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INVESTIGATION OF TRANSIENT CHAOS IN 
GYRO-BACKWARD-WAVE-OSCILLATOR 

SYNCHRONIZED BY THE EXTERNAL SIGNAL 

A.E. Hramov, A.A. Koronovskii, 1.S. Rempen, D.1. Trubetskov 

In this work we explore the transient chaos in non-autonomous, distributed active 
medium (gyro-backward-wave oscillator synchronized by the external signal). The transient 
chaos characteristics near the synchronization tongue boundaries are investigated. Special 
attention is payed to the building of long time series which is used 10 appreciate е 
characteristics оЁ system dynamics. The time series is constructed by gluing оё short time 

realizations which characterize the transient chaos observed 1 the distributed system. 

Introduction 

In our days great interest causes the questions of microwave signals generation and 
amplification in gyroresonance devices with the travelling wave and the backward wave, 
based on the interaction of the unmoderated electromagnetic waves with the spiral 
electron beam (gyro-BWO and gyro-BWT). Such devices are actively examined 
theoretically and experimentally [1-5]. 

The non-autonomous active medium «spiral electron beam - backward 

electromagnetic wave» demonstrates several non-linear effects like periodical and 
chaotical modulation of the output signal, synchronization of the gyro-BWO by the 
external signal etc. [5-9]. In this work we show the possibility оё арреагапсе оЁ а 
phenomenon of transient chaos in such system. As distinct from the «classic» dynamical 
chaos (its image in phase space is strange attractor and the phase trajectories tend to it 
with r—co), under the term «transient chaos» [10-12] the follow phenomena is ment: in 
the phase space of the system there exists the so-called chaotic saddle - a chaotic set 
which is unstable in one of directions. The phase path starting from the points situated 
near the chaotic saddle for a long time demonstrates chaotic behaviour and henceforth 
quits from its vicinity and reaches the attractor which may be regular of chaotic. 

The unstable chaotic set might be characterized by the same parameters as a 
strange attractor (dimension, Lyapunov exponent etc.) In this case the characteristics can 
be carried out from ensemble оЁ short time series describing the transient chaotic process 
in the investigated system. In this case usually the procedure of gluing of the time series 

is used. Mostly, the transient chaos is investigated in simple finite-dimensional systems 
with discrete and continuous time.



In this work we investigate transient chaos in a distributed (and therefore, infinite- 

dimenisional) active medium containing oscillations-electrons. The characteristics оЁ 
transient chaos in non-autonomous gyro-BWO are examined. Special attention is payed 
to the problem оЁ correct building of long time series using the short series derived from 
the distributed system. 

The structure оё the work is the follows. In sec. 1 the mathematical model of the 
investigated system 15 set, the admissions used 1 $ constructing and the boundaries of 
its adaptability are discussed. In sec. 2 the oscillation regimes in non-autonomous gyro- 
generator with backward wave are discussed. The parameters’ interval, in which the 
regime of transient chaos realizes, is explored. Sec.3 is devoted to the question of 
building of long time series produced by distributed system in transient chaos regime. In 
sec. 4 some characteristics of transient chaos (dimension, maximal Lyapunov exponent) 
are derived from the constructed time series. 

1. General formalism 

When the spiral electron beam interacts with the TE-modes of the waveguide and 
the waves synchronizm condition is fulfiled 

о=0, 0+ 0)7,-0,=0, (¢)) 

we can observe high-frequency genemicn [13, 14]. Here & 5 the synchronism frequency, 
о, & the cyclotron frequency, v, is the electrons longlmdmal velocity, i.e. the velocity 

which is parallel with the applied magnetic field, В„(ш) is Ше distribution constant оЁ the 
waveguide without electron beam. 

In such system accelerative grouping of the electrons takes place. It is caused by 
relativistic non-isochronism of the electrons-oscillators of the spiral (or polyspiral) beam. 
One оё the peculiarities оЁ this system 18 the possibility оё retuning the generation 
frequency by the changing of the longitudinal electrons velocity v, ог the static magnetic 
field В. In real systems for such purpose it is necessary 10 change the geometry of the 
waveguide апа the value оё the magnetic field along е interaction space [15, 16]. From 
this sight the model described in our paper is idealized. 

