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„.М. Sedova, S.V. Milovanov 

In this paper we outline several research directions linked with multi-parameter 
analysis of complex dynamics of nonlinear systems. In particular, we discuss examples of 
realistic models of multi-parameter systems, critical phenomena at the chaos threshold, 
correspondence of features of differential equations and maps etc. 

Introduction 

The commonly recognized conception оё а scenario of transition (0 chaos suggests 
that this term designates some sequence оё bifurcations observing under variation оЁ one 
control parameter. For example, in a driven nonlinear oscillator increase of the amplitude 
of the external force is accompanied by a period-doubling cascade with subsequent 
transition 10 chaos. However, in а system with two ог more control parameters we should 
imagine а picture оп parameter plane ог in parameter space. (For example, in the case оЁ 
the mentioned oscillator it is natural to use а plane оё amplitude versus frequency оё the 
external force.) A study оё arrangement оё the parameter space implies revealing of 
typical bifurcations, regularities of their coexistence and subordination, characteristic 
forms of phase portraits at representative points оЁ the parameter space, plotting 
bifurcation trees associated with definite paths in the parameter space, consideration of 

plots of Lyapunov exponents etc. 
Moreover, it is natural to develop and generalize the concept of scenario of 

transition to chaos in application to multi-parameter systems. Let us imagine some three- 
parameter nonlinear system demonstrating transition to chaos via the period-doubling 
cascade. It is clear that in general the period-doubling bifurcations in such system will 
occur at some curved surfaces, and they will accumulate to the limit, the Feigenbaum 

critical surface, which corresponds to the border of chaos. It may be expected that in 
some cases this surface may have ап edge, some critical curve. In а neighborhood оЁ this 
curve some special regularities оё coexistence of bifurcations and scaling laws should be 
observed distinct from those оё Feigenbaum. In turn, оп the critical curve some critical 

points may occur, etc. The corresponding classification and discussion may be found in 
reviews [1-5]. 

Multi-parameter approach to a study of nonlinear systems is proven to be 
productive and has induced a number of research directions, which will be discussed in 

the present article.



1. Two-parameter analysis оё physical systems 

First of all, we must outline the search for physical systems with complex 
dynamics, for which the multi-parameter analysis 15 оё importance. Very often researches 
working in nonlinear dynamics tend to use rather formal models like logistic map, Henon 
map, Arnold’s cat map, etc. An alternative is constructing maps describing dynamics of 
physical systems from «first principles», that is, from their fundamental evolution 
equations (Newton equations, Maxwell equations, etc). For physically motivated maps 
dynamical variables and parameters have usually a clear sense, and this circumstance 
increases its value and significance. For example, 10 account noise т such models we 
turn to physical argumentation and mechanisms, while in abstract models the fluctuations 
are introduced rather in formal and artificial manner. 

| 
Periodically kicked nonlinear oscillator. 1As а first example let us consider the 

Duffing oscillator excited by а periodic sequence Ті 8-pulses 

X4y + o + В = 3 C8(¢ - nT). (1) 
) 

Here х 15 а coordinate оЁ the oscillator, у - is coefficient of decay, w, is frequency of free 
linear oscillations, T is а period оЁ pulses, С is their amplitude. For intervals between the 
kicks one can derive an approximate analytlcal solution using the method of slow 
amplitudes. It yields a 2D map: 

=A+ Bz, exp(i (12,7 +v)), (2) 

where z, 15 complex amplitude just before the n-Lh‘ kick, and dimensionless parameters A, 

В and 1р are expressed via parameters оЁ the origin‘al oscillator as follows: 

A=(Clay)[(3BT Buwy)(1-eMANT]'2, B =eT™, — у = оТ. (3) 

System of Ikeda. It appears that Ше тар (2) also describes dynamics оё the optical 
system considered by Ikeda et al. It is a circular optical resonator containing medium with 
phase nonlinearity and excited by laser beam [6]. In this case parameter A represents a 
dimensionless intensity of the incident light, and В characterizes dissipation т the 
resonator. Fig. 1, а shows а chart оё dynamical regimes in the parameter plane (A4, В ) for 
w=0. 

The gray tones designate domains of definite period of motion generated by the 
map. Fig. 1, b is а magnified fragment оё the chart, it presents а very wide-spread pattern 
of parameter-space structure called the «crossroad area». 

