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NOISE-INDUCED SPATIAL STRUCTURES IN EXCITABLE MEDIA 

О.М. Sosnovtseva, D.E. Postnov, A.I. Fomin 

The paper considers the formation оё coherent structures in а population of excitable 
systems driven by noise. We focus оп two effects. (i) A one-dimensional lattice with аг least 
one inhomogeneous unit demonstrates noise-induced excitation waves. The degree оЁ 
coherence in such а spatial structure сап be enhanced by tuning the noise intensity. () A 
random distribution оЁ the parameters responsible for the excitatory properties and the 
interaction strength leads to self-organization in the form of cluster synchronization. 

1. Introduction 

Together with self-sustained oscillators, excitable units serve аз ап important 
paradigm п the study оЁ nonlinear dynamic phenomena. To understand electrical 
signaling in cells, it is helpful to divide all cell types into two groups: excitable cells and 
nonexcitable cells. Many cells maintain a stable equilibrium potential. For some of these, 
if a current is applied to the cell for а short period of time, the potential returns directly 10 
its equilibrium value after the applied current has been removed. Such cells are called 
nonexcitable. Typical examples are е epithelial cells аг line фе walls оё the gut. 
However, there are other cells for which, if the applied current is sufficiently strong, the 
membrane potential goes through a large excursion, called an action potential, before 
eventually returning to rest. Such cells are called excitable. Excitable cells include cardiac 
cells, smooth and skeleton muscle cells, secretory cells, and most neurons. 

The underlying excitability determines, for example, the propagation of an action 
potential along the axon of а nerve, е reverberating cortical depression waves in the 
brain cortex [1], waves in muscle tissue (particularly the heart muscle: in their two- апа 
three-dimensional manifestations these excitable waves are intimately related to the 
problem оё atrial flutter and fibrillation [2]), ог waves in colonies оё microorganisms [3]. 
In this context, а number оЁ interesting problems arise for experimental and numerical 
investigations of excitable media. Both the response of a single excitable functional unit 
and the overall dynamics оё ап ensemble оё such units to ап external stimulus are now 

well understood [3-5]. 
Noise is inevitably present in all natural oscillators. The positive (that is creative), 

ordering role оё noise was recently demonstrated for а wide range of natural systems, 
including systems оё physical, chemical, and biological origin. The phenomena of 
stochastic resonance, noise-induced transitions, and stochastic synchronization have been 

observed experimentally in various biological systems [6, 7]. Our topic here is the 
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phenomenon оё coherence resonance that is induced purely by noise without an eflgrna_l 

signal [8-10]. At a certain noise amplitude the regularity of the noise-induced dynamics 15 
maximal. This is witnessed by a well-pronounced peak in the Fourier power spectrum 

and by а ring-like structure оё probability density distribution in the phase space of the 
system. Recently, Postnov ег al. [11-13] described synchronization mechanisms оЁ 
coupled coherence resonance oscillators. 

Cooperative dynamics оЁ ап ensemble оЁ interacting self-sustained systems 
manifests itself т the form оЁ synchronization phenomena and wave propagation. 

Clustering, 1.е. the formation of groups оЁ functional units with similar properties 
(amplitudes, phases or frequencies) is an important phenomenon which is assumed, for 
instance, 10 underlie perception and the processing оё information by фе brain [14]. The 
problem оё clustering was formulated and analyzed т а general context within the 
framework of phase equations [15], self-sustained periodic oscillators [16], chaotic 
dynamical networks [17], ог оё а chain оё bistable elements [18]. Vadivasova ег al. [19] 
showed that cluster synchronization 15 structurally stable to small fluctuations. 

In the present paper we focus on the questions: what are the types of noise-induced 
ordering that can be observed т ensembles оё stochastic excitable systems? What are фе 
common, respectively the specific properties of chains of coupled excitable and self- 
sustained systems? With this aim we investigate the generation and propagation of 
excitable waves caused by the presence of an inhomogeneus element with a low 
excitation threshold. Then ме analyze cluster formation caused by the random 
distribution of excitation parameters and coupling strengths. 

2. Model and Method 

Let us take FitzHugh-Nagumo model as the unit in an array. Being originally 
suggested for the description оё nerve pulses [20], this model is commonly applied 10 
describe excitable dynamics т different fields ranging from chemical reactions to 
biological processes. 

With x and y being a fast and a slow variable, respectively, the model reads 

вах/а = х - 13-y + в(а + Х) - 2x), 

(©} 
Ф@ = х + аі+0;‚.(!)‚ фе ы 

Here, j numbers the excitable unit in the chain, and е=0.01 is №е small time-scale ratio оЁ 
the two variables. The parameter а governs the character ов the solutions and is 
responsible for the excitatory properties of the individual dynamics, and g denotes the 
coupling strength. Each functional unit is subjected 10 stochastic forcing by Gaussian 
white noise & () which 15 statistically independent in space and with zero mean value, i.c. 
(&(0E(r"))=8,8(r-') апа (§(1))=0. We use free boundaries апа random initial conditions. 

