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A VARIETY OF CRITICAL PHENOMENA ASSOCIATED WITH 
THE GOLDEN MEAN QUASIPERIODICITY 

S.P. Kuznetsov 

The paper presents several universality classes оё critical behavior, which may occur 
at the onset оё chaotic ог strange nonchaotic attractors via quasiperiodicity. Parameter space 
arrangement and respective scaling properties are discussed апа illustrated. 

1. Introduction 

Turbulence as а dynamical process in spatially extended systems attracts attention 
of researchers for a long time. An important aspect of the problem is the question: how 
does the spatio-temporal chaos originate from simple regular regimes as we vary one or 
more control parameters? As known, chaotic dynamics т multi-dimensional systems 

may arise via quasiperiodicity, in а course оё subsequent birth оё oscillatory components 
with incommensurate frequencies, followed by chaotization (see e.g., early works оЁ 
Landau, Hopf, and Ruelle and Takens [1, 2, 3]). However, details of the transition from 
quasiperiodicity to chaos are subtle and complicated. Some of them may be revealed if 
we turn to a restricted problem: Suppose that the object can be decomposed to a master 
subsystem with quasiperiodic behavior, and a driven slave subsystem that demonstrates 
transition to chaos. Then, what are possible scenarios of the onset of chaos in the second 

subsystem? (This question also is of special interest in context of synchronization of 
systems with complex dynamics by periodic external force.) 

One important advance on this way of reasoning was formulation of the concept of 
strange nonchaotic attractor (SNA) [4-6]. In the phase space SNA is an object of fractal 
geometrical structure, but without instability т respect ю initial conditions. In 
quasiperiodically forced systems SNA are found to be very typical in an intermediate 
region between order ала chaos. 

One more essential idea consists in application of the renormalization group (RG) 
approach, proven to be very efficient for understanding dynamics in critical states at the 
chaos threshold (e.g. [7-13]). The critical behavior may be universal for а class оЁ 
systems of distinct physical and mathematical nature. Hence, all relevant details for the 
critical dynamics may be revealed in one model, the simplest representative of the 
universality class. Originally, this approach has been developed by Feigenbaum for the 
period-doubling scenario оЁ the onset оЁ chaos [7, 8, 9], апа latter for quasiperiodic 
transition to chaos by Feigenbaum-Kadanoff-Shenker and Ostlund et al. [10-12]. 
Afterwards, analogous treatment was applied to some cases оё birth of 5МА [14-16]. 
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If a system ме deal with possesses several control parameters, it is natural 0 
introduce parameter space and speak about structure of this space in geometrical terms. It 

may contains some bifurcation surfaces, critical surfaces, separating domains of chaos 
and order, critical lines апа points, where some special regularities оё dynamical behavior 
аг the onset оЁ chaos occur. In Refs [13, 17, 18] such а picture is revealed and studied in 
some details for the period-doubling transitions to chaos. 

In the present paper we review and discuss several types of critical behavior 
associated with the onset of chaotic or strange nonchaotic dynamics via quasiperiodicity 
in model systems. We consider two-frequency quasiperiodic motions with the golden- 
mean ratio оё the basic frequencies, w=(5"2-1)/2. This irrational number is а traditional 
choice in many studies of quasiperiodicity. One reason is simplicity of the theoretical 
description. Another is a possibility to observe more subtle details of bifurcational 
structures in numerical and physical experiments than it would be possible for any other 
selection of the frequency ratio. In Sec.2 the procedure of RG analysis appropriate for the 
golden-mean quasiperiodicity is explained, and а two-dimensional generalization of 
approach of Feigenbaum-Kadanoff-Shenker [10] and Ostlund et al. [11, 12] is developed. 
In Sec.3 we discuss model systems including quasiperiodically driven logistic, circle, and 
fractional-linear maps. In Sec. 4 our generalized RG scheme is used to reproduce some 
results of classic analysis of quasiperiodic transition to chaos in the circle map [9-12]. In 
Sections 5, 6, and 7 we review three novel types of critical behavior discovered in a 

course of joint research program with the group of nonlinear dynamics and statistical 
physics from Potsdam University (A. Pikovsky, О. Feudel, Е. Neumann) [15 ,16, 19]. 
For each type оЁ criticality we illustrate scaling for the critical attractor associated with 
dynamics exactly at the critical point, and scaling оё topography оё the parameter plane 
near the criticality. 

