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Nonlinear dynamics оЁ spatial and temporal behaviour of laser and atom optical 
systems is investigated numerically. Systems with nearly one scalar transverse mode (Kerr- 
lens mode-locked laser), with large number of vectorial transverse modes (Zeeman laser with 
large Fresnel number and anisotropic cavity), and non-ground collective states of Bose- 
Einstein condensate of trapped neutral atoms are considered. Attempts 10 classify the complex 
transverse polarization pattern dynamics are made basing on the vectorial Karhunen-Loeve 
modes and their singularity points character, including catastrophes and Newton diagrams. 
Excitation оё non-ground states оё atomic Bose-Einstein condensate via resonant perturbation 
is analyzed. 

Introduction 

Nonlinear dynamics in lasers and optical systems is at present mainly addressed to 
the models which incorporate the distributed nature оЁ these systems. Since the 
nonlinearity in lasers is not large, the laser field can be treated as a superposition of 
longitudinal and transverse empty-cavity modes coupled via linear and nonlinear 
elements in the cavity. Huge number of different regimes can be realized in lasers, 
depending on the active medium and cavity parameters. However, two different limit 
cases are of primary interest: (i) huge number of longitudinal modes and small number of 
transverse modes, and (ii) small number of longitudinal modes and large number of 
transverse modes. If а! modes oscillate with definite phases, the laser output appears 10 
be a regular sequence of ultra-short pulses for case (i) and a regular motion of light 
intensity spots in the transverse plane for case (ii). These regimes are often referred а5 
mode-locked regimes, and the investigation оЁ their stability and destruction is а 
challenging problem, taking the practical importance of these regimes into account. It is 
well known that mode locking is the only way to produce extremely short (a few 
femtoseconds) laser pulses. 

On the other hand, there exist systems described by equations, similar to those оЁ 
nonlinear paraxial optics, but with nonlinearity huge compared with that of optical 
systems. An important example of such a system is the Bose-Einstein condensate (BEC) 
of neutral trapped atoms whose wave function in the mean-field limit obeys the 
Schrédinger-type equation with large qubic nonlinear term proportional to the number оЁ



atoms. Investigations of the dynamics of BEC are of interest in the context of its 
promising applications in atom optics. 

The study оё the dynamics оЁ these distributed systems in essentially nonlinear 

regimes 15 possible if ме have (i) powerful methods for numerical modeling оЁ the 
underlying physical processes, and (ii) means and approaches for the description of the 
resulting dynamics of distributed systems. The last condition is vital for the description of 
multitranverse polarization pattern dynamics. In 45 paper we present the models апа 
numerical results related to the dynamics of the above-mentioned systems, the possible 
way for the classification оё е regimes and excitation оё nonlinear stationary states. 

As an example of a laser system with large number of longitudinal modes we 
consider фе Kerr-lens mode-locked laser. The full spatial-temporal model of this laser is 
presented and used for numerical investigations of the nonlinear dynamics of Z-cavity 
Ti:Sph laser with Kerr-lens mode locking (KLM). 

In the mode-locked regime the laser output represents a pulse train with the 
repetition rate determined by the cavity round trip time 2L/c, where L is the cavity length. 
Kerr nonlinearity оё intracavity elements provide intensity-dependent phase shift, thus 
inducing a lens-like medium with the intensity-dependent focal power. In specially 
designed cavities a spatially narrow gain profile or a physical aperture can provide 
intracavity losses which decrease almost instantaneously with the intensity. This makes 
the Kerr-lens mode locking to be а powerful technique for generating femtosecond 
pulses. 

In time domain the Kerr nonlinearity in combination with the negative group 
velocity dispersion (GVD) leads to the solitonic pulse shaping [1, 2]. The pulse 
amplitude modulation due 10 Kerr-lens effect is usually treated ав Ше effect оЁ fast 
saturable absorber [5, 6]. For the mode locking process 10 be self-starting, е power- 
dependent losses must exceed а definite уаше [1, 7]. The optimum resonator parameters 
are derived with the help ов the nonlinear ABCD-matrix formalism [5, 8, 9, 10, 11, 15]. 

The Schrédinger equation for the field envelope was completed with gain, losses, 
high-order dispersion terms [16, 17], Bloch equations for the coherent semiconductor 
absorber [18], stimulated Raman gain [19] and then either solved numerically or 
evaluated analytically using the hyperbolic secant ansatz for the solution [14, 3, 4]. This 
allows one to estimate the pulse chirp, pulse width and stability conditions. The pulse 
energy increase or the reduction of the negative group delay dispersion can result in the 
pulse instability [3], аз well ав е finite bandwidth оё the gain апа е reflecting mirrors 
[4] ог the gain depletion апа recovery during the pulse round-trip [20]. 

For certain conditions KLM lasers demonstrate instability оё фе pulse- train [21, 
22]. Quasi-periodic and chaotic oscillation regimes [26], bifurcation оё the fundamental 
mode [27] arise due to фе nonlinear coupling оё geometrical ап energetic characteristics 
оё the beam @ше to Kerr effect. KLM lasers can keep а small portion of lasing energy in 
higher-order transverse modes [25]. The dynamical instabilities can be associated with 
the transverse mode beating [23, 24, 28]. 

The time-domain ABCD-law [29] т conjunction with ABCD-law for а Gaussian 
beam allows one to construct an iterative mapping for the beam and pulse parameters [30, 
31, 32]. Numerical simulation reveals е evidence оЁ quasi-periodical and chaotic 
behaviour of both the beam and the pulse parameters [30, 33]. 

In this paper ме present а model with no limitations оё pulse and beam shape. The 
transverse and temporal evolution of a pulsed beam is governed by the paraxial wave 
equation, which is solved in terms оё Laguerre-Gauss modes. For simplicity ме consider 
axially symmetric beams. A prominent feature of our model is that we take into 
consideration the temporal evolution of the active medium polarization (i.e., the gain and 
dispersion) during е pulse. The spatio-temporal profile of the gain 15 directly calculated 
from the density matrix equations for two-level media. Simultaneous treatment of spatial 
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and temporal field distribution inside фе cavity enables one (0 consider the dynamics апа 
the transient processes during the build-up оЁ the oscillation regime. Our model is not 

restricted to small round-trip changes of the transverse beam profile, round-trip gain, 
dispersion and amplitude modulation coefficient. It takes into account the amplitude 
modulation of the pulse due to self-focusing, the nonlinear mode coupling via the 
medium polarization, and the gain aperturing. 