With noise, an excitable system generates a random sequence of pulses, i.e. firing 
events, whose properties can be described by Eq. (1). We characterize the process via the 
distribution of the time intervals between pulses, the periodicity of their occurrence, and 
the mean frequency. The mean frequency оё noise-induced oscillations in the j-th element 
% defined а5 (f)=1/(x), where (v) 15 the time averaged pulse duration specified as the sum 
оё the activation time needed {0 excite the system from the stable fixed point апа фе 
excursion time needed to return from the excited state. 

In order to quantitatively characterize the effect of coherence resonance, different 
methods can be used, including the signal-to-noise ratio [8, 9] and a properly defined 
cnt[rop]y—like measure [13]. In this paper, we calculate the regularity оё ап individual unit 
as [10]: 
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R = ()[Var(z)]" @ 

Overall dynamics of the whole array is described by the regularity averaged over all 

functional units R 1=Rj' 

3. Wave structures 

In the deterministic case, due 10 the local coupling between neighboring elements, 
excitation waves can propagate through the medium. In the one-dimensional lattice, such 
waves propagate without any decrement of their amplitude and velocity until they reach 
the boundary of the medium. Note, that excitable systems are characterized by both 
excitability апа refractoriness. That is, after the system has responded to а superthreshold 
stimulus with a large excursion from rest, there is a period of refractoriness during which 
no subsequent response can be evoked followed by a period of recovery during which 
excitability is gradually rebuilt. Once excitability is restored, another wave of excitation 
can be evoked. The wave velocity is the higher the stronger the coupling and the lower 
the excitation threshold of the individual functional units. Moreover, it strongly depends 
on the time allowed for recovery of excitability. 

With noise added to each system, the formation and propagation of excitation 
waves are changed. Random excitation can happen in any element at any time. This 
element еп becomes the center of а wave propagating 10 both sides. The propagation 
stops as soon as it reaches the array boundary or an element in the excitatory (or 
refractory) state. Depending on the relation between the mean frequency of noise-induced 
firings and the wave velocity, е wave can pass а shorter ог longer distance along the 
array before it disappears in а collision with another wave propagating in the opposite 
direction. 

For identical units and equal noise intensity, the above process is completely 
unpredictable. In this paper we investigate the case when the one-dimensional lattice оЁ 
excitable systems contains an inhomogeneous element with lower excitation threshold. 
This element is more frequently excited by noise and becomes the center of wave 
propagation. In our simulations, the inhomogeneous unit with @,=1.01 is located аг the 
beginning оё а chain (j=1). For j=2,...100, е excitation parameter is fixed at a=1.05. 

Fig. 1 presents the spatio-temporal pattern оё noise-induced waves in the system 
(1) for weak noise (D=0.0002). Black dots й й . Ё 
represent the firing state. The gray arrow t / у 
indicates а center оЁ wave birth. The black \/\/\/ 
arrow points аг ап event оЁ wave — 215 N 

suppression after collision with another — /\‘/ 
wave. Опе can observe how а wave is — J 
annihilated when it reaches elements in the 210 / | | 
refractory state. 

In spite of a large number of /\ 
excitation and annihilation points, the 
cooperative spatiotemporal dynamics looks 2051 A Я /\Aj 
fairly regular (Fig. 2, а). In this case, wave I~ 
propagation precedes the mean time 
between noise-induced firings for any 200 N аарь ЕНЕа 5 е 0 20 40 60 80 / 
(except the first) unit in ап array. As а 
result, spatiotemporal structures in the form Fig. 1. Spatiotemporal pattern ог D=0.0002 and 
of excitation waves running in different §=0-015. Black dots indicate firing events. Appe- 

Р т агепсе (gray arrow) апа annihilation (black arrow) а5 
directions сап be observed. Along Such yey ав interruption of excitation waves are clearly 
waves each element operates in а more observed 
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regular way Фап it would be possible for the same noise intensity, but without spatial 

communications. For strong interaction and weak noise, the first unit becomes the single 
excitation center and waves propagate without annihilation for long distances. With 

stronger noise as well as with weaker coupling, the structure is changed. Increasing noise 
leads ю interruption оЁ wave fronts (Fig. 2, b). This is related both to effects оЁ 
refractoriness and to an instantaneously increase of the excitation threshold caused by 
noise. Subsequent waves can not cause firings. Figs 2, b, ¢, and а illustrate how wave 
fronts are interrupted more and more frequently with decreasing coupling strength. Thus, 
the regime in Fig. 2, а т spite оё wave fronts consisting of combinations of oppositely- 
propagating waves, is seen 10 be more regular than фе structures 1 Fig. 2,b, ¢, and а. 