2. A two-dimensional generalization 
of the Feigenbaim-Kadanoff-Shenker equation 

Let us consider quasiperiodic dynamics in some system with two basic frequencies, 
o, ап w,, and assume that two subsystems associated with these frequencies are coupled 
unidirectionally. To describe dynamics in terms оЁ Poincaré map, ме perform 
stroboscopic cross-section оЁ the extended phase space by planes оЁ constant time, 
separated by T = 2л/,. The first subsystem («master») 15 independent of the second опе, 
and the associated dynamical variable is the phase ¢ governed by equation ¢, , =g, +o, T 
(mod2x). For the second subsystem («slave») we assume that the dynamics is essentially 
one-dimensional: x,,,=F(x,,p,). In respect to the second argument the function Р(х ф) is 
2n~periodic. Instead оё ф we introduce а variable и defined modulo 1: 

X, = ), иа = , +w(modl), @ 

where f(x,u)=F(x,2mu), w=w,T/2n=w,/w,. In the further study we fix w=(5"2-1)/2. 
In general context of nonlinear dynamics, the basic idea of the RG analysis consists 

in the following. We start with an evolution operator of a system on a definite time 
interval апа apply this operator several times 10 construct the evolution operator for larger 
interval. Then, we try to adjust parameters of the original system to make the new 
operator reducible to the old one by scale change of dynamical variables. This procedure 
is called the ВС transformation. The adjusted parameters will define location оЁ the 
critical point. The ВС transformation may be applied again and again to obtain а 
sequence оё the evolution operators for larger and larger time intervals. If the approach 
works, one possibility 15 that the produced operators become asymptotically identical, and 
we speak about a fixed point of the RG transformation. Another possibility is that they 
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repeat each other after several steps of the RG transformation, and we speak about a 
periodic orbit, ог а cycle оё it. In any of these cases, the rescaled long-time evolution 

operators will be determined by structure оё the ВС transformation, rather than by 
concrete dynamical equations оё the original dynamical system. This implies universality. 
On the other hand, repetition of the rescaled evolution operators at subsequent steps of the 
RG transformation means that the system manifests similar dynamics on different time 
scales. This implies scaling. 

How can we apply this approach to critical phenomena associated with the golden- 
mean quasiperiodicity? As known, the convergent sequence оё rationals for w=(5"2-1)/2 

‚ ® defined ав Р, /Р, ‚ where Е, are the Fibonacci numbers (F=0, F\=1, F,, \=F,+F, ). 
This sequence delivers the best possible approximation for w, and фе dynamics оп а time 
interval F, is close to periodic. So, it is natural 10 consider а sequence оЁ evolution 

operators over intervals of discrete time given by the Fibonacci numbers. 
Let f Fi(x,u) апа f Fi(x,u) designate transformation оё х after F, апа F,,, iterations, 

respectively. To construct the next operator, for F,, iterations, we start from (x,u) and 
perform first Р, iterations 10 arrive at (fF(x,u), u+F,,,w), апа then the rest Р, iterations 
with the result 

уе (o) = f Р (FRoi(u), ич ). @ 

To have а reasonable limit behavior оё the evolution operators we change scales forx and 
и by some factors а апа В аг each new step оё the construction, and define фе renorma- 
lized functions as 

& 5) = о7 (ot ulp). 3) 

Note that wF,,;= - (-w)**!(mod1), so it is natural to set p=-1/w=-1.618034.... 
Rewriting (2) in terms of the renormalized functions we come to the functional equation 
[15, 16, 19] 

o) = alg(a'g,, к/а -uw), wiu + м). (4) 

In Ше present article we deal with several different solutions оё this equation - 
fixed points ог cycles т the functional space. The constant а is specific for each 
universality class; it is evaluated in a course of solution of the functional equation. 

The next step оЁ the ВС analysis consists in the following. Let us suppose now that 
we deal with dynamics not precisely at the critical point, but in a vicinity of it in the 
parameter space. Then, a perturbation of the solution appears. Analyzing evolution of the 
perturbation we come to an eigenvalue problem. A number of relevant eigenvalues define 
а codimension ов the critical situation. The relevant eigenvalues are those, which are 

larger than 1 in modulus, not associated with infinitesimal variable changes, and not 
violating the commutative properties of successively applied evolution operators (see e.g. 
[10-12, 15, 16, 19] for details). The codimension may be understood as a number of 
parameters, which must be adjusted 10 reach фе criticality. For instance, in three- 
dimensional parameter space the codimension-one situations may occur аё some surfaces, 
codimension-two situations а! curves, and codimension-three аг points. 

To derive an explicit form of the linearized RG equation appropriate for a vicinity 
of a fixed point g(x,u) we substitute g,(x,u)=g(x,u)+eh,(xu), e<<1 and account terms оЁ 
the first order in е in Eq. (4). Then, setting /,(x)=8h(x) we arrive to the eigenvalue 
problem 

8%h(xu) = adg'(g(x/at, -uw), wrurw)h(x/a, -uw) + 
© 

+ ой (о\2(х/а,, -uw), ми + w). 

where фе prime designates derivative оё the function in respect 10 the first argument. 
For each particular type of criticality, with specific g(x,u) апа а, this equation can 

be solved numerically to obtain spectrum оё relevant 3. 
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2. Basic models 

The simplest example, for which the developed ВС scheme is applicable is фе well 
known circle тар [20, 21, 10-12,9] 

ха = Х, + 1 - (К2л)5т2лх, (modl), (6) 

where r апа К are two relevant control parameters. The function in the right-hand part 15 
monotone in the subcritical domain K<1, and it has maxima and minima т the 
supercritical domain K>1. For critical 
value K=1 е function has cubic inflection — 40г 
points. 

