamics simulation. In particular, this is а phenomenon Фаг may be called а5 а problem 
about «fusion» of molecular clusters under heating. The difficulties оё the analysis оЁ 
phase transitions in real volumes of matter are accounted mainly by enormous number of 
particles taking part т the process and practical impossibility 0 analyze all created 
patterns of а uninterruptedly varying potential surface. However phase transitions оЁ 
small enough (mesoscopic) objects - clusters - can be studied in detail. This problem is 
interesting by itself, ав it appears, the phase transitions in clusters of а small particles 
number do not run ав in extended volumes оё matter. Ап оп the other hand, increasing a 
number оё particles, it is possible 10 trace evolution оЁ properties in е transition from а 
«cluster» state оЁ matter 10 а «volume» state. Note, mesoscopic systems take up an 
intermediate position between the macroscopic and microscopic оё them. To investigate 
phase transitions in clusters the analysis оё the shape оЁ а potential surface established by 

12



Fig. 12. Representative (quenched) structures оё the coexisting phases in Argg: а) solid icosahedral, 
b) surface melted with one floater and с) homogeneously melted. The core atoms and the floaters are 
represented by dark spheres, the outer shell atoms by light one 

cluster particles can be used as the very perspective approach [4]. The main item is the 
definition of location of local minimums of the potential and a depth of potential wells 
being in process of computer modeling by MD-method. The existence of a few phase 
states of a cluster may be regarded as the most interesting effect discovered recently. 
Three distinct phase states - microcrystalline (solid), homogeneously melted and solid 
kern with а melted shell - have been found by computer modeling [4] оё isothermal 
dynamics of a three-dimensional cluster. At specific temperatures they can occur at the 
same time with а sense of such state is а little another, than in macroscopic systems. It has 
been revealed с certain, precisely distinguishable level ов the potential energy 
corresponds to each phase. The simultaneous existence of several phases of a cluster 
means that it periodically goes from one state to another, ап the residence time оЁ each 
phase depends on a well depth and a width of transition between adjacent local 
minimums. In Fig. 12 the different states Аг (а - solid icosahedron (micro-crystal), b - 
with a melted surface consis-ting one «floater», ¢ - with a homogeneous melted surface) 
and in Fig. 13 a time dependence of energy of a cluster are shown at different 
temperatures. There is no doubt that in а temperature range between T=30K, 
corresponding to a microcrystal, and T=40K, corresponding to melted matter, the states 
are established when there is periodic «switching» from one phase to another. Having 
determined levels of energy of each phase and their residences, one can calculate by 
means оё statistical processing the probability distribution functions for different 
quantities, a diffusion constant for each phase, the entropy etc. Purposeful searching of 
states with given properties and methods оё control т them may be carried out with help 
of characteristics mentioned. The field of phase transitions of mesoscopic systems are 
under active study now and discoveries оЁ many interesting properties оЁ such systems 

may be anticipated in future. 

6. Transition processes and reactions 

The model presented above is not sufficient for explanation оё processes in several 
important and interesting cases. Let us consider, in particular, the problem about reaction 
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rates at different temperatures. As it is known, the rate of many chemical reactions is 
defined by the Arrhenius law 

K=K, exp(-AU/k,T), (13) 

where К, is а reaction rate а! T—>, AU 15 the activation energy equal to а depth оё а 
potential barrier, which should be overcome 10 split а bond, & is the Boltzmann constant. 
Arrhenius behaviour was marked for the first time more than hundred years ago and has 
been under an experimental test in different kinds of reactions. In 1940 Kramers 
developed the theoretical model becoming in the further the prototype of a statistical 
reaction theory. The Kramers-theory of reaction rates is based on a Fokker-Planck 
equation for the reactive molecule or on the corresponding Langevin equation with white 
noise sources (see [14, 15]). One of implications of this theory is the Arrhenius law. 
However recently it was clarified, that the Arrhenius-law is not always fulfilled precisely. 
Besides, it was revealed, that some other experimental data do not always correspond to 
behaviours following from the Kramers-theory [14, 15]. The search for the reason has 
lead to a presumption that one of basic assumptions of the Kramers-theory about lack of 
correlation of elementary exposure acts to other particles is disturbed in mentioned above 
cases. Indeed, it was shown in [16, 17] that if a noise source in the Langevin equation is 
assumed to be colored, it results in consequences leading to Arrhenius behaviour 
violation, in particular. But what is the reason for occurrence of preferred scales in the 
source? It has been hypothesized а! it takes place due to specific exhibition of nonlinear 
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(and dispersive, 10 some degree) properties оЁ systems оё particles distributed т space 
[14]. We will leave the Arrhenius law for now and shall consider processes 1 solutions in 
more details. 