As ап example оё а laser system with large number о transverse mode we consider 
е Zeeman laser with anisotropic cavity [49]. Correct description оЁ е polarization 
transverse pattern dynamics in lasers with large number of transverse modes is a 
challenging problem for laser dynamics [35, 28, 36, 37, 38]. For the classification of the 
structures of the laser field its singular points (zeroes, saddle points, maxima and 
minima) can be used [39, 40]. However, т these papers the models оё the laser fields are 
far from reality. Another approach utilizing the hierarchy of symmetry breaking was also 
used for the classification of the regimes [41, 42]. 

An efficient approach to the analysis of very complicated signals and processes is 
based оп Karhunen-Loeve procedure [44, 45, 46, 43, 47, 48, 49]. п [49] the laser regimes 
with rotating patterns were investigated and it was shown that these regimes are 
connected with catastrophes A, оЁ xkiy arguments, where x, у are the transverse 
coordinates. In the present work we also used Karhunen-Loeve modes (KL-modes), 
however, we added the laser regimes corresponding 10 oscillating patterns. We introduce 
the vector Karhunen-Loeve modes, transform the four-dimensional vector field, 
representing the polarized laser transverse patterns, to the two-dimensional vector field, 
represenu.ng е transverse distribution оё the Stokes parameters (2DSP) discuss some 
properties оё this 2D vector field ап try 10 classify the structures in accordance with the 
behaviour of the 2D vector field near the singularity points. For the oscillating patterns 
2DSP does not belong to the gradient case [49]. We propose to use Newton diagram 
method for the investigation of singular points of the 2DSP vector field. 

Bose-Einstein condensates of neutral trapped atoms have become a subject of 
numerous and extensive studies (see, e.g., the reviews [54, 55, 56]) аз а new state оЁ 
matter with properties opening new possibilities in atomic optics and related fields. One 
оё the most exciting features 15 the possibility Ю construct atom lasers. In е present 
рарег we report some new dynamical properties оё the Bose-Einstein condensate оЁ 
atoms in а harmonic trap. In contrast to the optical systems, the nonlinear terms in the 
equation governing the collective wave function, are typically dominating and, generally, 
cannot be treated а5 а perturbation, thus making е eigenfunction problem to be 
essentially nonlinear. In the present paper the non-ground stationary states of BEC are 
calculated, and the dynamics of these states under resonant perturbation of the trapping 
potential is investigated. 

2. Kerr-lens mode-locked laser 

2.1. Theoretical model. The model was developed assuming the amplitude of the 
electric field F to be varying slowly. For numerical simulations the Z-cavity configuration 
was taken (Fig. 1, а). To calculate е electric field envelope dynamics we consider the 
field passing the optical elements оё the cavity from the plane оё aperture A, 10 е plane 
of aperture A, and then returning back. For simplicity we consider the stigmatic case. 
Schematic equivalent diagram of the Z-cavity is shown in Fig. 1, b. The spherical mirrors 
of the folded cavity are replaced by lenses of the same focal power F=2/R, where R is the 
curvature radius of the mirror. The round-trip change of the electric field envelope was 
obtained by applying transfer operators in е order оЁ their action т the cavity. 

Assuming the cylindrical symmetry оё the cavity, the expression for the field аг any 
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Fig. 1. Cavity configuration (а) апа its equivalent diagram (). А A, are the Gaussian apertures пеаг фе 
plane mirrors. L, , L,, L, are the arm lengths оё the cavity. @ is !\1: гой length, х 15 the distance between 
the mirror and the rod, D denotes the dispersion element 

transverse plane z=zj=const may be written in terms оЁ Laguerre-Gaussian mode 

amplitudes: 
E(zyrit) = Е]. А,(:о,т) Li (n(zo)r) exp(-P (z)P12), ) 

where j is the mode index, L; are the Laguerre polynomials, r is the transverse radius, 

v=t-z/c is the local time in the running coordinate system z, ©-z/c, P(z)=n(z)+i&(z) is the 

complex beam parameter оё the empty сауйу, normalized (0 the value оЁ k//, where k= 

=2n/) is the wavenumber, №=800 nm is the wavelength оЁ the fluorescence peak, /=1 mm 

is the unit length of the propagation distance. 

The mode amplitudes Al.(O,r) at the initial plane z=z are defined by the integral 

transformation 

A, „я = 1(2n) Iy rdrEzyrx) Ly(n (2P exp(-P (z)r12), ) 

while the modal amplitudes апа е beam parameters аг arbitrary point г during фе free- 

space propagation are given by 
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А, (z0) =A;(0,7) [1 +i(z/n) Р(0)]' exp(i ,), 

P(z) = P(0) [1 +i(z/n) P(O)]", (3) 

%, =-2jarg (1 + (г/п) P(0)), 

where P(0) 15 Ше beam parameter а! the initial plane z=0, л 15 the refractive index. 
The transformation оё е beam parameter and mode amplitudes а! @е mirrors 

(lenses) is 

PQ=PU)+iF, 4,20 = 4,( Т, @ 
where 1, 2 denote the input and output planes of the mirror, F=2/R is.the mirror optical 
power, T is the uniform power transmission coefficient. 

The masking of the beam by the aperture with Gaussian transmission profile was 
taken into account in a way similar to [28]. For the transmission function of the aperture 

T,()=exp(-n, ) 
Р() = Р() + п, 

А 2л) = , AL, 

(-1)*(7+0! (1~ -k), (1+0)Y), / <k 
L, =3 L () L, () exp(-x) d'= «{ _ 

0, 7> & 

where х=ту?, x'=(n+n,)r% 1 15 Ше real part оё the beam parameter P before the aperture, 
o=n,/Mm. 