Fig. 1 shows chart of dynamical 
regimes оп the parameter plane (r,K). For 
К<1 one can observe periodic or 
quasiperiodic regimes associated with K 
rational or irrational values of the rotation 
number defined а5 p(r, K)=lim,_(x,/n). 

Periodic regimes are observed inside 
е Amold tongues, and quasiperiodic 
motions are observed between them for 
К<1. Here one can find а curve оЁ constant 

golden-mean rotation number: p(rK)=W.  Fig 1. Chart of dynamical regimes оп the parameter 
This curve starts ас K=0, r=w, and meets planc of the circle map. Numbers inside Amold 
the critical line К =1 at the point tongues indicate е respective rotation numbers 

Koy =1, g, =0.60666106347... о) 

ме са the СМ critical ройи (GM stands for Ше «golden mean»). It was discovered by 
Shenker [21] and afterwards studied in terms оЁ RG analysis by Feigenbaum-Kadanoff- 
Shenker and by Ostlund et al. [10-12]. 

Further examples оЁ types оё critical behavior we discuss т the present article 
occur in quasiperiodically forced maps. 

One model is the quasiperiodically driven logistic тар [22-26, 15, 16]. A usual 
logistic тар х „=№-х,? 15 а basic model to study period-doubling transition 10 chaos. As 
it has the only relevant parameter A, a natural generalization for presence of the external 
driving 15 10 assume 1Ваг this parameter is modulated with some frequency. In our study 
this frequency, measured in units оё time discretization, is fixed: w=(5"2-1)/2. So, the 
model is 

ха = -Х + ecos2unw. (8) 

Fig. 2 shows а chart оЁ dynamical regimes for this model оп the parameter plane (¢,A). 
Еог е=0 Ед. (8) becomes the con- 

ventional logistic map. So, what 15 и 
observed along the line е=0 is the usual "} 
period-doubling cascade, accumulated to 
the limit critical point of Feigenbaum — о, 
(point F) [7, 8]. 

Let us take а value of A аё which фе 
unforced map has a stable fixed point. At 
nonzero ¢ the fixed point will be trans- —0 X 10 & 
formed into а stable smooth invariant Fig2. Chart of ol epines;oa thie parameter 

curve. In continuous-time dynamical - апе об апазтрепофсау driven logisti 
% й stic тар (8] 

systems such curves appear 1 the Poincaré ы apen у ы р (8) 

о 
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cross-section for the motion on a torus, so, with commonly used abuse of the 

terminology, we speak about the torus-attractor T1. 

ТЕ the external force оё small amplitude effects а stable period-2 orbit, it gives rise 
10 ап attractor consisting оё two closed smooth curves, е doubled torus T2. Period-4 
orbit generates a four-part invariant curve (the torus T4), and so forth. In contrast to usual 
period-doubling, the sequency of torus-doubling transitions appears ю be finite: the 
smaller amplitude of driving, the larger number of torus doublings seen in a course of 
increase оЁ A [22-28]. 

ЁЁ ме keep A constant and increase е forcing amplitude, the smooth torus may 
transform шю SNA: the Lyapunov exponent remains negative, but the geometrical 
structure оё the attractor .becomes complex, fractal-like. Also regimes with positive 
Lyapunov exponent arise for larger A and e. With further increase оЁ the parameters the 
orbits escape to infinity (white domain т Fig. 1). 

As known, the parameter interval corresponding to existence of an attractive fixed 
point т the unforced logistic тар A&(-0.25, 0.75) is bounded from one side by the 
tangent bifurcation, collision оё а pair оё fixed points (stable апа unstable) with their 
subsequent disappearance. From the other side it is bounded by the period-doubling 
bifurcation. Analogously, the bottom border оё фе domain T1 т Fig. 2 is the bifurcation 
curve of tori collision: attractor and repeller, represented by two invariant curves, 
approach one another, collide, and disappear. The top border is the bifurcation curve of 
torus doubling: instead of one attractive invariant curve attractor appears consisting of 
two closely placed curves; after the bifurcation they move one off another. 