As it is known, the solution is а mixture оё particles оЁ two sorts аг least - а solvent 
and ап impurity. The solvent concentration 15 much higher, for example, one molecule оё 
the impurity is per 30 molecules of the solvent. It was found that the Arrhenius law is 
disturbed in such system if molecules of the solvent are «hard», and the others are «soft» 
[14]. It is implied (аг the interaction оё «hard» molecules between themselves is much 
more restoring, ап that оё «hard» and «soft» molecules, and proceeds much faster. It has 
been supposed [14], аг so-called local energy spots are formed in such system. They are 
located on soft particles and hard particles acquire the high potential energy. To verify 
this hypothesis the simple one-dimensional model of a solution in the form of a Toda 
chain has been considered [18]. As mentioned above, soliton-like local excitations of a 
density сап exist in а homogeneous Toda chain (when the parameters а, b, o are identical 
for all sites of a chain, see (2)). In the general case they arise, as known, under a certain 
relation of nonlinear and dispersion properties of a system. In a nonlinear chain soliton- 
like structures are excited for specific values оё nonlinear potential parameters specifying 
both nonlinear and dispersion properties. If in a chain the small part of molecules are 
«soft», the soliton-like excitations formed by hard molecules can «stick» at the soft sites 

during some time, transferring coherently appreciable amount of energy to them. Indeed, 
the times оё the interaction оЁ the soliton with the «hard» and «soft» molecules are а5 
</г ЫЬ where the index 0 refers «soft» molecules. Moreover it is supposed, that the 
dynamics of «soft» molecules also obeys the potential of the same form (6), but with 
оег parameter values. In particular, b <<b, 50 during relaxation the «soft» molecule can 
accumulate energy even more than that of one soliton. As a result the probability of 
overcoming of a potential barrier appreciably increases, and the reaction rate rises. It 
leads to a consequence that the fraction of high-energy soft molecules of the distribution 
аз а function оЁ фе potential energy of the soft molecules increases, shifted to higher 
values and acquires longer tails. This conclusion is confirmed by е analytical 
calculations in [14]. But for systems with other kinds оё а potential, furthermore for two- 
dimensional and three-dimensional systems, it is impossible to obtain the analytical 
results. That 15 why in [14] the molecular dynamics method has been used for calculation 
of the distribution functions. 

The interaction оЁ 32 particles, one оЁ them was soft, was considered т 1D-, 2D- 

and 3D-models with the modified Lennard-Jones potential (4) which аг A =28, n=8 well 
approximates the real Lennard-Jones potential, but is much more suitable for numerical 
calculations. It is shown in а Fig. 14, а that the maximum оё фе distribution function f(U) 
for a 2D-case for soft molecules is really shifted to the range of high energy events 
relatively the maximum оЁ the function for hard molecules and the fraction оЁ high- 
energy molecules («a high-energy tail») is by ап order оё magnitude greater (fig. 14, b). 
Besides the average potential energy of soft molecules can be several times higher 
exceeding (fig. 15) average kinetic energy. (Note, at small temperatures, when interaction 
of molecules is in fact linear, these quantities are equal.) Results are the same for 1D- and 
3D-models, and they do not change when the number particles is increasing. Taking into 
account this effect of formation of the energy spots, we shall return now 10 the Arrhenius 
law and consider specific systems, in which it is violated. 

We shall consider the model оё е dissociation оЁ diatomic molecules [15]. The 
atoms in such molecule are bound by potential force arising from е Kramers bistable 
potential 

V"(x,y‘z)::-x(,\‘-sz)+:yyz+ 1% N (14) 
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Fig. 14. The distribution function @) and its tails (b) for Т=7 and finite size potentials inthe two- 
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Two minima of the potential correspond to two possible configurations of such soft 
molecule (Fig. 16) The potential barrier must be overcome to reach dissociation. The 
energy for overcoming is accumulated by a molecule owing to interaction with 
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Fig. 15. The temperature dependence оё е mean 
potential energy ю Dk,T/2 units Юг the two- 
dimensional case (М=32: triangles = soft, squares = 
hard molecules) 