In Fig. 1, a together with the chart we present several phase portraits of the Ikeda 
map. There 15 some domain т the parameter plane where the phase portrait tends 10 turn 
to а circle; it indicates that the description in terms оё 1D тар becomes appropriate. The 
explicit form of this map may be derived from (2) [7, 8] and reads 

%а 

= №совх, + ¢. (4) Хля 

Here х=\$+ф, ReZ,=§,. New parameters A and ф are expressed via parameters of the 
original map as 

A=24’B, ф= А? + . (5) 

We зее that фе kicked nonlinear oscillator allows description in terms оЁ 
differential equations and in terms of analytically derived (approximate) 2D and 1D 

mappings. 
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Fig. 1. а - Parameter plane for the Tkeda тар (2) апа typical phase portraits in select points; - magnified 
fragment of parameter plane 

Gravitational machine о] Zaslavsky (bouncing ball оп а vibration table). 
Originally, the idea of gravitational machine was formulated in context of astrophysics 
and celestial mechanics and consists 1 а use оё alternating gravitational field (e.g. оё а 
double star) for acceleration оЁ а spaceship ог а celestial body [9]. The model suggested 
by Zaslavsky is a ball of mass m bouncing up and falling down under the gravitational 
force оп а horizontal plate, oscillating ш the vertical direction. A traditional 
simplification used in a course of derivation of the basic dynamical equation (map) 
consists in neglecting displacement оё coordinate оё фе plate in the moment оё impact. It 
seems a very natural assumption, as the amplitude is small enough. The resulting map is 
rather simple and looks like [9] 

он = 1 - е)0, +ksing , 

и О 
% = Ф, + 0,0 (тобдл). 

Here dimensionless variables ап parameters аге introduced: оу 15 a velocity of the ball 
just after ап impact, @ =wt, is dimensionless time оё фе impact, k=2(2-¢)V, w/g is 
amplitude оЁ the oscillating velocity оЁ the plate, ¢ is а coefficient characterizing а 
fraction оЁ energy loss in ап impact of @е ball with nonmoving plate. In particular, this 
approximate mapping was discussed in books of Moon [10], Lichtenberg and Liberman 
[11], Guckenheimer апа Holms [12] аз one of classic examples оё chaotic systems. 
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Fig. 2 Parameter planes:a - approximate (6) and - exact (7) maps of bouncing bal! 

Alternatively, one can undertake more accurate analysis and obtain a map without 
the restriction in respect ю the amplitude оё the plate vibrations [13]. It 15 ап implicit 
relation 

д = - (1-£)0, - ksing, + 2(9 - $) 

[( - е)о, + ksing, )(9,., - 6,) - ® - Ф)? = [ - е)](совф, - созф,)- 
The charts of dynamical regimes both for @е approximate and accurate models, @е maps 

(6) апа (7), are shown т Fig.2. 

() 

Relativistic electron beam interacting with а backward electromagnetic wave. As 

known, п е system оё electron beam interacting with а backward wave а generation of 
the electromagnetic oscillations is possible. A very rough approach to description оё the 

dynamics is based оп assumption that the electromagnetic field effects the electron beam 
only in a narrow spatial domain near the input edge of the device, and the beam radiates 

energy into the backward wave in а narrow domain пеаг the opposite end. In other words, 

we assume аг the interaction takes place only in two gaps (8-functions). In this case the 
dynamical equations сап be reduced 10 а 1D map. In the relativistic case it was obtained 
апа studied т Ref. [14]: 

A, =F@A), 

FA)=(Li2x)|f :„ ехр(-г (а + (Lv)[1+(LvA/4)cos a] 2(-L/v))dal. 