Let us start at e=0, A=-0.25 and go in the parameter plane along the torus collision 
bifurcation curve increasing e. The situation of collision оЁ smooth invariant curves takes 
place while the motion is confined on one side of the logistic parabola. At some value of ¢ 
the invariant curve at the bifurcation threshold touches фе extremum, x=0, апа т 

accordance with argumentation of Ref. [16], it corresponds to е terminal point оё the 
bifurcation line. This is critical situation of particular interest, the TCT critical point 
(TCT stands for «torus collision terminal») [16]: 

Aop = -0.09977122895..., e, = 1.01105609099.... (9) 

Now, 1ег us start at e=0, A=0.75 and move along the torus-doubling bifurcation 
curve. As in the previous case, this bifurcation о smooth invariant curve takes place only 
while the whole curve is placed оп one side оё the logistic parabola. At some value оЁ ¢ 
the invariant curve аё the bifurcation threshold touches Ше extremum,x=0, апа фе torus- 

doubling bifurcation line is terminated. This is the TDT critical point (TDT stands for 
«torus-doubling terminal») [15]: 

hppy = 1.158096856726..., егр = 0.360248020507.... (10) 

ТСТ апа TDT critical point were found а150 in quasiperiodically forced circle тар 

ха =X, + 1 - (К2л)вшдлх, + есовдлли (mod1) (11) 

in Ше supercritical case К>1 (near the extrema it looks locally like the logistic map). In 
some respects, this is a more convenient object for detailed study: no divergence can 
occur in this map because the variable x is defined modulo 1. 

Fig. 3 presents a chart of dynamical regimes for the driven circle map on a part of 
the parameter plane (b.e) including the TCT critical point [16]. Separately, two rectan- 
gular fragments of the chart are shown together with phase portraits of attractors at 
representative points. 

The large gray domain in the diagram corresponds to existence of the localized 
torus attractor. The right border оЁ this domain 15 е bifurcation curve оЁ bifurcation оЁ 
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Fig. 3. Chart оё dynamical regimes оп the parameter plane 6, ©) ап two enlarged fragments with phase 

portraits оё attractors оп phase plane (,x) аг representative points 

collision оё а pair of smooth tori, one stable ап another unstable. After the event, both of 

them disappear, апа intermittent regime arises, with long-time travel оё the orbits through 

the region of former existence of attractor and repeller (the «channel»). Going along the 

bifurcation curve we observe that the semi-attractive invariant curve, formed at the 

moment оё collision оё stable and unstable tori, grows in size, and ultimately touches the 

minimum оё the map; there ме arrive ю the TCT point. As found numerically, it is 

located at 
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Trep = 0.377866239..., e, = 0.132566321... (12) 

Another, upper border of the gray area corresponds 10 а situation when the stable 
and unstable invariant curves touch each other, but do not coincide. This means that at 
least one of the curves must be non-smooth («fractal torus»). From the figure one can see 
that both bifurcation lines of smooth and fractal tori-collision meet at the TCT critical 
point. 

It was observed that fractalization оЁ torus and transition ю SNA т the forced 
circle тар is possible also т the critical and subcritial domain (K<1) [29, 30]. This 
transition can not be associated with the TDT or TCT points because of absence of the 
quadratic extrema. Its nature was revealed in Ref. [19] as linked with the torus 
fractalization at the intermittency threshold. To describe the phenomenon it was 
convenient to use a model 

X, =flx,) + b+ есо5длит, (13) 

where f(x) was defined as 

x/(1-x), x<0.75 
fx)= (14) 

9/(2x)-3,x>0.75 

One branch of the mapping is selected in а form of the fractional-linear function,x/(1-x), 
which naturally appears in analysis of dynamics near tangent bifurcation associated with 
intermittency (e.g. [31-34]). The other branch is attached somewhat arbitrarily to ensure 
presence of the «reinjection mechanism» in е dynamics апа to exclude divergence. 

Fig. 4 shows a chart of dynamical 
regimes for the model (13). The white area 
designates chaotic regime with positive 
Lyapunov exponent A. Gray regions 
correspond to negative A. In the bottom gray 
area attractor is localized and represented by 

а smooth torus. The upper border оЁ this 
region is the bifurcation curve of transition 
to delocalized attractor via intermittency. 
The bifurcation consists т collision оЁ 
smooth stable and unstable tori with their 
coincidence, and the Lyapunov exponent at 

\ | the bifurcation is zero. In the right part оЁ 
1.8 2.0 2.2 в — № diagram the bifurcation curve separates 

regimes of torus and SNA. The bifurcation 
Fig. 4. Chart of dynamical regimes for the model corresponds to fractal collision оЁ two 
(13). The bottom gray area corresponds to localized Н В attractor represented by smooth torus, The upper invariant curves at some exceptional set of 

border о the bottom area 15 the bifurcation curve ог POINts; and the Lyapunov exponent аг the 
the intermittent transition. In the left part the bifurcation is negative. These two parts оЁ 
bifurcation consists in collision о! smooth stable and е bifurcation border are separated by the 
unstable tori with their coincidence, in the right part. ¢rjrical point of torus fractalization (TF) 
- © fractal collision а! some exceptional set of that is located 
points. White area designates chaos, and dark gray 131 15 located аг 
presumably corresponds ю SNA. Sign of е 
Lyapunov exponent A is indicated in ай three €7 =2, by, = -0.597515185376121... (15) 
domains 
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3. The classic GM critical point 