The interaction between the weakly relativistic spiral beam and the backward wave 
18 described by the self-consistent system of movement equation [13] and stimulation 
equation [17] 

ама - ju(l - 1ВРВ = Р, (2) 

OF (д:- ЭЕЕ =-1, 1= Ча ] pds, 6) 
where В=/ехр(/0) is Ше complex radius оё the trajectories of the ensemble electrons, 
which are initially distributed by phases relatively the НЕ field, F=F(Ex) 15 the slowly 
changing complex non-dimensional amplitude ofAthe field in the beam section, /=I(&t) 

is фе first harmony of the grouped current, &=B(w)ez is the nondimensional longitudinal 

coordinate, 1:=¢f»:(1-:/v“)(] +ul/Ing)’1 is the non-dimensional time in the coordinate system 

moving with е longitudinal beam velocity v,, © is the frequency satisfying the synchro- 

nism condition (1), (&) 15 the coefficient of propagation оё the backward wave with the 

frequency & т the system without electron beam, v, is the wave group velocity on the 

frequency ©. 
Besides we bring in the following parameters: u=(v,/c)/2¢ is the non-isochronism 

parameter, characterizing the system phase non-linearity, 
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е = [( КАМ( + /^ )]5 << 1 

15 the interaction parameter, 

o, = (еВ т.с)(1 - 2(0 + ) Ic?) 

is the cyclotron frequency with Е=0, К is the coupling impedance, v, 15 the initial 
transversal electron velocity, /, and V, are е constant constituents оё the beam current 

and voltage. 
Equations (2) and (3) are solved within the follow initial and boundary conditions: 

F(Ew=0) =/'(5), I(gx=0) =0, 4) 

В(5=0) =exp(j6)), 6 € [0, 2], ) 

where the initial distribution f  is taken as 

7°(Е) = 8;sin(n(A - 5)/2). (6) 

The external controlling signal 

F(g=A,7) = Fyexp[j Q1] (7) 

is added оп Ше collector boundary of the system Е=А ‚ where А 15 the length of е sys- 
tem, Ё 18 the external signal amplitude, © is the mismatch between the external signal 

frequency and the «cold» synchronism frequency . 
The model described by the equations (2)-(5), is correct only within the following 

conditions: the ЕМ field т the beam cross section is uniform, the longitudinal velocity 
v,=const (i.e. the interaction between the electrons-oscillators and the НЕ components оЁ 
е magnetic field is neglected), the non-stationary process is assumed ю be narrow- 
band, hence in the active frequency band it is necessary to take into account only the 
interaction of the spiral beam with the backward wave. 

In our work we investigate the gyro-BWO within the following parameter values: 
и=4 and A=3.0. In the autonomous system these values correspond to the regime оё а 
periodical self-modulation of the exit signal. The numerical scheme parameters for the 
equations (2) and (3) were taken а5 ЛЕ=8-10° (coordinate step), At=4-10" (time step). 

2. Oscillation regimes and е transient chaos т gyro-BWO 

In the works [9, 18, 19] the influence of different types of external control signal 
on the dynamics of the simple gyro-BWO model is investigated. In reference [20] the 
problem of chaotic auto-oscillation synchronization in the system «spiral electron beam - 
backward elecrtomagnetic wave» is analyzed. The importance оЁ this problem 15 
conditioned by the practical aspects оЁ elaborating gyro-devices with controlled 
parameters and also by theoretical interest attracted to the investigation of auto-oscillation 
synhronization in distributed active medium. 