The transformation of the beam parameter per one round-trip obeys the well- 

known ABCD-law: 

P(z+L) = P(z), P(z+L) = (A(2)P(z) + B(2)) / (C(2)P(z) + D(2)), 

where ( Ё Ё) 15 the matrix of the cavity round-trip. This matrix 15 а product оЁ the 

matrices 
1 0] 
@л!1 

for propagation through а homogeneous medium оё фе length г апа refractive index л, 

10& 
& ( о1 ) 5 

for а mirror with optical power Ё, 

1 ° ) 

0 1) 

for an aperture. 1 
The thin dispersion element was placed near A, aperture of the right arm of the 

cavity (see Fig. 1). Assuming the effect of diffraction to be small, the equation for the 
mode amplitudes can be written as follows 

0A,;(2,%) 10z = -i (x,/2) (%A, /37?). 
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For the chosen amplitude of electric field Е negative к, corresponds to the negative group 
velocity dispersion. To calculate the modal amplitudes after the dispersion elements the 
Fourier transform method was used. It allows one to add linear dispersion terms of higher 

order апа nonlinear group velocity dispersion [2]. 
For our calculations 15 Laguerre-Gaussian modes were used. After several 

thousands of the cavity round-trips the transient evolution was finished and the spatial 
and temporal dependencies were saved and analyzed. 

To find фе pulse transformation after the laser crystal the split-step method is used. 
The rod is divided in two parts (Fig. 1). We assume the active medium to be thin. The 
thin active layer is placed 1 the middle оё the medium having the refractive index л. In 
the space of half rod length /2 the mode amplitudes are calculated using (3). In the plane 
of the active layer е radial grid (,) is chosen. In each оЁ the grid points the field E(r,t) 
is calculated using (1), then the field equation is solved: 

OE(z,rx)/0z = <(G12)iP(z,r,x) + i ВЕРЕ. (6) 

Here G is the non-saturated power gain, В is №е Kerr constant, Р(г,гу) 15 the medium 
polarization given by the density matrix equations (Bloch equations). In the thin layer the 
diffraction and dispersion are not taken into account. 

We use the full set оё Bloch equations for а two-level medium to simulate фе 
oscillation regimes when the pulse width and the relaxation time of the medium 
polarization are оё the same order. 

3P /дс= -(Г+ г A)P +iE(N, - N,)T, () 

AN, (ггд)/дт = -yN, + Im(E"P)y,v,/(v,+v,)s (8) 

9М, (zrx)lde=-y,(N,-N,°) - Лт(Е"Р)уу, /(v,+ у)› ©) 
where T, y, y,, are the relaxation rates of the medium polarization and the populations оЁ 
upper (и) and (I) lower levels, respectively, N (z,;;x), N, (z,rx) are the populations 
normalized 10 е unsaturated value of N,, А=0-у) is Ше frequency detuning, w, is the 
transition frequency. The field E(z,r;) is normalized so that 1Е is the dimensionless 
intensity. At each of the transverse grid points , for given E(r,x) the value оё P(r,x) 15 
calculated using the second-order Adams scheme. In order to simulate the spontaneous 
emission effect the random short pulses are added to the field amplitude at each of the 
grid points. The effect of soft aperturing on the active medium is approximated by a 
Gaussian aperture placed near the thin active layer. 

2.2. The cavity parameters. For the empty cavity ме chose е total power 
transmittance оё е aperture to be A, ~75% (Fig. 1). The transmittance оё the aperture 4, 
did not exceed 99.5%, having no effect оп е pulse formation. The coefficient in (4) was 
taken ю be 7=0.95. The focal power оЁ the lenses was F=2/R, R=100 mm. We have 

performed фе numerical calculations for the symmetric cavity with L, =L,=850 mm. The 
rod length was d=20 mm, the refractive index of the rod of Ti:Sph was n=1.76, the cavity 
detuning A=0 (7), the relaxation rate оЁ the medium polarization Г=0.31 1, фе 
relaxation rates for е upper and lower levels y=2-10* fs!, y =2-10 61 the dimension- 
less Kerr constant p=(k/l)nn,l , where п)=3.2:107° co?W-! Tl], the saturation intensity 
1,=290 kW/em? [13]. 

The optimal configuration for mode locking gives the nonlinear loss coefficient [5, 
6] d=dL/dW, where L presents the differential cavity losses for е distributed laser 
model. For е discrete-element laser model the power dumping satisfies the round-trip 
equation W =eW®, where W) 18 the power before the cavity round trip апа W® 15 the 
power after one round trip. Correspondingly, 

45



113 

g 112 

< 6,25/9 ч 
110. ) оп/ \ 

н 46 48 50 00 02 04 06 08 

a х, mm b 2w (w2 + w2)! 

Fig. 2. Contour lines of the w (dw/dW) coefficient а5 а function оЁ the rod position х ап оё the folding 
distance Ly (a). Only positive values are shown. Data labels are in 10°°W ™" units. Coefficient 2u2(w?+w )" 
1 (11) for aperture A, (b). The dimensionless aperture width w,>=2n " is fixed at the value 0.37:10* 

L=-In®, b&=-(1/0)(do/dW),, (10) 

For one intracavity aperture 

©=Tn(n,)", 8=- (2wH(wi+w 2)) (LUw) (dwldW),, (11) 

where n=2w? 15 the real part оё the beam parameter before the aperture, 1,=2w,? is the 
aperture parameter. 

To calculate the value of 8 the ABCD-matrix formalism was used. The thin Kerr 
layer was approximated by the lens (5) with the focal power F=2Re(PYBdW /x, where P 
is the stationary beam parameter in the middle of е laser rod, dW is the power deviation 
from the zero value. 

For L,=111.8 ше cavity 18 equivalent to the confocal one [6]. The upper half plane 
L,>111.8 (Fig. 2, a) contains a wider region for stable mode locking. In the experiments 
[ё 12] this is referred а5 а region оЁ low sensitivity to the misalignment of the mirrors 
and the laser rod. 

2.3. Numerical results and discussion. To characterize the output pulsed beam we 
expressed the intracavity power in Watts, while the pulse energy and the beam cross- 
section area were scaled to their stationary values. The field was calculated in the fixed 
time frame. We calculated а150 Ше pulse shift s from е frame center and the pulse width 
T, For Ше chosen aperture transmission and uniform loss the differential losses are 0.35. 
For G above this value we have obtained the mode-locking regime (Fig. 3). 