Critical behavior in the circle map associated with break-up of the golden-mean 
quasiperiodicity (GM critical point) was discovered first by Shenker [21] and studied in 
terms of RG analysis by Feigenbaum-Kadanoff-Shenker and Ostlund et al. [10-12]. 
Although the circle map is one-dimensional, it may be treated in terms of our general 
scheme, а5 а particular case оё (1). We consider two decoupled maps 

ха =fx,), w,,=u, +w(modl), (16) 

with f{x)=x+r-(K/2x)sin2zx. The function is independent оё фе second argument и so, 
the СМ criticality will correspond 10 а degenerate fixed point оё опг functional equation: 
8,(x,u)=G(x). In this case Eq. (4) yields 

G(x) = oG («'G(x/a)), (17) 

the relation known ав the Feigenbaum-Kadanoff-Shenker equation. It has been solved 
numerically (e.g. [10-12, 35, 36, 37, 9]), and the function is found in а form оЁ high- 
precision expansion in powers of x*. The scaling constant is 

а = -1.288574553954... (18) 

Fig. 5. Attractor of the two-dimensional тар (16) аг the СМ critical point (top panel) and illustration of 

the basic local scaling property: the structure reproduces itself under magnification with factors 
@=-1.28857... апа B=-1.61803... along the vertical and фе horizontal axes, respectively 
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Accounting representation оё the circle тар т the form (16) it 15 natural 10 depict 
the critical attractor in coordinates (u.x) (Fig. 5). Observe that it is represented by а 
fractal-like curve. Locally, the basic scaling property of this fractal may be deduced from 
the ЕС analysis. Indeed, the evolution operators for time intervals increasing а5 Fibonacci 
numbers become identical, up to the scale change. For each next Fibonacci number the 
variables х апа и are rescaled by а. апа p=-w. As follows, attractor in coordinates (и,х) 
must possess self-similarity: increasing resolution by factors о; and В along the vertical 
and the horizontal axes, respectively, one should observe the similar structures (see 
bottom panels of Fig. 5). 

For perturbations of the GM fixed-point, which do not violate the unidirectional 
nature of the master-slave coupling, the equation (5) accepts the form 

8h(x) = adG'(G(x/a))h(x/ ) + о? (o' G(x/er)). (19) 

As found (e.g. Refs [10-12, 35, 36, 37, 9]), there are two relevant eigenvalues, 

8, = - 2.8336106559... and &, = а? = 1.660424381... (20) 

These are the constants responsible for the scaling properties оё е parameter 
space structure near the GM critical point. However, to demonstrate them we need to 
define a special local coordinate system near the critical point - the scaling coordinates. 
(The same will be necessary for other types оё criticality, зее sections 4-6.) As argued in 
Refs [37, 9], this 15 а curvilinear system: one coordinate line goes along the critical line 
k=1, and the another - along the curve of constant rotational number. Numerically, the 

relation of new coordinates (C,, C,) with parameters оЁ the original тар 15 expressed а5 

r=r + с‚ - 0.01749, - 0.00148¢c2, k=k + ер @1 
In these relations we account terms up to the second order because of the relation 
between 8, and ё 8,<8, and 8,<8,% but 8,>8, (see Refs [13, 16-19, 37] for explanation 
of the rules for selection of the scaling coordinates). Fig. 6 shows a chart of dynamical 

Fig. 6. Chart оё dynamical regimes оп the parameter plane of the sine circle тар and а sequence of 
fragments for several steps of magnification of vicinity of the СМ critical point in the scaling coordinates, 
with factors 8, ала 8, along horizontal апа vertical axes, respectively 
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regimes with Arnold tongues and а sequence of fragments for several steps оЁ 
magnification in the scaling coordinates. Observe excellent repetition оЁ the two- 
dimensional arrangement of the tongues аг subsequent levels оЁ resolution. 

4. Critical point TCT 

RG analysis оё the torus-collision terminal point was developed т Ref. [16). The 
critical behavior of this type was found in the forced logistic map (8) and in the forced 
supercritical circle тар (11). Here we prefer 10 deal with е last one because divergence 
of iterations is excluded in this case. The equation may be written as 

X, =%, +r- (Кдл)5тдлх, + есов(2ли) (modl), 

(22) 
и = #, + п (modl), 

апа parameter К 15 supposed 10 be supercritical and fixed, К=2.5. As mentioned in Sec.2, 
the TCT point is located аг (r, £),.=(0.377866239, 0.132566321). 