In Fig. 1 we introduce the regimes map of the gyro-BWO synchronized by the 
external signal оп е parameters plane «frequency - amplitude of the external influence» 
(the external signal parameters are foregoing) [18]. Different symbols on the map marks 
the areas оё different oscillation regimes. With ©>-2.0 ме derive the synchronization 
regime, i.e. stationary generation оп the frequency оЁ external signal. The dashed line 
marks the boundary of frequency capture area. In this case the device may demonstrate 
periodical ог chaotic self-modulation of фе output signal.
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Fig. 1. Typical regimes оё the non-autonomous oscillations in gyro-BWO оп the controlling parameters 
plane frequency © - amplitude Е, By the dashed line the quasi-synchronization area 15 marked 

The region оё frequency capture from the side оё higher frequencies coincides with 
the boundary of the self-modulation region (and, accordingly, the synchronization 
region), and, on the side of smaller frequencies, the frequency of the external signal, at 
which the frequency capture takes place lays, essentially more to the left of from the 
boundary of the stationary generation regime. The regions of the regimes map marked by 
the symbols 7', corresponds 10 е periodic automodulation оё фе output signal with the 
period n. And, аг last, the regions marked by the symbols С ап О corresponds 10 the 
chaotic generation and generation with several incommensurable automodulation base 
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Fig. 2. Typical time series of the output signal 
amplitude  of non-autonomous gyro-BWO, The 
signals are constructed а! фе following values о the 
initial perturbation amplitude: @) 8;=0.0019 апа (b) 
8,=0.0072. By vertical shaped lines the typical parts 
of time series are divided: the part П is the region of 
the transient chaos which we analyse 

spectral components (quasiperiodic auto- 
modulation). 

Near the right boundary of the 
synchronization tongue (in the region of 
larger frequencies) the appearance оЁ 
transient chaos considered the Introduction 
takes place. We explore the transient chaos 
in е regimes map point with the 
following values оЁ the external signal 
control parameters: Q=2.0 and F=0.62. In 
Fig. 2 we represent the typical time series 
оё the output signal F(¢=0,7) in е tran- 
sient chaos regime obtained at the different 
starting conditions (6), namely аг different 
amplitudes оЁ initial perturbation &;. 

In Fig. 2 one can see that depending 
оп the initial perturbation amplitude &, the 
transient time duration is various, but 
finally the regime of stationary generation 
on the external signal frequency is stated. 
The transient process is rather irregular, 

what testifies е presence of №е 
phenomenon оЁ transient chaos in а system. 
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We analyse the transient chaos characteristics, for which it is necessary to create an 
artificially long time series consisting оЁ the «sewed» short segments ов time series 
corresponding to the transient chaos. For analysing the transient chaos regime and the 
procedure оё gluing оё short time series characterizing е unstable transient chaos regime 
ме use the time series generated by the field amplitude oscillations [F(t)!, taken from the 
exit of the system Е=0. 

3. Constructing of an artificially long time series 

Time series generated by the explored system in the transient chaos regime, can be 
«divided» into four parts (see Fig. 2): I - evolution оё the system from the initial state to 
the unstable chaotic state, П - naturally, the transient chaos regime, III - the exiting оё the 
system on an asymptotic regime and IV - the final asymptotically stable state. The 
information concerning the unstable chaotic saddle уе can obtain from the part П оё the 
time series, while е parts I, Ш and IV correspond 10 other states оЁ е system. 

Therefore, for the analysis of characteristics of the chaotic saddle existing in the system 
phase space, we need to «cut out» the parts I, Ш ап IV оё the time series [12], апа then 
to «sew» the parts corresponding to the chaotic unstable regime. This approach allows 
then to apply the standard methods of the analysis to the obtained artificially long time 
series (see, for example, [21, 22, 23]). 

One of possible methods of deriving an artificially long time series is immediate 
combination оЁ the truncated time series with each other. In this case the variable F оЁ the 
derived new time series can have break points i.e. 

Е( * Нт, о F(2), 8) 

Where T, are the points оЁ the uniting оЁ the series. 
Yet when we restore ап attractor using the delay method (Takens method) [24, 25] 

by ап artificially derived long time series, / false points appear оп ап atiractor [12]: 

J = d(TIAc)(n - 1), ©) 

where T is the delay time of the Takens method, л is the amount оё the truncated time 
series, d is the dimension of the space оё embedding, At 15 the time step. 