Here A, is а dimensionless amplitude of the wave at the input оЁ №е electron beam, 

L is a dimensionless length of the interaction space (proportional to the cube of the beam 

current), v is the relativistic parameter. The chart оЁ dynamical regimes оп the parameter 

plane L, v exhibits ап obvious resemblance with the chart for the kicked oscillator and 

for the Ikeda model (Fig. 3, upper panel). The bottom panel in Fig. 3 shows magnified 

fragment of the parameter plane and demonstrates formation of crossroad area type on a 

base о the period-3 cycle. Also, several graphs оё the тар at some representative points 

are shown. 
Free-electron laser in regime of mode selection. Using approximation analogous 

10 that discussed above, it is possible to derive а тар for description оё interaction of two 

modes (а basic тодс and а parasitic опе) ш а free-electron laser [15] 
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Fig. 3. At the top оЁ figure - parameter plane оё е тар (8) for the relativistic electron beam interacting 
with а backward electromagnetic wave. At the foot of figure (on the left) @) - its fragment. Line Г, which 
corresponds to mapping the maximum onto minimum, and Feigenbaum critical line Г. are shown. Figu- 
тез а, ¢, d - iteration diagrams in typical points. Figured corresponds to tricritical point. Lines Г и l"cr are 
converged, апа Feigenbaum critical line 15 terminated 

В, ич 

ом =3, = ЛОЛО 

where х, ап@ у, аге dimensionless amplitudes оё е basic and parasitic modes, 
respectively, / and J; are the Bessel functions, L is the normalized length оЁ фе 
interaction space, R is а combination оё reflection coefficients аг the input and output 
edges оЁ the system. The arrangement оЁ фе parameter plane for the model (9) was 
studied апа discussed т Refs [16, 17]. 

-х,= 15 ЛОЛО 

(9)



2. Оп ап effectiveness of the analytical methods in nonlinear dynamics 

As муе see, the analytical derivation оё а тар is possible usually with use ов some 
assumptions and physical approximations. How effective they are? Due 10 concepts of 
universality (Feigenbaum and other authors) investigators tend 10 regard ав а habitual fact 
that the realistic systems should demonstrate е same phenomena ав simple formal 
models, like logistic or cubic maps. When we construct a map analytically, we assume 

definite assumptions, which may seem very natural and justified. However, speaking 

about regimes оё strong nonlinearity and high sensitivity in respect to initial conditions, 
ме must be extremely careful: quite logical approximations may appear ю be 
unsuccessful ог 10 have а disappointingly restricted domain оЁ application. 

In Ref. [13] ап example оё such situation was demonstrated for the gravitational 

machine of Zaslavsky. Fig. 4, a shows attractors of the approximate and exact mappings 

(left апа right panels, respectively) for several parameter values. Observe (аг they are 

absolutely different although the selected parameters are from domain traditionally used 

by researchers. Analogous situation occurs in a conservative case (Fig. 4,b). 

We conclude фаг investigation оЁ models оё realistic physical systems in context оЁ 

nonlinear dynamics requires careful handling and attentive revealing conditions of 

validness оЁ the accepted assumptions. The last may turn to be а separate voluminous 

20.0 й 20.0 

%% 

Fig. 4. At the top of figure (a) - phase portraits for approximate (on the left) and exact (оп the right) 

dissipative map оё bouncing ball. Parameter values aree=0.4, k=6.5. At the foot of figure (b) - phase 

portraits in the conservative case parameter values аге e=0, k=12 
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research. For example, such а study оё е original differential system (1), the 2D тар 
(2), апа 1D тар (4) was presented in Ref. [7, 8]. 

3. Critical points in the parameter plane 

One оё the simplest critical phenomena mentioned in the Introduction is the so- 
called tricritical dynamics. This is a phenomenon that may occur in two-parameter 
analysis of bimodal (with two extrema) one-dimensional maps. In parameter plane the 
tricritical point appears аз а terminal point оё фе Feigenbaum critical line. Also а line 
comes to this point associated in the parameter plane with а condition аг one quadratic 
extremum is mapped precisely 10 another. On this line, obviously, е twice iterated тар 
has а quartic extremum. Hence, moving along this line we will observe period-doubling 
cascade, but the scaling constant will be 6,=7.284686... апа it is distinct from the well- 
known Feigenbaum value §,=4.6692016... 

As an example, let us consider Fig. 3. In the parameter plane of the system of 
relativistic electron beam and electromagnetic wave one can see the Feigenbaum critical 
line and the line of existence of the quartic extremum in the twice iterated map. These 
two lines intersect аг фе tricritical point. Fig. 3, d shows typical iteration diagrams at 
these lines and precisely at the tricritical point. Detailed two-parameter analysis and 
discussion of scaling properties оЁ the system may be found in Ref. [14]. 