In the RG approach, the TCT point is associated with a fixed-point solution of the 
functional equation (4). This circumstance was checked accurately in numerical 
procedure based on iterations of the RG transformation (4). Also the multi-dimensional 
Newton technique was used 10 solve the fixed-point equation in respect to the coefficients 
of polynomial expansion of the universal function in an appropriately chosen domain in 
the (u,x) plane (see [16] for details). The scaling constant а. was found in the course оЁ 
the computations, 50 

=1.7109605... апа В = -w = 1.6180339... (23) 

As seen from Fig. 7, the critical attractor in coordinates (1, х) is represented by а 
non-smooth fractal-like curve. To observe scaling, we need 10 select properly the origin 
of local coordinate system (the «scaling center»). As found in Ref. [16}, it 15 located аг 

и, = 0.284109286 апа x, = (2x)arctan(K? - 1)!2 = 0.184505060. (24) 
Now, if ме rescale Av=x-x_ and Au=u-u_by factors o апа p=-w, respectively, the 
dynamical regimes remain оЁ the same kind, but with rescaling оё time by factorw. The 
invariant curve also must be invariant under this transformation. Indeed, the picture inside 

а selected box in Fig. 7 reproduces itself under subsequent magnifications (with inversion 
in respect to the phase variable, due to the negative В). This scaling property implies that 
locally the behavior оё the invariant curve obeys Axe|Aul with y=loga/logB=1.117. The 
power у is close 10 one, 50 visually е curve looks like broken аг the point оё singularity. 

~ AN/ 
0.2 

0.0 

-0.5 0.0 Au 

Fig. 7. Attractor of the forced circle тар а! the TCT critical point (the left panel) and illustration of the 
basic local scaling property: the structure reproduces itself under magnification with factorsa=1.71096... 
апа B=-1.61803... along the vertical and the horizontal axes, respectively 
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Due ю ergodicity ensured by irrationality оё the frequency, the singularity аг the origin 
implies existence оё the same type of singularities over the whole invariant curve, in а 
dense set оЁ points. Note that y>1. It means that the singularity is weak: the invariant 
curve, apparently, remains differentiable, but not twice differentiable. 

The next step is analysis оЁ the linearized RG equation and оё the corresponding 
eigenvalue problem (5). Numerical solution of the functional equation with substitution 
of g(xu) and constant а associated with е TCT criticality was performed with 
approximation of the eigenfunctions via finite power expansions in respect to.x and и. А 
found, two eigenvalues are relevant: 

5,=3.600810... and &, = 1.828329... (25) 

These are scaling factors determining self-similarity of topography in а vicinity оЁ 
the TCT point. To demonstrate the scaling property we define scaling coordinates in the 
parameter plane. Note that 8,<8, and §,<5,% but 8,>5,*. So, we account terms ир 10 the 
second order in the parameter change. As suggested т Ref. [16] it may be chosen а5 

r=r+c - 0.3121848с, - 2.047с)?, e=¢ + С,. (26) 

Fig. 8 shows а fragment of Ше chart of dynamical regimes near the TCT point for 
the forced circle map. Note similarity of the configurations represented in scaling 
coordinates. 

00004 — ©; — 0.0005 
Fig. 8. Chart оё dynamical regimes оп the parameter plane of the quasiperiodically driven supercritical 
circle тар and а scquence of fragments for several steps of magnification of a vicinity of the TCT critical 
point in е scaling coordinates, with factors, and 8, along horizontal апа vertical axes, respectively. 
Gray area corresponds 10 localized attractor wiflén negative Lyapunov exponent, ап white to chaos 
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5. Critical point TDT 

Let us turn now 10 е ВС results relating 10 the torus-doubling terminal point [15, 
38, 39]. The basic illustrative example will be the forced logistic тар that may be 
rewritten as 

X, =h-x2+ecos2mu, иа = И, + ю (modl). (27) 

As noted in Sec. 2, №е TDT рош is located at (A.e),,;=(1.158096856, 
0.360248020). 

It was found т Refs. [15, 38] that the TDT point 18 associated with а period-3 
cycle of the RG equation (4): g, (x,u)—g,(x,u)—>g5(x,u)—>g,(x,u). To find this period-3 
solution with high precision a numerical procedure was developed, е result was а 
representation оё functional pair {g,(x,u),8,(x,x)} in а form оЁ polynomial expansion over 
the arguments х and и (see the table оё coefficients in [38]). The rescaling constant is 
0=1.58259341... 

In coordinates (и,х) the critical attractor looks like а fractal curve (Fig. 9). To 
observe scaling, the origin of the coordinate system must be placed at the «scaling center» 

[15,38] 
u, = 0.3952188264 апа x_= 0. (28) 

Due to the period-3 nature of the solution of the RG equation, observation of self- 
similarity of the critical attractor requires using the scaling factors 

o =3.96376647... апа В = -4.23606798.... (29) 

If ме rescale х and Au=u-u_ by о3 апа В?, respectively, the dynamical regimes remain оЁ 
the same К, but with characteristic time rescaled by w. The curve representing the at- 
tractor must be invariant under this transformation, and this is indeed the case, see Fig. 9. 