Another, more correct method of deriving of similar long time realization is the 
method оё «gluing» оЁ two different time series. Let x() and у(г). be Ше «glued» time 
series. If the attractor is restored in d-measure phase space, the following condition must 
be fulfilled for the «gluing» of the phase trajectories: 

25 (4+ ) - y(ty + о))< e, (10) 
where ¢ 15 е «gluing» precision (we have chosen ¢=2.5x10%), ¢, and ¢, are the times оЁ 
«gluing» for х(г) апа y(¢). The condition (10) can be replaced by the similar 

Л, т -0 

(1, +ixT) - у(1, + Т) <e, i=0,..d-1. (11) 

For procedure (11) it is required the value оЁ the phase space dimension 4, in 
which the attractor corresponding 10 the transient chaos is embedded. Let’s estimate the 
value ов а, calculating the correlation dimension D [21, 22], of ап attractor restored by ап 
artificially long time series derived without special method оё «gluing» for different, 
increasing values of embedding space dimension d=2,3.4..... The phase space dimension 
is equal to the value of embedding space dimension @ with which the correlation 

dimension D 15 saturated [26]. 
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Of course, such estimation is not absolutely precise, taking into account the pre- 

sence of «false» points in the phase space. However, as was shown in [27), the estimation 

оЁ correlation dimension by short segments of chaotic time series is rather reliable. 

Therefore the offered procedure can be used for the estimation оё phase space dimension 

а. Further, using the procedure оё correct gluing оё short time series, we shall test the 

obtained results оп calculation correlation dimension using simulated long chaotic time 

series. 
The correlation dimension оё ап attractor D is а function of a scale оё observation e: 

D(e) = Н, (InC (e.d) /ine), (12) 

where C(e,d), the number оё pairs of points, distance between which in d-measured phase 

space is less than  (the reduced correlation integral), 15 derived from е following relation 

M N 

C(ed) = (ИММ) S, % =% H(e - И, - х/)). (13) 

Here M 15 the number оЁ reduction points, N is the number оё points in the time 
series, Н 15 the Heviside function, х is the position vector 1 the phase space restored by 

Takens method. 
In Fig. 3, а one can see the results оё calculation оё the correlation dimension О(е) 

by the transient chaos time series combined without «gluing» for different values оЁ 
embedding space dimension d. Time series length was chosen N=6-10¢, апа number оЁ 
points of а reduction М=10*. The time series 15 combined from three short ones and the 
number оё false points in pseudo-phase space /=3200 according to (9). 

From fig. 3 one can see that the chaotic attractor corresponding to the transient 
chaos, is strongly inhomogeneous, because there 15 no scaling region оп the function оЁ 
correlation integral inclination depending оп the scale оЁ observation. However, 
beginning from е embedding space dimension d=3+4 the shape оЁ curves D(e) does not 
vary. Therefore as an estimate of embedding space dimension d=4 can be taken. This 
value would further be used for constructing artificially long time series by gluing the 
short ones. 

When е parts of short time series are glued it’s necessary 10 obtain the value оЁ 
the Т. We realized the glue оЁ short time series with different values оЁ T апа analysed 
the effectiveness оЁ the method in each case. One оё the time series x(f) (we shall call 

it «x-realization») was cut into two parts x,(f) and x,(¢) at the time 7 so, that 
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Е. 3. Correlation dimension D ав а function оё observation scale: (a) for attractor restored оп the time 
series derived by simple combining оЁ short ones without special «gluing» method (11) апа () for 
attractor restored on correctly glued long time series. The numbers correspond to different embedding 
space dimensions d 
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x(n), Ё 1<t 

)= x,(1), if t>1 
(14) 

Айег 1Ваг the time series x, (г) was glued together with another time series y(6), which we 
shall call «y-realization» (see (11)), 50 аг the following condition should be satisfied: 

h=t-(d-1)xT. (16) 

In the case оЁ х- and y-realizations are equivalent, i.e. x(¢)=y(6), the following relation 
takes place 

6O =)+ d-)xT+(-1), 2f (16) 

In a case оё phase trajectories corresponding 10 х- and y-realizations are close 10 each 
other in d - measured phase space (but are not equivalent), by virtue of instability they 
will disperse with time and after а slice of time Аг will separate оп distance exceeding 
some value ¢, (in our case £,=2.5x10?): 

a7 

The value оё time interval during which е difference between «glued» time series х(г) 
апа y(8) is less than ¢,, characterizes quality оё the procedure оё time series «gluing». 