Usually, а tricritical point is not unique, but there exists ап infinite number ов such 
points forming a complex nontrivial set in the parameter plane. To study and classify 
them, MacKay and Van Zeijtz suggested a specific procedure of constructing «a binary 
tree оё superstable orbits» [5]. In Fig. 5 this tree is plotted оп the parameter plane оё the 
map (4), which describes approximately dynamics of the kicked nonlinear oscillator. In а 
sense, the «crown» of the tree organizes the complex form of the chaos border in the 

parameter plane. Detailed study оё the 
^ tricritical dynamics in this system and 

illustrations ов scaling may be found т 
Refs [7, 8, 18]. 

It 15 worth noting аг the maps for 
the gravitational machine (6) and (7) 
demonstrate one more type оЁ critical 

1 g iPeriods behavior. In these maps, Feigenbaum’s 
Period 2 critical line in the parameter plane comes to 

1.0 [Perio the point Н, where the dissipation vanighes. 
0.0 1.0 2.0 This point may be found а$ limit оё period- 

` d : ® doubling cascade т the Hamiltonian 
Fig. 5. Binary tree of superstable orbits in the 
parameter plane of «cosine тар» (4) the branch of 
the tree are lines, which corresponds to mapping the 
maximum onto minimum after some iterations. The 
type of doubly superstable cycles associated with the 
branching points at the tree are indicated in brackets 

system (along the line e=0). A neigh- 
borhood оЁ the critical point Н оп the 
parameter plane is characterized by a two- 
parameter scaling, with universal constants 
8,=8.721097... апа 8,=2. 

4. Comparative description of complex dynamics in terms 
of mappings and differential equations 

Correspondence between description of physical systems with three-dimensional 
phase space in terms of differential equations and оё 2D maps is, in а sense, perfect. 
Indeed, the 2D map may be thought as obtained from the Poincare cross-section 
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Fig. 6. Scaling ргорегиев оп the three level of resolution оп е attractor for the Tkeda map (2) at the 
pseudo - tricritical point A=2.8988007984, B=0.1445571961. We magnify each fragment by o= 
=-1.69030297... 

construction. However, passage from a 2D map to a 1D map may lead to principal 
differences 1 subtle details оё dynamics. In particular, it relates to critical behavior оё the 

maps а! the chaos threshold, ав mentioned in the Introduction. 

In Ref. [18] the related matters were discussed by means of comparison of the 
Ikeda тар (2) and оЁ 5 1D approximation (4). As ме know, both Feigenbaum’s and 
tricritical dynamics allov description in terms of е renormalization group. On this basis, 
one could expect that the exact 2D maps and the approximate 1D maps will relate to the 
same universality class and demonstrate identical scaling regularities. The only notable 
difference would be in some displacement оЁ the Feigenbaum critical lines and tricritical 
points due to the approximate nature of the 1D map. However, the attempt to find the 
tricritical points in the 2D Ikeda тар appears Ю be unsuccessful! It occurs Фаг the 
tricritical behavior in the 2D map survives only in a sense of somewhat an intermediate 
asymptotics, perhaps over a sufficiently large number of period doublings. In the last case 
it is convenient 10 speak оп the so-called «pseudo-tricritical» points In computations 
performed in Ref. [18] they have been located in the parameter plane оё the Ikeda map, 
and tricritical scaling has been illustrated in е attractor structure аг several levels оЁ its 
resolution (see Fig. 6). However, the tricritical scaling behavior аб those points is 
destroyed inevitably at some level о the resolution. The larger parameter of dissipation 
B, the less number of levels at which the tricritical scaling is valid. 

So, in the picture of scenarios of transition to chaos a number of phenomena exists 
that can not be extended from 1D maps onto 2D maps, and further, onto the differential 

equations. 

- T T i 

5. Universality and scaling in presence of noise 

As known, in early 80-th Crutchfield et al. have revealed the property of 
universality and scaling for Feigenbaum’s period doubling scenario in presence оЁ noise 
[19]. The appropriate version of the renormalization group analysis was developed, апа а 
new universal constant was estimated, y(2)=6.6190365: to observe one more level of the 
period doubling one has to decrease the noise magnitude by this factor. Due to the 
universality intrinsic to the critical behavior, the regularities are in а high degree 
insensitive in respect 10 correlation properties оЁ noise and to details оЁ the form оё the 
distribution function. 