linear, as it should according to the Arrheni 

surrounding hard molecules, and фе 

interaction force is given by the Lennard- 
Jones potential. The interaction potential оЁ 
hard molecules with hard molecules is the 
same, but with parameters providing much 
more shorter time of relaxation. The study 
has been carried out within the scope of 
2D-model with 100 particles. Initial 
positions of particles correspond to minima 
of the potential function, and then the 
system reaches the given temperature 
during а stage of «heating». A short 
segment of the plot of the coordinate x of 
the particle into a potential well of the 
diatomic molecule against time is shown in 
Fig. 17. The mean time v of transition 
between two states connected with е 
reaction rate by а relation т=1/К has been 
calculated (Fig. 18) based on the function 
x(r) presented above. It is certain that 1пт 
аз а function of фе quantity AU/T, is not 
us law, but it is parabolic instead. Similar 

results have been obtained in the simulation of a reaction with participation of the 
diatomic molecule, in which bond of atoms 
form 

У, (r) =¢[(exp(-6(-5,21%) ) - 1)? - 1]. 

occurs by the Morse potential reads in the 

(15) 
In T as а function оё AU/T at fixed AU=50 proves 10 be not linear again, and ага 
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Fig. 16. The shape оё а bistable 2D Kramers potential. The minima correspond to the stable states of the 
active molecule 
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Fig. 17. Transitions between the 2 wells оЁ е 
bistable Kramers potential caused by molecular 
collisions 

Fig. 18. The logarithm of the average time between 
transitions from one of the Kramers wells © the 
other one, а а function of the Arrhenius exponent 

(Aurm) 

fixed value Т=7.5 it is almost linear, but with а slope 0.5 instead оЁ 1, ав it should be 10 

agreement with the Arrhenius behaviour (Fig. 19). Thus, the effective temperature of the 

system is not in agreement with the actual, 
classically defined temperature оЁ а 
solution, because of the noise excited in 
collisions of molecules, is not white and 
effective temperature depends on its 
spectrum. Currently it 1 impossible to 

Fig. 19. The logarithm of the dissociation time for а 
Morse molecule as а function of the Arrhenius 
exponent. The full line corresponds 10 а fixed value 
оё the potential barrier AU=SC and the dashed line 10 
fixed temperature T=7.5 and variable potential 
barriers. All energies and temperatures are given in 
the Argon-units used in [15] (i.e.T=1 corresponds 10 
119K) 
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finally conclude that phenomena considered are explained entirely by existence of local 

energy spots [15]. Nevertheless, this explanation is believed 10 be the most probable, апа 
further researches in this lead are still in progress. 

7. Nonequilibrium phenomena 

There is an ample class of problems about various flows and instabilities in fluids. 
They are solved usually within the framework оё hydrodynamic models. The results оЁ 
many оё them are well known (see, for example, [19]). In particular, it 15 known, аг at 
low gradients of temperature and pressure the flow оё а fluid 15 laminar, i.e., for example, 
the flow velocity is the same аг all points of a jet. However this statement is valid only for 
spatial scales much more than characteristic sizes of molecules and a free length. The 
trajectories of a motion of molecules corresponding microscales remain chaotic. What is 
the way 10 structure unordered motion оё individual molecules to collective motion of big 
ensembles? The molecular dynamics simulation allowing to calculate trajectories оЁ 
molecules and then to carry out averaging complying with various scales plays ап 
invaluable role in studies answering this question. 

Let’s consider for ап example а motion оё molecule оЁ а fluid under conditions, аг 
which the instability оё Rayleigh-Benar is harnessed [20]. The results of simulation оЁ 
motion of 5000 particles in a fluid layer in a rectangular vessel to be heated up from 
below are presented there. It is known [19] from the analysis of this system taking a 
hydrodynamic approach, that the type of collective motion of particles depends on a value 

оЁ а non-equilibrium parameter - the 

Rayleigh number 

R,=a(T, -T,)ghD, (16) 
Here а 15 а thermal expansion coef- 

ficient, v is kinematic viscosity, D_ 5 а 

coefficient оЁ thermal diffusion, /, $ а 
width оЁ a vessel, T, Т, are temperatures 
on a top and a bottom, accordingly. As 
known, at small values of the Rayleigh 
number collective motion is laminar - this 
result confirms in [16] also. To obtain this 
a space averaging over small ensembles 
containing about 6 particles was carried 
out. The simulation field was divided into 
800 «statistical» cells and an averaging was 
performed over all particles residing in of 
each cell at instant, and then a time 
averaging was carried out. The result was 
interpreted as a velocity of fluid at the 
centre of a cell. Increasing of the tempe- 
rature gradient (the Rayleigh number) 
causes loss of stability of a homogeneous 
state and vortexes arise. Their «portrait» is 
represented in a Fig. 20. Vectors obtained 