In Fig. 4 the dependance оЁ the average value of Аг оп the delay time T is 
represented. One can see that the average value оЁ interval Аг during which the glued time 
series becomes practically identical, does not depend оп the chosen magnitude оё а delay 
time 7. Only at small delay times the 
average value Аг diminishes. <А> 

Та 

Iy (74 Af) - У(г + (а - 1) xT+ )) > ¢, 

The analysis — ов normalized 
distribution (see Fig. 5) of the magnitude 
оЁ А/ shows that аг а delay time 7=1.6 the 
part of «unsuccessfully» glued time series 
is minimal. In this case the number оЁ 
glued time series with little interval Аг is 
small. Simultaneously, the exploration 
carries out that with the increase of the 
delay time T the number оЁ glue points 
diminishes. Therefore the delay time for 
the procedure of gluing is chosen T=1.6. 
Besides, with such a choice of delay time 

T=1.6 the duration оё time interval (d-1)-T 
becomes comparable with the typical 
oscillations time scale. 

Let’s consider now е glued time o4 

series. On Fig. 6 the examples of the most 
successful (а) and unsuccessful (b) gluing 
with delay time 7=1.6 are represented. One 
can see from the figure that even in case of 
«unsuccessful» glue the y-realization well 
agrees with the x-realization, with which it 
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Fig. 4. Dependence о е average magnitude (Ar) 
on the value оё а delay time Т. Average was carried 
out оп 300 points of «gluing» 
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is glued. 
The important circumstance is that 

ай the time series used 10 construct the 
artificially long one are generated by the 
distributed system. Hence, that fact, that 

Fig. 5. Normalized distribution of At а! фе different 
values of a delay time Т: curve 1 (+) corresponds 10 
the delay time 7=0.8; curve 2 (x) - ю the 7=1.6; 
curve 3 (*) - ю the T=2.4; curve 4 (О) - ю ше 
T=3.2. The allocations are constructed on 300 glued 
time series for each delay timeT 
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Fig. 6. Successful (a) and unsuccessful @) gluing of 
the time series. The delay time in both casesT=1.6. 
Time interval Ar, during which the distinction 
between x- and y-realizations does not exceed the 
value ¢, is equal to 47,=30.09 апа Аг,=0.28 time 
unities, accordingly. The vertical dashed lines restrict 
the time interval (d-1)T, оп which the glue оЁ the x- 
and y-time series is carried out. The circles (*) 
correspond to the points of gluing (see relation (11)). 
x-realization is shown by solid line, y-realization - 
by dashed one 

two time series are well glued, yet does not 
guarantee that the states оЁ ап initial 
distributed system are close in times ¢, and 
t, Юг x- and y-realizations, accordingly. 
Therefore it is necessary to consider the 
spatial distributions оЁ amplitude of the 
field IF(g)! апа current /(5)! in gyro-BWO 
ак the time corresponding ю the points оЁ 
glue оё time series x() апа y(6). 

Fig. 7 illustrates the spatial distribu- 
tions оё фе values IF(€)| and l/(€)! т the 
case of «successful» glue of time series at 
the chosen value of delay time T=1.6 (see 
also Fig. 6, a) and the corresponding 
distributions  after е time = А/ =30.09 
passes and the x- and y-realizations 
dispersed оп the distance e, Similar 
dependences for the most «unsuccessful» 
glue are represented on Fig. 8 (see Fig. 6, 
b); the time interval At 15 chosen е same 