Naturally, analogous problem concerning the effect of noise arises in respect of the 
critical behaviors relating 10 other classes оЁ universality, which may appear in the multi- 
parameter analysis of the transition to chaos. 
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First, we may consider ап effect of noise onto 1D maps with extrema оё different 

degree y: x,,,=1-Alx [*+€€ , where & is а random sequence. The scaling property consists 

in the following: Ю observe each one new level оё the fractal structure оЁ the attractor а 

the critical point, it is necessary 10 decrease the noise amplitude е by а definite factor y 

that depends (in а universal manner) оп the degree  [20]. 
As noted, in two-parameter analysis оё smooth 1D тар situations can be met, 

when the twice iterated тар has ап extremum о degree 4 and е period-doubling 

accumulation lead to фе tricritical point. Analogously, in three-parameter analysis оЁ 1D 

maps additional critical situations may appear, when а twofold iteration yields а тар with 

extremum оё the 6-th degree, ог а threefold iteration gives rise 10 ап extremum оё the 8-th 

degree. These situations correspond to certain critical points оё codimension three [4). In 

all these cases the constants responsible for scaling properties in respect to noise differ 

from that оё Crutchfield et alt. The respective numbers have been computed т Ref. [20] 

and summarized in the Table. Also charts of the Lyapunov exponent on the parameter 

plane оЁ the noisy maps were plotted, and illustrations оЁ фе scaling properties in 

presence of noise were given. 

Table 

Universal constants responsible for scaling in respect 10 noise for different 
types оё criticality т 1D maps 

Type of criticality х (%) 

Feigenbaum 2 6.6190365 

Tricritical 4 8.2439109 

Туре S («six power») 6 10.037886 

Type E («eight power») 8 11.523865 

Also we have revealed and illustrated in numerical experiments the scaling 
properties associated with the effect оё noise аг the so-called bicritical point В. This type 
оЁ criticality occurs т а system оЁ two unidirectionally coupled period-doubling 
subsystems аз we bring both оё them to the threshold оЁ chaos by tuning their control 
parameters [21, 22]. The model equations аге оё the following form: 

х =l-Mieng, y,,=1-4y7-Bx + еп (10) 
where Е, and n, аге random sequences effecting the master and slave subsystems, 
respectively. An essential qualitative and quantitative difference was noted between the 
respond of the system to the noise added either into the first, or into the second 
subsystem. The universal constants responsible for the scaling in respect to the noise 
intensity are y=6.619036 and v=2.713695, respectively. (The first one, naturally, 
coincides with the constant оё Crutchfield et al.) Fig.7 illustrates scaling regularities оп 
the charts of the Lyapunov exponents. Ё 

6. Complex dynamics of nonlinear oscillators апа catastrophe theory 

Concept of the multi-parameter analysis allows formulation of a novel and original 
view onto a study of complex dynamics of nonlinear oscillators. Traditionally, researc- 
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Fig. 7. Charts оё the largest Lyapunov exponent in е parameter plane for two unidirectionally coupled 
logistic maps with noise (10) (the grey tones designate magnitude оё фе Lyapunov exponent). Values оЁ 
noise amplitude are k=0, £=0.005. Top row оё the fragments are demonstrated scaling properties. We 
magnify fragments by 4.6692016 along апа by 2.392724 alongA in the vicinity of @е bicritical point 
^=1.4011552, A=1.0900943 and rescale value оЁ noise by 2.713695. Lower row оё fragments are 
demonstrated role of the noise in case if 5 amplitude is not rescale ' 

hers fix а form оЁ е potential relief for the oscillator and regard amplitude апа 
frequency of the external force, or the dissipation coefficient, as variable control 

parameters. We suggest ап alternative approach based оп ideas оё the catastrophe theory. 
Let us assume that а function that defines е potential relief 15 controlled by one, two, ог 
more parameters. Classification оЁ such functions is delivered by the catastrophe theory 
and, in particular, by the Rene Thom classification theorem. This approach gives ап 
opportunity to formulate and study а sequence оЁ situations оё increasing codimension 
corresponding ю potentials associated with canonical catastrophe theory forms: fold, 
cusp, swallow tail, etc. For example, а potential function U(x)= - bx - (Уэ)ах?- (13)2° 
depending оп two parameters а and b corresponds 10 the fold catastrophe. It generates а 
family оЁ nonlinear oscillators which are governed (in presence оЁ dissipation and оЁ 
periodic external force) by the following equation: 