As seen from Fig. 3, a, at the pulse peak the beam has the smallest transverse 
dimension. In addition to the solitonic pulse shaping this effect leads to the pulse 
shortening. In spite оЁ the perfect pulse symmetry (Fig. 3, b) Ше relative beam area о() 
has ап asymmetry with the respect 10 pulse peak. This asymmetry arises due ю effect of 
finite relaxation time оё the gain media. Еог longer pulses, which сап be obtained for the 
same cavity configuration by increasing of the GVD-magnitude, such asymmetry is 
absent. 

The relation between е solitonic pulse shaping апа фе pulse compression due 10 
Kerr-lens effect is given by the factor [1] 

R = (12x)(BJ/DY). (12)
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Fig. 3. Pulsed beam characteristics before the apertureA, . The folding distance L,=112 mm, the rod 
position x=47 mm. The round-trip power gain G=0.38. Power and relative beam area versus local time 
(а). Decimal logarithm оё the axial intensity versus time gb) Axial intensity "’12›—0 and axial phase 
arg(IER) = Versus time (c). Aperture transmittance w, uz(w(t) + az)" versus beam power (d) 

For the regime shown in Fig. 3 J=5 nJ which yields R=0.25. Therefore, the 
solitonic pulse shaping is predominate. Logarithmic plot versus the axial intensity reveals 
the pulse shape closer 10 sech (v/x,')? (Fig. 3, b). The phase of the field shows the 
presence оё pulse chirp. The linear part оЁ the chirp corresponds to е pulse retardation 
with respect to the pulse propagation without the active medium. In other words, the 

pulse repetition rate is less than the reciprocal round trip time. 
Estimating the power-dependent losses 8 by means оё the ABCD-matrix formalism 

for L,=112 mm, x=47 mm муе have found 6=0.43-10° W-'. To compare this value with 
the result of numerical simulations of mode-locking regime we have calculated the beam 
transmittance оё the aperture A; (Fig. 3, @). Calculating the nonlinear loss coefficient 
(10) ак W~0 муе get 5=0.4-10° W-!, which is in agreement with our assumption. For 
higher power the weak saturation arises decreasing the magnitude of 8. Indeed, the effect 
of finite relaxation time causes a slight asymmetry in the transmission of the pulse front 
and the pulse train (Fig. 3, а). 

The aperture transmittance can be calculated: i) by direct calculation of power 
before the aperture and after #; #) аз w (w(x)™w,2)" т assumption оё Gaussian 
intensity profile having the width w(t)2=a(r)w02. Both methods give the same results, 
due to perfect approximation of the output beam by Gaussian. Besides, the analysis of 
spatio-temporal beam profile shows that the pulse width is independent of the radial 
coordinate. 

The gain increase leads to the increase of the power dependent loss Wé. As а 
consequence, the pulse width is decreased (Fig. 4, a). 

We have calculated also the pulse shift 5. The minimal pulse shift corresponds 10 
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Fig. 4. Pulse width (a), averaged pulse shift рег round trip (b) and pulse energy (с) versus round-trip 
power gain, The filled area shows the boundaries for the pulse energy (a) and pulse width (b) in the 
regime of pulse-train periodic instability 

the maximal repetition rate, that corresponds to the minimum of the pulse width (Figs 4, 
b, с). This tendency is common for mode locking regimes. For example, а! the rod 
position х=47 mm and the folded mirror distance L,=112.5 mm the magnitude оё the 
nonlinear loss coefficient & is not sufficient 10 develop а pulse train instability up to 

G<0.6. 
Before achieving the minimal width (Figs 4, а, 5, а) the pulse can be well 

approximated by the hyperbolic curve t,())=n/6"",(/)" [1] ав а function оё the pulse 
energy. For higher gain values the parameter R21 (12), which corresponds to the 
breakdown of the weak-pulse-shaping approximation in the description of femtosecond 

pulses. 
For given cavity configuration the phase delay per round-trip for each Laguerre- 

Gaussian mode оё the empty cavity is close but not equal to л. That is possible only for 
the unstable cavity configuration. Due to the mismatch between the phases of transverse 
modes quasiperiodic regimes are possible. Ор to а definite value оЁ gain the nonlinear 
medium gives rise to the locking оё phases оё mode amplitudes. Larger nonlinearity 
initiates distortion оЁ the mode-locked regime. Earlier works [23, 24] have shown (аг 
very small amplitudes of higher-order transverse modes can give rise to quasiperiodic 
oscillation. Additional pulse instability arises due to the propagation of nonlinearly 
chirped pulse in the dispersive medium [1]. 

Pulse train periodic instability occurs starting with round-trip gain value G>0.41 
(Fig4, а, b). At the instability threshold we observed significant temporal variations оЁ 
the spatial beam size (Fig. 6, a) 

Logarithmic plot versus the axial intensity reveals the wing structure of the pulse 
(Fig. 6, b). The pulse shape significantly differs from sech’. Moreover, the variation оЁ 
the temporal profile from one transverse point to another was observed. 

Due 10 the variation оё the spatial beam size (Fig. 6, а) the pulse chirp has а 
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Fig. 5. x=47 mm, L;=112.5 mm. Pulse width (a), averaged pulse shift per round trip (5), апа pulse energy 
(c) versus round trip gain 
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Fig. 6. Pulsed beam characteristics before the aperture A ;. The folded mirror distance and the rod position 
are unchanged. The round-trip power gain is G=0.41. Power апа relative beam агеа versus local time (@). 
Logarithm of base 10 from axial intensity versus time (b). Axial intensity IEIZ’_n and axial phase 
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significant nonlinear part. However, ог this regime the pulse shift has а minimum (Fig. 

4,с). 
Fig. 6, d shows Ше fractional power transmitted by the aperture A,. For comparison 

two curves are shown: near the gain threshold (G=0.38) and close to the start of the 
pulse-train periodic instability (G=0.41). 