A1,=30.09. In spite оЁ the fact that in а case 
of unsuccessful glue оЁ х- and y- 
realizations, the spatial distributions 1Е(Е)! 
and I(g)! explicitly @ег from each other, 
these differences are quantitative but not 
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Fig. 7. Spatial distributions of the field amplitude 
time series with T=1.6. The time series with initial amplitude 
4,=0.0012 (dashed Нпе) аг the timev=106.16 (Fig. а) are glue 

Е апа current / for the case о «successful» glue of 
Ag=0.0041 (solid line) а timet=29.36 and 

. The Fig. b illustrates the divergence оЁ 
time series and corresponds to the time interval passed from the moment corresponding to Fig.a, 
A1,730.09 
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qualitative. At the same time the structures existing in a distributed system which 
generates х- and y- realizations, аг the moment оЁ gluing agree with each other. In the 
case о «good» glue after the disperse of the two time series оп distance ¢, in both cases 
ме derive the double-peak distribution оё the first harmonic оё the grouped current, what 
18 equal ю two electronic structures (two phase bundles of electrons - oscillators оЁ the 
spiral beam) on the length of interaction space, though the value of the second maximum 
оё the grouped current strongly differs 1 both cases. 

For the case оЁ «bad» glue оё Нте series after the pass оЁ the same time Az, а5 in 
the first case, essentially stronger discrepancy оё system dynamics takes place. Compa- 
ring the distributions introduced in Fig. 8, а and the Fig. 8, b, one can see that not only 
quantitative, but also qualitative distinction оё the interior beam and field structures takes 
place. However, if we take the time interval A7,=0.28, through which the time series 
disperse оп the distance е it is possible to make the same deduction, as earlier: the 
difference between states is only quantitative. Qualitatively the behaviour of the system is 
identical in both cases. Thus, the quality оё gluing first оЁ ай renders influence оп the 
length оё the time interval Аг, during which it is possible 10 consider the two time series 
identical (compare the times Az, and Az, for the case of a good ап bag glue accordingly). 
It is obvious, that фе duration А/ 15 defined, first of all, by quality оё gluing, and, then, by 
the magnitude оё the maximum Lyapunov index A,, which is the measure of the velocity 
of the disperse of neighboring phase trajectories of a chaotic set corresponding to 

transient chaos. 
In a view of above-stated it is possible to make a deduction that the offered 

procedure of glue of truncated time series generated by a distributed system, allows to 
create а correct long time series, оп which it is possible to determine the characteristics оЁ 

transient chaos. 
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Fig. 8. Spatial distributions оё the ficld amplitude F and current/ for Ше case of «bad» glue of time series 
with delay time T=1.6. The time series with initial amplitude A,=0.0033 (solid line) аг time=54.97 апа 
8,=0.0012 (dashed line) аг the timet<111.80 (Fig. а) аге glucd. The Fig.b illustrates the divergence оЁ 
шпе series and corresponds to е time interval passed from the moment corresponding ю Fig. а, 
A1,=30.09 
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4. Characteristics of transient chaos 

Let’s compare the results obtained at calculation of the correlation dimension оё the 
attractor restored by «not glued» long time series at presence of false points, and the 
result calculated from correctly glued time series. For correct comparison the time series 
length N=6-10* апа the number оё points оё reduction M=10-4 were chosen е same, as 
in the previous case. The results of calculation are represented in fig. 3, b, on which one 

can see е curves D(e) for Ше embedding space dimension d=2,3.4 апа 5. It is obvious 

that the earlier obtained estimated results agree with the more precise calculation of 
correlation dimension. The embedding space dimension d in this case also don’t exceed 4. 
The last means that the pseudo-phase spaces dimension, evaluated in previous section, 

was chosen correctly. 
Also it is possible to make а conclusion that for the estimation оЁ correlation 

dimension of the attractor restored from short time series the procedure of glue is not 
required and the small number of false points т the phase space does по! render essential 
influence to the calculation of correlation dimension. 