Fig. 9. Attractor оё the forced logistic тар аг the TDT critical point (the left panel) апа ulusrmnon of the 
basic local scaling property: the structure reproduces itself under magnification with factorsa®=3.96376... 
and Б =-4.2360... along the vertical and фе horizontal axes, respectively 
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The picture inside a selected box reproduces itself under subsequent magnifications. 
Locally the invariant curve behaves ав хо{|Аи! with y=loga/log|pl=0.954. The exponent is 
close to one, so the curve looks like broken at the point of singularity. Due to ergodicity 
оё фе quasiperiodic motion, the singularity at the origin implies presence of the same 
type of singularities in a dense set of points over the whole invariant curve. 

Because of the period-3 nature of the solution, analysis оЁ the linearized ВС 
equation is more complicated than for a fixed point. The eigenvalue problem reads 

82 (x,u0) = оа) (во(х/а, -uw), wrusw)hy(xla, -uw) + oh,(ag,(x/at, -uw),wiuw), 

8%, (x.u) = adg,’ (gy(xat, -uw), wrurw)hy(xla, -uw) + о(а g (¥, -uw),wiu+w), 

82hy(x,u) = adgy’ (g,(xex, -uw), wrurw)h,(xla, -uw) + о(а (¥, -uw),wiusw). 

(30) 
Numerical solution of this problem with substitution оё g, , (x,u) апа а associated with 
the TDT criticality yields two relevant eigenvalues [15, 381: 

5,=105029... and &, = 5.1881... (31) 

To demonstrate scaling property in the parameter plane ме пеей to define 
appropriate «scaling coordinates». In the present case 8,<8, апа §,>8," for m=23,... It 

0.5 

Fig. 10. Chart of dynamical regimes оп the parameter plane of the quasiperiodically driven logistic тар 
and а sequence of fragments for several steps of magnification of а vicinity оё the TDT critical point in the 
scaling coordinates, with factorsd, and 8, along horizontal ап vertical axes, respectively 
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means that a linear parameter change is sufficient. According to Refs [15, 38], it may be 
chosen as 

№=\ рр + С» =gy - С, +0.3347c, (32) 

Fig. 10 shows а chart оЁ dynamical regimes пеаг е TDT in scaling coordinates for 
several steps оё subsequent magnification. 

6. Critical point TF 

The transition from localized to delocalized attractor in the model map (13) is 
accompanied by appearance of intermittent regimes. While we are close to е point оЁ 
bifurcation, the laminar stages оё dynamics occupy ап overwhelming part оё observation 
time (like in the case of the usual Pomeau-Manneville intermittency). They correspond to 
dynamics on the left branch of the map (13). To study details of the transition we may 
concentrate оп the laminar stages ап consider а simplified тар [19] 

X, =X, /(1-x,) + b + есо5(2ж(пу +u)), и =u,+w (modl). (33) 

As explained in Sec. 2, the bifurcation border in the plane (¢,b) contains а critical point 
ТЕ separating situations оЁ smooth and fractal tori collision at (e,0),=(2, 
- 0.597515185). 

An important note is а! due ю the fractional-linear nature оё the тар the 
functions obtained at subsequent steps of the RG transformation (4) will be fractional- 
linear too. The same is true for the fixed-point of the RG equation, associated with the TF 
critical point. It implies that we may search for the fixed-point solution in а form. 

8(xu) = (а(и)х + b(u))/(c(u)x + d(u)), (34) 

where а, b, c, d are some functions оЁ и. Without loss оё generality муе require them 10 

satisfy additional conditions a(u)d(u)-b(u)c(u)=1 апа с(0)=-1. Substituting (34) into (4) 
ме arrive ас the fixed-point ВС equation 1 terms of the functionsa, b, ¢, & 

[а(„) b(u) (a(w11,+w) a2b(wu + W) 

с(и) @&) 

The solution was found numerically, the coefficients оё polynomial expansions for a(u), 
b(u), c(u), d(u) are listed in Ref. [19]. The factor а was а150 computed, 50 

а = 2.890053525... and B=-w'=-16180339... (36) 

a(-wu)  ab(-wu) 

ate(-wu) d(-wu) 
; (35) 

ale(wiu+w) (м?и + м) 

These two constants determine scaling properties of the critical attractor оп the (x,u)- 
plane. In fact, the variable х т the RG equation and т the original тар are not the same: 
ме need to introduce «scaling coordinates» in the (x,u)-plane. As found numerically [19], 
the variable change looks like 

Хех +2.34719526 + 5.92667и - 210.62912, U = u. (37) 

Fig. 11 illustrates scaling property оё the critical attractor. Observe excellent reproduction 

of details of the structure in scaling coordinates (X,u). 
Numerical solution of the eigenvalue problem (5) for the fractional-linear fixed- 

point reveals two relevant eigenvalues 

8, =3.134272989... and &, = ! = 1.618033979... (38) 

responsible for scaling properties оЁ the parameter space near the critical point. 1Ё ме 
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-0.5 0.0 u 

Fig. 11. Attractor of the forced fractional-linear тар аг the ТЕ critical point (the left panel) and illustration 
оё the basic local scaling property: the structure depicted in scaling coordinates reproduces itself under 
magnification with factors a=2.89005... апа В=-1.618034... along the vertical and the horizontal axes, 
respectively 

depart from the critical point along the bifurcation curve of е attractor-repeller collision, 
the first eigenvector does not contribute, е relevant perturbation is associated with 8, 
If we choose a transversal direction, say, along the axis b, the perturbation of the first 
kind appears. 