The oscillation regime for G=0.43 is shown in Fig. 7. The curve showing the 
dynamics оё pulse width (Fig. 7, а) has small spikes in front оЁ опе period оЁ oscillations, 
but the pulse energy smoothly varies from one round trip to another. 
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Fig. 7. G=0.43. Other рагатеегв are unchanged. Pulse energy and pulse width versus round trips number 
(a). The pulse width shown by the solid curve was calculated as the second moment, the dashed curve 
corresponds 10 the pulse width defined аг the sech(1) level. Temporal dynamics of the beam power (b) 
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Fig. 8. Temporal dynamics of the beam power for 
46 

At larger gain the magnitude оЁ 
oscillations is growing (Fig. 8) which 
breaks the pulse train. 

The growth of е oscillation 
magnitude is accompanied by successive 
excitation of several equidistant frequen- 
cies in the Fourier spectrum of the pulse 
energy evolution. The ground oscillation 
frequency depends on the GVD, the rod 
position and folded mirror distance. 

3. Transverse pattern dynamics in Zeeman laser 

3.1. Karhunen-Loeve vectorial modes. The electric field vector in the transverse 
plane of a laser can be expressed in the paraxial approximation а5 follows: 

Е(р ) = %а 1У Е, (t) e, 

The spherical component оЁ the field Е, сап be expressed in terms оЁ the amplitudes оЁ 
right and left polarized wavesA, 

Е, =A, (r9.z.1) exp(ivt -iKz) + А(› 9z.1) exp(-ivt +iKz), 

where (r,¢) аге the polar coordinates, g=+1. 

To describe the complex spatio-temporal laser dynamics we use the Karhunen- 
Loeve procedure in which it is necessary to calculate the eigenvectors and eigenvalues of 

the normalized correlation matrix 2x2, obtained by time averaging of the product of 
normalized field components at two different points in the transverse plane. It is often 

more convenient to work with a matrix equation rather then with an integral equation. 
This сап be done using the field decomposition in terms of Laguerre-Gaussian (LG) 
modes. Еог а fixed transverse plane z=const in the laser cavity 

A, (ros) <За ©,w," (%), (13) 

where A „’"(1)„ 15 Ше mode amplitude, 

ч (9) = L, ((г () екр(-Р()Р + о), 
<y "> = М ов 

‘тт' O™ 

Here Р is the complex beam parameter а{ the chosen г plane, L," is the Laguerre 
polynomial, N,"=2a(n+m)!/n!. It is convenient to introduce normalized mode ampli- 
tudes 

(a),=(@4,"), (N 1w)'". (14) 
In terms of Laguerre-Gaussian mode amplitudes the time-averaged total power of the 
beam can be written ав W=(2n)'<X, =~ М, (4, ), 4)> 

The matrix version of the mtegrafi equation can be easuy derived 

[A,b] =2b, (15) 

where 
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®m, (a7, (@r)," .. (a]),(a"). .. 

b=| : |, A= : РО. (6) 
(5,"). @m. (@™, ... (e (a™" ... 

Here the overline denotes the time averaging. 
Due to the normalization chosen (14), the matrix A is Hermitian and Spur(A)=1. 

Hence , =1, and the eigenvectors, corresponding ю the different eigenvalues, are 
orthogonal: 

b, ь‚" = 2„‚_„‚„ (Ь„т)‹‚д› (Ь‚.Ш)„. = ь:‹‚, . 

The laser dynamics is dominated by the modes (b) whose sum оё eigenvalues is 
close to unity. Obviously, for stationary fields the KL-modes include only one mode 
which coincides with the field itself with the eigenvalue A=1. In LG basis the KL-modes 
coincide with LG modes with amplitudes (b, "‘) WIN," апа eigenvalues which are the 
relative intensities of modes. 

3.2. Numerical model and results. We consider a Zeeman laser with nonplanar 
(image rotating) ring cavity with large Fresnel number [51, 49]. Fig. 9 shows the field 
transformation operator scheme used for numerical modeling. 

For each slowly varying complex amplitude A (r qz,z,l) а paraxial wave equation 
similar to (6) is solved. We consider round-trip variations of the total field апа describe 
the laser dynamics in the scale of round trip times. The field transformation during one 
round trip is а consequence оё е following steps: i) free-space propagation; ii) image 
rotation; iii) Gaussian aperture and lens; iv) nonlinear active medium; у) linear cavity 
anisotropy. 

In free-space part of the cavity we used the decomposition of each complex field 
amplitude in terms of Laguerre-Gauss orthogonal modes. The image rotation after one 
round-trip is described by the coordinate frame rotation by the angle 6, ф'=ф-6, where ф' 
is the azimuthal coordinate in the rotated coordinate frame 

@A, ` = (4,”), exp(i (т - 4)9). 

The field transformation at the 
Gaussian aperture and lens was а150 
expressed in terms of the transverse mode 
amplitudes [28, 51]. For simplicity а 
stigmatic cavity was considered. Grid 
representation of the field in the active 
medium was used. In each оЁ the 
transverse polar grid points (7, W) 
i=1,...,15, j=1,...,20 the field componen[s 
A, were calculated We suppose that the . 8 e Y 
acnva medium в @, - 3 A Jaz= :agghgenz:"l‘ifi; ‘r{olaung ring cavity model with axial 

—IGIZP(r,qa) where Pq are the circular 
components ОЕ the meditim polarization, G is the round-trip power gain. 

The active medium is supposed 10 have а transition /=1 <> j=2, where / denotes the 
angular momentum quantum number, and is placed into the homogeneous magnetic ficld. 
The density matrix equation for the irreducible spherical tensors is solved algebraically. 

active media 
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1а - а©5 
P=AD, - g 

¢ a4 1 +u“)[Sq+Sfl] 3 [(u(‘))z-(u('))ils,‘ S,q 

where 
D, =vl(y+i(ov+qQ)), S,=IAPL, £ =Re[D]. 

Here у is the relaxation rate оё the medium polarization, the frequency о is associated 
with the energy вар in the absence оё magnetic field, © is the Zeeman splitting, a()=0.46, 
o9=(0.21/y,+0.01/y))y,y,/(v,+v,), where y, and y, are the relaxation rates of the upper and 
lower level, respectively. 

Phase anisotropy of the cavity was modeled by е birefringent plate. 
Corresponding expression can be found in [49]. 