Let’s consider now such important characteristics оЁ transient chaos ав the 
‘maximum Lyapunov exponent ,. Its estimation was produced with the help оё procedure 
offered in [28, 29]. According to it the magnitude of , is defined а5 

М =lim,_ (1) InCx(r)/x (%)) (18) 

where (1) 15 the distance between two points х' and X" in phase space at the time г. We 
suppose (аг аг the initial time these points are close, i.e. Ix'-X"ll=x(7,)<<R, where R is 
the typical geometrical size of an attractor in phase space. The positive value of the 
maximum Lyapunov index A is evidence of е chaotic dynamics оё the system. Through 
the time interval =In(R/x(z,))/A the behaviour of е system becomes unpredictable, i.e. 
the magnitude of the Lyapunov index characterizes the measure of instability and 
complexity of the chaotic process. 

Now, keeping ир for е system dynamics after starting from е points х' and х"' 
and analyzing е distance x(t,+mAt)=IIX'(;+mAt)-x"(t,+mAz)ll between the current 
states of the system, we find the time interval тАт, during which the trajectories disperse 
оп the distance larger than уе Then а new point х,” оп the attractor, which is close (0 
the point x'(¢+mAc)(lIx'(2,+mav)-x, "ll=x(1,+#mAr)<<R), also is moved from it to the 
direction of the vector х”(!„+тАт)-х'(/„+тАт) 15 found. Then фе procedure is repeated. 

To define е value of е maximum Lyapunov index average оп the attractor the 
above described procedure it is necessary 10 iterate M times before reaching by 
magnitude 

M 

() = (UMAD) 2, In(x(ty+mac)/x(ty+(m-1)8%)) (19) ‘m=1 

the asymptotic value. 
Using the above described procedure for the «correctly» glued time series we 

obtained the value of the maximum Lyapunov index A,=0.098+0.011. 
Let’s remark, that if we are moving а little bit to е area оё the chaotic generation 

by changing the generation parameters Q=0.1, F,=0.62 (let’s remind that we have studied 
the transient chaos with ©=2.0, F=0.62), the typical characteristics оё the chaotic 
attractor as the restored attractor and Fourier power spectrum are similar to the 
characteristics оё the transient chaos. 

However, the maximum Lyapunov exponent оё the chaotic attractor »,=0.002. Le. 
the chaotic set (transient chaos) is a more unstable (and, hence, more «chaotic») regime 
than the chaotic attractor existing «at neighbourhood» in the parameters space. 
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Conclusion 

In this work the transitional chaos found in non-autonomous distributed active 
medium «spiral electron beam - electromagnetic wave» (gyro-BWO, synchronized by 

external signal) near the boundary of synchronization tongue was investigated. The 
analysis of е characteristics оё the transient chaos in explored distributed system was 
carried out. For this purpose we modified the procedure of combining of short time series 
generated by the distributed auto-oscillation system апа obtained аг the different starting 
conditions of integration of the model equations (2)-(6). Great attention was payed to the 
examination of the correctness of procedure of short time series «gluing» for the purpose 
of constructing an artificially long time series. It is possible to make a conclusion that the 
procedure of gluing offered in our paper is effective at constructing the long time series 
by а set of short time series generated by distributed systems. 
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УДК 621.385 

ИССЛЕДОВАНИЕ ПЕРЕХОДНОГО XAOCA 
В ГИРОЛАМПЕ СО ВСТРЕЧНОЙ ВОЛНОЙ, 

СИНХРОНИЗИРУЕМОЙ ВНЕШНИМ СИГНАЛОМ 

Храмов A.E., Короновский A.A., Ремпен И.С., Трубецков Д.И. 

В работе изучается переходный хаос в неавтономной распределенной 
активной среде (гиролампа со встречной волной (гиро-ЛВВ), синхронизируемая 
внешчим сигналом). Исследуются характеристики переходного хаоса в гиро-ЛВВ 
вблизн границы области синхронизации. Особое внимание уделяется проблеме 

построения — искусственной длинной временной  реализации, IO — которой 

оцениваются характеристики хаотической динамики, и которая строится путем 
сшивания коротких временных реализаций, характеризующих переходный Xaoc, 
порождаемый распределенный системой. 
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