X+ y%+ b+ ах + х° = Beosol. (11) 

The main object оё attention is now ап analysis оЁ dynamics оЁ the system in dependence 
оп parameters а and b responsible for configuration оё the potential relief. Concrete 
examples оё nonlinear oscillators considered in literature may be regarded now а5 
particular representatives in а frame оЁ the suggested generalized scheme. A study оЁ 

complex dynamics for forced dissipative oscillators with potential functions associated 
with different elementary catastrophes may be found in Ref. [23]. 
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7. Non-invertible 2D maps 

Mappings constructed in а course оё the Poincare cross-section procedure appear 10 
be invertible because the differential equations themselves allow continuation of solutions 
back апа forth т time. Nevertheless, noninvertible 2D maps are оё interest too. They may 
arise in a straightforward way in some physical problems [24]. The simplest example, 
however, 15 а pair оё coupled logistic maps (coupled period-doubling systems): 

Xa=1-x2-Cy2 
(12) 

Энн =1-A4y} - Вх,?. 

Here X ап A are control parameters оё two subsystems, С and D are coupling 
constants, and the coupling is supposed to be quadratic. 

Fig. 8, а presents examples оё charts of dynamical regimes оп parameter plane (i, 
A). One can see there bifurcation points of codimension 2, where the bifurcation lines of 
Andronov-Hopf (birth of quasiperiodic regimes) and those of period-doubling meet 
together. The sequence of the codimension 2 bifurcation points converge to somewhat 
new critical point called the РО critical point [4]. (FQ stands for «Feigenbaum» and 
«Quasiperiodicity».) A magnified fragment оё the chart (Fig. 8, b) demonstrates that the 
system 15 characterized by ап unusual form оё е synchronization tongues. More detailed 
study shows their nontrivial metamorphoses. For instance, Fig. 8, ¢ and @ present 
examples of tongues of ring-like form. Yet more fascinating picture can be obtained for 
coupled 2D maps, say Hénon maps. 

N 191 
d 

Fig. 8. Parameter plane of the system of two coupled logistic maps (12) @) and its magnified fragment 
(b). Parameter plane of the coupled Henon maps () апа its magnified fragment (d) 
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Interesting features оЁ synchronization оё noninvertible maps challenge us to 
elaborate а «universal» 2D map, which would demonstrate ай basic bifurcations typical 
for two-dimensional phase space. To construct such a map, let us start with a note that a 
fixed point of any 2D тар has а stability domain in е parameter plane оЁ trace 5 апа 
determinant / оё the Jacobian matrix represented by а triangle with borders {/=1, S-J=1, 
S+J=-1}. Now, ме construct the model 10 have S and ] ав natural parameters of е 
linearized part of the map, and add arbitrarily some quadratic nonlinearity: 

ха =%, ),° (B2 437, 
Yo = , - (US)(x,2+,2). 

Chart of dynamical regimes for this «universal» map is shown in Fig. 9. One can 
see а set оЁ synchronization tongues with sharp edges at the upper side of the triangle, 
representing the Andronov-Hopf bifurcation line. Observe that the arrangement оЁ the 
tongues differ. from that intrinsic, for example, 10 the circle тар and to the ring map. In 
particular, bifurcations occur, for which two multipliers are equal ю 1 and -1, 
respectively. These codimension-2 bifurcation points may accumulate to somewhat new 
critical point called the critical points of C-type [4]. 