1500 — 200.0 

50.0 100.0 ! 1500 — 200.0 

0.0 500 100.0 1500 — 200.0 

Fig. 20. Velocity field оё molecular dynamics simu- 
lation with 5000 particles and aspect ratio = 2;( а) and 
(b) show transient states after 8000 and 10500 steps 
respectively; (с) displays the final state after 20000 
steps (averaged over the last 10000 steps) 
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by ап average оЁ velocities оЁ all particles 
belonging 10 а given cell are shown in it by 
arrows. The vortexes are stationary 

inconvertible structures, and this deduction



is well in accord with known «hydrody- 
namic» one. However authors noted, that 

an average over an ensemble of only 6 
particles is crude enough. For example, 
plots оё the velocity distributions obtained 
by MDS and in hydrodynamic appro- 
ximation, differ т details, being the same 

qualitatively (Fig. 21). In this connection 
in [20] the chance to research effects of 
birth of small-scale vortexes and, in the 

long run, the turbulence, by MDS && 
estimated skeptically enough. The point is 
that a rising number of «cells» and the 
particles number in a «cell» for obtaining 
оЁ data пр to acceptable accuracy is 
required with growth оё number оЁ 
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Fig. 21. Horizontal component of the velocity as a 
function ©Ё z, for а vertical slice located а! x=L /4. 
The curve refers 10 the hydrodynamical calculation 
where а5 the crosses represent the molecular 
dynamics data averaged over the last 10000 steps. 

vortexes under the Rayleigh number Both axes are scaled in system units 

increasing (i.e. under decreasing оЁ characteristic scales). However, it seems likely that 
this problem will be overcome with computer efficiency increasing. At all events, it is 
early ю put ап end 10 further investigations. 

8. Conclusion 

The molecular dynamics simulations (MDS) based on numerical solving of 
equations оё motion for а small ensemble оЁ particles, 15 effective for studies of properties 
of both a bulk state of matter (macroscopic systems) and states formed by clusters 
(mesoscopic systems). In both cases а main field оё application оЁ а method is т the 
systems which are nonequilibrium ог are 1 а state of phase transitions «gas - fluid», 
«fluid - solid», «gas - plasma». For many problems MDS 15 the only research instrument. 
The models are used both with a classical nonlinear potential (Lennard-Johnes, Morse, 

Toda etc.), and semiclassical, in which individual events оё particles interaction occur 
potentials determinated оп е basis оё quantum mechanical calculations. It 15 
implemented effectively not only for three-dimensional models, but also for two- 
dimensional and т particular one-dimensional. It is possible in the last case to compare 
computer simulation data with analytic results. Among the problems related to properties 
of bulk states, problems concerning origin and evolution of structure transformation in 
ensembles of particles used in studies of properties of chemical reactions, dilute plasma, 
near-boundary fluids, processes оё ionization etc., are assumed аз most interesting. The 
development of technique of determination of quantitative characteristics of structure 
transformations  (distribution functions, dynamical structure factor, probability 
distributions and others) is very important. In researches of mesoscopic systems the datas 
can be highlighted оп availability оё some phase states оё clusters with а small number оЁ 
particles and opportunity of simultaneous existence of them. It seams likely that studies 
of connection of properties of potential surfaces, created by cluster particles, with 
nonlinear dynamics of particles and collective cluster performances are highly promising. 
The examinations оЁ transformation оЁ the performances оЁ mesoscopic systems under 
increasing of a particles number are interesting because they lay a bridge between 
mesoscopic ап macroscopic systems. 
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НЕЛИНЕЙНЫЕ ПРОБЛЕМЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ 

А.П. Четвериков, В. Эбелинг 

МПредставлен обзор исследований некоторых проблем молекулярной физики, 
проведенных методом молекулярной динамики. Среди них проблемы элементар- 
ных возбуждений в жидкостях, динамика химических реакций в растворах, 
динамические свойства разреженной плазмы, динамические явления при фазовых 
переходах в мезоскопических системах, структурные свойства цепочек нелиней- 
ных осцилляторов. Обсуждаются также некоторые новые результаты исследо- 
ваний распределений кластеров и метод идентификации кластеров. 
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