We consider а high-gain active medium and а large number of transverse modes. 
In numerical studies we have used more than 200 transverse modes in both circularly 

polarized components of the field. 
In numerical experiments we used the following set of parameters: the ratio of the 

beam area 10 the area of Gaussian aperture n,=0.05, the normalized focal power of the 
effective lens in the cavity F=L/f=1.5, 2.0, 2.5, where L is the cavity length, f is the focal 
distance оЁ the lens, the Zeeman splitting normalized ю the transition line width u= 
=Q/y=0.15, the transmission coefficients responsible for the linear amplitude anisotropy 
оЁ the cavity £,=0.95, ¢ У=0.94‚ the linear phase anisotropy (phase retardation in №е 
birefringent plate inside the cavity) 8=0.1. The round-trip gain is G=0.52, corresponding 
to Ше relative excitation value close 10 2.0. In the regimes considered the image rotation 
variation affected only the power modulation frequency, leaving unchanged the 
transverse pattern structures. Hence we used the zero value ов the rotation angle. 

3.3. Classification of Karhunen-Loeve modes. We can use the Stokes parameters 
for the characterization of each KL mode polarization state: 

X =2Re(E,E"), 
Y=2Im(E,E."), 
2 = (Е,Е,”- Е.Е."), 

I=(EE +EE"), 

where E, represent the right and left circularly polarized components of the KL mode 
field. 

Obviously, X, Y can be expressed а$ polynomials in terms оЁ coordinates x, y, thus 
defining а 2D vector field (2DSP) X=X(x,y), Y=Y(x,y). ОР course, there exists the 
exponential factor appearing from Laguerre-Gaussian modes, but it has no influence on 
singular points. This 2D vector field can be associated with the autonomous dynamical 
system: й й 

x=X(x(), (1), y=Y(x(2), (1)), (18) 

and the classification оё the KL-mode polarization pattern can be made investigating the 
character of the singular points (zeroes оЁ X апа Y ) оЁ this system. 

There are three possibilities [49]: 
* The system is gradient, 

(17) 

0X/dy = дУ/д х. 

There exists а potential function V(x.y), which should be classified using the 
catastrophe theory [50]. 

* The system is Hamiltonian. The Hamiltonian H(x,y) can be introduced in such а 
way that 
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а@ = дН/ду, dyldt=- oHIox 

ап can be classified using Birkhoff-Gustavson normal forms [52]. 
* General case. The singular points X=0, ¥ =0 should be determined and their 

classification сап be made using the methods [53]. 
In the previous paper [49] we have investigated the case F=2.5 which corresponds 

to rotating transverse patterns. These regimes belonged to the gradient case. Due to the 
rotation оЁ the transverse pattern and the electric field vector У=0, and the KL modes are 

linearly polarized. The results of numerical simulation of laser dynamics are summarized 
in the Table 1. а, b, c, d are nonzero coefficients, 12=х?+)?. The type of catastrophe is 
presented in corresponding column, where «Morse» stands for Morse-type function, 
«ОР» апа «St» denote quasi-periodic апа stationary regimes, respectively. 

Table 1 
Catastrophe classification о 2DSP for different gain ап optical power 

F gain | number KL modes X catastrophe | regime 

1.5 04 1 a+brt-crt Ay St 

15 0.5 1 -аг А ОР 
5 0.5 2 -аг 6 А ОР 
1.5 0.5 3 аг * A, QP 
15 0.5 4 -аг? Morse ОР 
1.5 0.5 3 -аг ®- Ay QP 

15 0.6 1 a+br?-cr* A, QP 
15 0.6 2 -аг & Ay QP 
15 0.6 3 ar? A, ОР 

1.5 0.6 4 -аг* A ОР 

2.5 0.4 1 a-br >4+cr 4-dr 6 A, St 

2.5 0.5 1 a+br? Morse QP 

25 0.5 2 -ar® A, QP 
2.5 0.5 3 ar? А ОР 
2.5 0.5 4 -аг? Morse QP 

25 0.6 1 a+br? Morse QP 
25 0.6 2 -ar® A, QP 
2.5 0.6 3 аг* Ag QP 
25 0.6 4 -аг 0 Ay, QP 
2:5 0.6 5 -аг® A, ОР 
2.5 0.6 6 аг& Ay QP 

25 0.6 7 -аг? Morse QP 

2.5 0.6 8 -art А ОР 

Another situation was observed for F=2.0. In this case the transverse patterns 40 
not rotate but oscillate, changing the orientation оё the pattern, while е polarization (the 
azimuth and eccentricity of the polarization ellipse) of the field in a given point of the 
transverse plane is almost unchanged. In Fig. 10 the corresponding instant laser patterns 
for right and left polarization are shown. 
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a b 

Fig. 10. Transverse laser patierns for right-hand circular component of the electric field vector. Transverse 
intensity distribution Е,” (). The curves Re(€,)=0 are во апа Im(E, )=0 are dashed (b) 

There exist two KL modes аг F=2, g=0.7 (Fig. 11). 
In this case both X and Y parts of the 2D vector field of Stokes parameters are 

nonzero. Explicit expressions for X, Y can be written а5; 

= 6 6 12 

F= ЕЫЕЁП% X2y (19) 

6 я 
х уд. 

6 
y=Zg z,:n ' 

For the classification of these regimes we can изе the procedure [53], which 
includes some steps explained below. First we should find е so-called carrier of the 
system Eq.(19). We should multiply фе first equation by у апа the second equation by x. 

The resulting monomials х" у” can be labeled by its powers (n,m), representing the 
corresponding point т the plane оЁ variables (n,m). The set оЁ all these points is the 
carrier of the system. The set of coefficients of a given monomial appearing in the right- 
hand part оё the system is called vector coefficients. The points in the plane n,m form the 
Newton polygon оё the system, and the part оё this polygon which «looks» аг the origin is 
Newton diagram. 