(13) 

divergency 
ol i 

5 41 

Fig. 9. Parameter plane, / «universal» 2D тар (13). Опе can see «triangle of stability», which 15 formed 
by lines оЁ tangent bifurcation, period doubling bifurcation and Neimark bifurcation. Inside оЁ 
synchronization tongues there are the points оё C-type, which corresponded 10 accumulation оё the points, 
in which lines of the period doubling are terminated in the bounds оё synchronization tongue 

8. Synchronization and bifurcations of cycles 

The idea of multi-parameter study opens new possibilities in research of the 

phenomenon оё synchronization. Indeed, 1ег а non-autonomous system be characterized 

by опе ог several control parameters, and undergoes some bifurcations under their 

variation. Then, the metamorphoses of synchronization regimes should be studied 

naturally in а parameter space оЁ dimension increased by 2. (We add amplitude A апа 

frequency o of the external force 10 а number оё internal parameters оЁ the system.) The 

simplest example is a situation of a unique control parameter of the autonomous system 
№; let us suppose аг И5 variation gives rise Ю а period-doubling bifurcation cascade. 

Then, in a cross-section оЁ е parameter space by а plane (w,r) the period-doubling 

bifurcation lines are terminated at edges of the synchronization tongues, these are 
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Fig. 10. Synchronization tongue for the forced Rossler system (14) апа з interior arrangement in the 
paramieter space; o is frequency, A 15 amplitude of the external force, г is the parameter, controlled period 
doubling. One can see surfaces of tangent апа period-doubling bifurcations. These surfaces are intersected 
along the lines, which are accumulated ю critical lines of C-type as the number оЁ period-doubling 
increase 

codimension-2 bifurcation points. In 3-dimensional parameter space (w,A) they 
correspond 10 codimension-2 bifurcation lines accumulated towards some critical line. 
The respective picture for the forced Rossler system [24] 

X=-y-z+Asin2aQr, y=x+ay, z=b+z(x-r), (14) 

is reproduced in Fig. 10. The critical line obtained as a limit of codimension-2 bifurcation 
lines corresponds to the criticality of C-type [4] mentioned in the previous section. In 
Ref. [24] the respective scaling properties intrinsic to this criticality are revealed and 
discussed. 

Next, let us consider а self-oscillator with hard excitation under external periodic 
force governed by an equation 

K4 (-2 + ad)i + х + Вх3 = bsinot. (15) 

Note that in autonomous case variation of а control parameter gives rise to bifurcation оЁ 
collision оё а stable and unstable limit cycles 1 this system. 

Using a method of slow amplitudes one can derive the following reduced equation: 

В =- В + К3 - kR - ecosp, Ф = -А + ЗВА? + (¢/R)sing. (16) 

Here ¢ is а dimensionless amplitude оё the external force, А 15 а dimensionless 

deviation оё the external frequency from the frequency оЁ self-oscillations, parameter k 
controls mutual location оЁ the stable апа unstable limit cycles, k=yA. At k=0.25 they 
collide and disappear. 

Bifurcation analysis in the parameter space of the model (15) reveals a fascinating 
picture. At small values of k there exist two synchronization tongues, one corresponds to 
а stable, and another 10 ап unstable regime. With increase of & one observes their 
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Fig. 11. Parameter plane (¢ is а dimensionless amplitude and А 15 dimensionless deviation of the 
frequency) for system (15) after collision оё е limit cycles in the autonomous system.k=0.29 

unification via bifurcation situations оё codimension 3. In particular, а known catastrophe 
of «swallow tail» [25] is observed. At е bifurcation оё the autonomous system @е 
synchronization tongue loses touch with the frequency axis and forms а singularity 
known in the catastrophe theory called «lips» [25]. In this situation the quasiperiodic 
regimes at small amplitudes of the external force disappear. The respective picture is 
shown on the central panel of Fig. 11. Also the Andronov-Hopf bifurcation lines are 
shown there, which have common points with the tongue edge (the Bogdanov-Takens 
points). It may be seen that above the bifurcation threshold оё the autonomous system the 
quasiperiodic regimes are possible уег аг large amplitudes of driving. They are observed 
in а region between the Andronov-Hopf bifurcation lines. Only аг k=0.3 one тоге 
codimension-3 bifurcation occurs, when the pairs of the Andronov-Hopf bifurcation lines 
collide and disappear. 
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МНОГОПАРАМЕТРИЧЕСКАЯ КАРТИНА ПЕРЕХОДА K XAOCY 

А.П: Кузнецов, Л.В.Тюрюкина, А.В. Савин, И.Р. Сатаев, 
Ю.В. Седова, С.В. Милованов 
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