In the case under consideration we have 8,>8, and 8,>3,%, but ё <,, 50 quadratic 
terms must be taken into account in the parameter change; е scaling coordinates (C,,C,) 
are linked with parameters of the original map as 

Ь = у + С, - 0.64938С, - 0.33692С2,  £=2+C, (39) 

To illustrate scaling associated — ми 
nontrivial constant 6, let us consider 
duration of laminar phases in a course of 
the intermittent dynamics generated by the 
map (33). In usual Pomeau - Manneville 
intermittency of type I the average duration 
оё the laminar stages behaves ав (1, )oAb 
with v=0.5 [31-34]. In presence of the 
quasiperiodic force the same law is valid in 
the subcritical region, e<2. In the critical 

case e=2 the exponent is distinct. Indeed, ав 

follows from the ВС results, to observe 
increase of characteristic time scale by 

InAb factor 6=w"'=1.61803 ме have to decrease 
Pig. 12, Оа bt i e Wi а shift оЁ parameter b from the bifurcation 

fragcliona]-]inear тар: a\’/-leragc «r:ralion of pa‘};sa[:: threshold by factor 6,=3.13427. А follows, 
through е «channel» versus deflection from the — №е exponent must be 
bifurcation threshold for three values of € т the 

-12.0 -2.0 

double logarithmic scale. Observe а «crossover» v=logb/logd, =0.42123. 
phenomenon, е slope change from critical to 
subcritical value аг some intermediate value of Ab Fig. 12 shows data of numerical 
for e=1.95 
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experiments with the fractional-linear map. At each fixed ¢ an average duration of 
passage through Ше «channel» near е formerly existed attractor-repeller раг was 
computed in dependence on Ab for ensemble of orbits with random initial conditions. 
Results are plotted in the double logarithmic scale. For particular e=1.7 (subcritical) and 
2 (critical) the dependencies fit е straight lines оЁ а definite slope, estimated ав 0.508 
апа 0.424, in good agreement with the theory. At subcritical ¢ slightly less than 2 one can 
observe a «crossover» phenomenon, that is the slope change from critical to subcritical 
value at some intermediate value of Ab. 

7. Conclusion 

The present рарег was devoted 10 а review оЁ critical situations at the onset оЁ 
chaotic ог strange nonchaotic behavior via quasipericdicity, more concretely, in the case 
of the golden-mean ratio of the basic frequencies. We have derived a two-dimensional 
generalization of the Feigenbaum-Kadanoff-Shenker RG equation and demonstrate that it 
may be used 10 treat from the common point оё view а number of critical situations, the 
conventional golden-mean criticality (GM), and the critical situations in quasipe- 
riodically driven model maps: torus collision terminal (TCT), torus-doubling terminal 
(TDT), and torus fractalization аг the intermittecy threshold (TF). АП these critical 
situations are оё obvious interest for а problem оё synchronization in nonlinear systems, 
in context of study of transitions associated with break-up, or other bifurcations of 
complex generalized synchronous regimes. In perspective, it would be interesting 10 
reveal details апа regularities of coexistence and subordination оё all the types оЁ critical 
behavior. 

As is common in situations allowing е ВС analysis, one can expect that the 
quantitative regularities intrinsic to our model maps will be valid а150 in оег systems 
relating to the same universality classes. It would be significant to find this type of 
behavior in systems of higher dimension, for example, in quasiperiodically driven 
invertible 2D maps, which could represent Poincare maps of some flow systems. It would 
be interesting to arrange special experiments on search and observation of the considered 
types оё critical behavior. Since now, only two оЁ them, СМ апа TDT critical behavior, 
were observed experimentally (see e.g. [40, 28, 41, 38, 39]). 

1 thank U.Feudel, ENeumann, A.P.Kuznetsov, A.Pikovsky, and I.Sataev for 
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the present research. 
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РАЗНООБРАЗИЕ КРИТИЧЕСКИХ ЯВЛЕНИЙ, АССОЦИИРУЮЩИХСЯ 
СКВАЗИПЕРИОДИЧЕСКИМ ДВИЖЕНИЕМ ПРИ СООТНОШЕНИИ 

ЧАСТОТ, РАВНОМ ЗОЛОТОМУ СРЕДНЕМУ 

С.П. Кузнецов 

В статье представлены несколько универсальных классов критического 
поведения, которые встречаются на пороге возникновения хаотической динамики 
или странного нехаотического аттрактора через квазипериодичность. Обсужда- 
ются и иллюстрируются устройство пространства параметров и соответствующие 
его скейлинговые свойства. 
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