The second step consists in simplifying the Newton diagram. The polygons can be 
transformed using е change of variables of the special kind (z is no more the 
longitudinal coordinate starting from here): 

x=zhwh, y=zhwih, 

The matrix оё indices С associated with this transformation looks ав follows: 

с= (” в @ ) ‚ (20) 
Р, 4 

In our specific case it was convenient 10 use С =1, 0, 1, 1. Under the transformation 

оё coordinates the system is subjected 10 the corresponding transformation too: 

w=2 w22 a2 1) 

o=, Wz 206y 7Y 

and, therefore, the Newton diagram can be simplified (Fig. 12). 
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Ё а 
Fig. 11. The transverse patterns of the right-hand circularly polarized component of the first (a, b) and the 
second (с, @) Karhunen-Loeve modes. The correspondent tranverse pattern оё the field 15 shown in Fig. 
10. The eigenvalues A,=0.650072, 1,=0.349926. The density (a, с) plot shows intensity of right-hand 
circularly polarized component of Karhunen-Loeve mode. Solid curves (b, @) shows the point оЁ 
transverse plane where the real part of right-hand circularly polarized component of KL-mode is zero. 
Dashed curves shows the zeros of imaginary part of the same 
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Fig. 12, Newton diagram for the right - () and the lefi-polarized () components оё фе second KL-mode 
after the transformation 
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After these transformations we can calculate the eigenvalues of the linearized 
system к, k,. The signature оЁ к set shows the type of singularity (in our case а! z=w=0). 

In this case «,=0......., therefore the type оЁ singularity is saddle-node. Using the 
described algorithm we can study in general the behaviour of the transverse polarization 
structure near the singularities of 2D vector field of Stokes parameters, which, of course, 
correspond to peculiarities of electric field polarization patterns. Further classification оЁ 
singular points of the field is possible in the spirit of catastrophe theory for the 
transformed fields with linear Newton diagrams. 

4. Stationary modes in boson traps 

4.1. Nonground stationary states. Consider an ensemble of neutral atoms trapped 
in a parabolic potential. At low temperatures the Bose-Einstein condensation is possible. 
In the mean-field limit and s-scattering approximation the condensate is described by the 
collective wave function Ф that obeys the Gross-Pitaevskii (GP) equation [55] 

# дФ(г,)/де= Й о() + glo(r.)Po(r,), 22) 

where g is proportional to the number of the atoms and the length of scattering, 

В =-15%№ + (022 + 022 + 02212, (23) 
X, у, z are the coordinates. The initial condition to solve Ед. (22) 15 

' ®(r,=0) = @y(r). (24) 

The wave function can be normalized 

Jpl@(r,)Pdr = 1. (25) 

Let us seek the stationary solution of Eq. (22) т the form 

(1) = exp ( - Ёг o(r). (26) 

The stationary states ф satisfy the stationary GP equation 

И) + glo(r)Po(r) = нФ @ 
For cylindrical traps o =0 =0 › ©,<<1. т аП examples we consider w =1, о,=0. 
Obviously, т this case Eq. (Ё2) 15 similar to the scalar paraxial wave equation for а beam 
in а parabolic waveguide with Kerr nonlinearity. In contrast 10 optics, е nonlinear term 
in Eq. (22) is typically very large. Our aim here is Ю investigate е stationary mode with 
one transverse node (Fig. 13) and the possibility оё а resonance transition to this state 
from the ground state. 

For a weakly perturbed stationary state 

Ф®г = exp(-i и (ф(г) + [Cu(r) ехр(-г ом) + C*V'(r) exp(i wi)]}, (28) 

corresponding to small oscillations of the order parameter around е stationary-state va- 
lue, the linearized GP equation is reduced 10 the simultaneous Bogoliubov equations [55] 

ou=(Hy -н + 28162 + gov: (29) 

-©у = (f?o - и + 2219?)у + оф”?и, (30) 

with the orthonormalization condition 
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(31) 

The oscillations (collective modes) for the 
one-node state considered possess some 

specific features in comparison with those 
for the ground state. One of the functions 
(u,v) must have no nodes, while е other 
has two. So we can identify the normal 
state by indicating the quantum numbers оЁ 
the base state and оЁ the function и. For 
(uv),, (Fig. 14, а) the result of the 
numerical calculation (dotted line in Fig. 
15) shows that w=2w, аг any g. Therefore, 
this state is ап analog оё the monopole 
mode of the ground state. For (&), , (Fig. 
14, b) the dependence of the frequency 

ъ 'y, - vi'vl)dr =3;. 

ЕЕ 
0.6 

0.4 \ 

-0.4 
00 10 20 30 40 50 р 

Fig. 13. One-node stationary wave function versus 
the distance from the trap axis. g=0 (solid line), 
=50 (dashed line), g=100 (dot line), g=200 (dash 
dot), g=400 (dash dot dot) 
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Fig. 14. Collective modes for one-node stationary stateg=50 

Fig. 15. Characteristic frequencies: the difference 
between the potentials corresponding 10 one-node 
stationary state and the ground state (solid line); the 
Kinetic-interaction exchanging frequency (dashed 
line); the averaged square radius oscillation 
frequency(dotted line) 

upon g is shown in Fig. 15 with dashed 
line. This mode, corresponding to exotic 
oscillations, should occur with the package 
radius and, therefore, the potential energy, 
being constant, while the kinetic energy 
exchanging with the energy оЁ atomic 
interaction. 300 100 200 £ 

4.2. Excitation о] е non-ground states. Consider а harmonic external 

perturbation that may be caused, €.g., by the variation of the trap parameters. In this case 

the GP equation may be written in the form 

i (00(r,t)/0r) = [fio + @Ф(г + xsinQr (3 + у?)]Ф(г,)). (32) 

Let us take the ground state as the initial one 
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Fig. 16. Dynamics of the projection of the ground 
state to е one-node state under the harmonic 
excitation: «on-resonance» frequency (, Q=Au= 
=1.43017), positive detuning @, Q=Ap+0.1), 
negative detning (3, Q=Au-0.1). The maximal 
value is achieved for the positive detuning, because 
the corresponding © 15 the closest to the collective 
mode frequency “’0.1=2‘ #=50, к=0.1 

Ф(г„=0) = ¢,(r). (33) 

Earlier it was supposed [56] that the 
transitions between the stationary states are 
possible under the action of a resonance 
external field. It is well known that for 
linear oscillator the maximal rate of a 
transition to a fixed state is limited because 
the energy spectrum 18 equidistant. 
Nonlinear operator eigenvalue problem 
(27) yields а non-equidistant spectrum. 
This fact was noted т [56] ав Ше case for 
the applicability of the two-level approxi- 
mation and possibility of creating the non- 

ground state. However, the results оё опг direct numerical solution (32, 33) contradict to 
this hypothesis. We found that, firstly, there 15 no resonance аг Q=Ap=p -y, for any i and 
any g, and, secondly, the population оё е non-ground state 15 oscillating from 0 to some 
maximal value, which increases with the growth оЁ к, but tends 10 the saturated value 

<40%, that accords with the maximal transition rate for а simple linear oscillator (see 
Fig. 16). We observed only resonances associated with the collective modes, i.e., at Q=w, 

see Едз .(29, 30). This result 15 easy 10 explain. While the wave function оё Ше system 15 
close to a certain stationary state, another stationary states does not exist, because of the 

different effective potential in Eq.(27). The result of [S6] can be а consequence оЁ using 
one-parametric variational functions for the solution of Eq.(27). As a result, the authors 
оЁ [56] found that Au—e when g—, 50, the averaging technique and the two-level 
approximation hold when g is big enough. Actually, аз seen in Fig. 15, Au tends to а 
constant for big g. 

Conclusions 

Using the numerical simulations within the framework of full spatio-temporal 
model, we have analysed the pulse train characteristics of the Kerr-lens mode-locked 
laser. At фе threshold е pulses have the hyperbolic secant shape. We have found (аг 
the gain depletion due to the finite relaxation time of the medium response leads to the 
asymmetry in the beam size variation. The gain increase leads to the distortion of the 
hyperbolic secant pulse shape and to deep beam size variation during the pulse. The effect 
of finite-time relaxation and gain saturation leads to the nonlinearity in the calculated 
beam transmittance at the output aperture. 

In the absence of the third-order dispersion the pulse remains symmetric, but the 
beam size demonstrates pronounced asymmetry. 

№е have found that т the mode-locked regime only single solitonic solutions are 
stable. The gain increase leads to instabilities of pulse train. The threshold of the non- 
periodical oscillations of the beam shape is decreased with the decrease of the GVD and 
with the increase of the amplitude modulation coefficient. In quasi-periodical regimes the 
output power spectrum depends on the GVD coefficient and the frequency spacing 
between the transverse modes of the empty cavity. The coupling of multiple transverse 
modes leads to the sweeping of the beam size. This result is in agreement with 
experimental investigations. 

The presented model makes it possible ю obtain the full information about the 
spatio-temporal evolution of the pulse train. The temporal and transverse beam reshaping 
becomes important for femtosecond pulses. Our approach to the description of pulsed 
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beams can be applied in modeling femtosecond laser dynamics without the approximation 
of slowly varying amplitude. 

We present the algorithm for the classification оё different dynamics оё transverse 
polarization patterns based оп the calculation оЁ eigenmodes (Karhunen-Loeve modes) 
and eigenvalues of the two-point correlation matrix, expressed via the time average of the 
products оЁ the electric field components. The use оё the vector Karhunen-Loeve modes 
allows one to select the group of transverse modes which determine the laser dynamics. 
These KL modes form the orthogonal basis and provide the optimal description of the 
dynamics of the vector field laser. Using numerical simulation of the polarization 
transverse pattern dynamics in a Zeeman laser, it was demonstrated that the number of 
essential KL modes is not so large (four in the regimes considered), while the number of 
Laguerre-Gaussian modes necessary to reproduce the laser dynamics is several hundreds. 
The regimes corresponding to the rotation of the pattern with nearly constant angular 
velocity were investigated as well as the regimes with oscillating patterns and nearly 
constant polarization parameters. 

For the classification of vector transverse patterns we propose to investigate the 
behaviour of the polynomials representing the KL modes or the total field in the vicinity 
of its singular points in the transverse plane, namely, to investigate the 2D vector field of 
the Stokes parameters X, У. 

Non-ground stationary states of Bose-Einstein condensate of trapped atoms were 
studied numerically solving the strongly nonlinear Gross-Pitaevskii equation for the 
collective wave function. Small harmonic perturbations of these states described by 
Bogoliubov equations revealed essential difference between the ground stationary state 
and the ones having one transverse node. In contrast to earlier assumptions, we have 
demonstrated Фаг п е strongly nonlinear system under consideration the periodic 
perturbations are unable to produce resonant transitions from the ground state to one- 
node non-ground states. 

This work was supported in part by grant REC-006 of the US Civilian Research 
and Development Foundation for the Independent States of the Former Soviet Union 
(CRDF). 
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НЕЛИНЕЙНАЯ ДИНАМИКА ПРОСТРАНСТВЕННЫХ И BPEMEHHBIX 
СТРУКТУР В ЛАЗЕРАХ И АТОМНОЙ ОПТИКЕ: ЛАЗЕРЫ С 

КЕРРОВСКОЙ СИНХРОНИЗАЦИЕЙ МОД, ЗЕЕМАНОВСКИЙ ЛАЗЕР, 
АТОМНЫЙ КОНДЕНСАТ БОЗЕ - ЭЙНШТЕЙНА 

Л.А. Мельников, А.И. Конюхов, И.В. Вешнева, В.Л. Дербов, B.B. Серов 

Hy'reM математического моделирования исследованы пространственное и 

временное поведение лазерных и атомно-оптических систем. РЗССМОТРСН'Ы 

системы в режиме возбуждения небольшого числа скалярных поперечных мод 
(лазер с Керровской синхронизацией мод), с неоднородным распределеним 
поляризации по поперечному сечению пучка в режиме ВОЗбУЖдЕН_ИЯ BBICIUMX 

поперечных мод (Зеемановский лазер с большим числом Френеля и анизотропным 
резонатором) и возбужденные коллективные состояния конденсата Бозе - 
Эйнштейна нейтральных атомов, захваченных в ловушку. В работе предприняты 
ПОПЫТКИ Ш'ШССИФШШРОВ&ТЪ динамику сложных ПОПЯ‘РИЗЗЦИОННЬГХ структур поля B 

лазере. Подходы к классификации основаны на вычислении векторных мод 
Карунена - Лова и описании их сингулярных точек с использованием теории 
катастроф, диаграмм Ньютона. Проанализировано возбуждение неосновных 

состояний атомного конденсата Бозе - Эйнштейна через резонансное возмущение. 
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