To characterize the observed structures, we introduce a causality principle for 
firing events in two neighboring units if their phases overlap in time (Fig. 3). Let us call а 
group consisting of L paired elements a mutually-conditioned discharge. Obviously, large 
(in average) values of L correspond to a well-pronounced spatial structure. Hereafter the 
spatial regularity can be defined as the ratio between the mean length of the mutually- 
conditioned discharge ап its maximal value L=N (i.e. the length оё the chain): 

R,=(L)IN. 3) 

Fig. 2. Spatiotemporal structures for (9 g=0.02, D=0.0002; () #=0.02, D=0.001; (c) g=0.01, D=0.0002; 
(d) g=0.005, D=0.0002 
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Both temporal R, and spatial R, 
coherence measures characterize 10 what 
degree  noise-induced  spatiotemporal 
motions in a one-dimensional lattice can be 
regularized by tuning the coupling strength 
& апа noise intensity D (Fig. 4). For fixed 
noise intensity, one can distinguish 
different behaviors of R, as function of the 
coupling strength g. For weak interaction, 
R, monotonically grows. Individual 
regularities of all elements is almost equal 
(except the first) and they slowly grow 
with increasing D. This is related to the 
effect of coherence resonance since the 
noise intensity is lower than е optimal 3.0 
value. The first element demonstrates a ° 60 65 70 75 1 
high degree of coherence, but it does not 
contribute much to the averaged R, along 
the array. Thus, for weak coupling, 

cooperative dynamics does not manifest itself. 

For strong interaction, R, has а well-defined maximum for D=0.0004 that is close 
to the optimal value for an individual system. In this case, noise-induced excitation waves 
from the first unit penetrate deeply along the array and causes spatial synchronization of 
firing events. Note, that individual regularities decrease near the boundaries. This fact 

shows that both noise-induced waves and the effect оё mutual stochastic synchronization 
(discussed below) play an important role in the self-organizing process. 

The coupling strength g=0.012 corresponds to some critical behavior where the 

Fig. 3. Causality о firing events 

ь 60 
00 20 Dx104 

Fig. 4. Integral characteristics Юг (a) the temporal regularity R, (b) the spatial regularity R , апа (c) the 
summarized regularity R=R, /7. B4R 
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above mechanisms contribute in an equal way. Within a wide range of noise intensities, 

R, maintains а constant value. The one-dimensional array becomes . insensitive 10 
variation of the noise intensity D. This is related to the combination of individual 

coherence resonance effects and the regulanzauon in the form of excitable waves. 

The spatial regularity Ё, behaves 1 а simpler way. It grows with increasing 
coupling and with decreasing noise intensity, approaching a maximal value R =1 (Fig. 4, 
b). Let us introduce a spatio-temporal regularity as the sum of the spanal componen[R 

апа е temporal component R, (normalized to its maximal value т е individual 

system): 
R=R/R,  +R. (4) rmax 

This index allows п5 Ю characterize both the possibility of excitation waves and фе 
temporal degree оЁ coherence. It is interesting 10 note two peculiarities. First оЁ all, е 
maximal value is shifted 10 а smaller value оё the noise intensity D=0.00025. Moreover, 
there is region of minimal уаше оё R that corresponds to the absence of coherence in the 
noise-induced firing events along an array. This region is located at the same range of D 
as a global maximum but shifted to weak couplings. 

In this section we investigated the propagation of noise-induced waves and the 
appearance of spatio-temporal structures in homogeneous media (gl:const., a=const. for 
Jj=2,..,100). How will the observed structures transform if the excitable media is 

disordered, i.e. the excitation thresholds ап coupling strengths are randomly distributed 
along an array? 

4. Cluster synchronization 

The collective dynamics оЁ ап ensemble of coupled excitable units оЁ significant 
interest for many biomedical applications [21]. A population of identical units with the 
same coupling properties serves as the simplest model. In nature, however, full identity in 
the properties and operating conditions of the units can only be an idealization. In our 
work, in contrast to most previous studies, we investigate ordering effects in ensembles of 
elements that are 

(i) nonhomogeneous, ie. the activation parameters @, are random numbers 
distributed uniformly оп [1.0; 1.1]; 

(i) coupled with the strengths g; which have а random uniform distribution оп 
some range A=g__-g . (g,,=0.005, but & ах and, hence, the mean level (g, +8,..)/2) 
are varied). 

Thus, our model provides disorder between interacting units т different ways. The 
question of interest is how such elements adjust their motions in accordance with one 
another to reach some kind of coherence? 

In our experiments with varying distribution intervals for the coupling strength and 
with a certain level of noise, three basic types of space-time behavior in a one- 
dimensional array (1) оЁ 100 units was observed. For а vanishing and very narrow A, the 
behavior is totally incoherent that is reflected in the irregular pattern of black (firing 
state) and white points (Fig. 5, a). The firing events in individual units occur at 
frequences (аг are randomly spread in the гапре [0.05:0.27] (Fig. 5, b). In this case, no 
stable frequency- or phase-locked groups can be detected. A qualitatively different 
behavioral pattern is encountered for а broader range оЁ coupling (Figs 5, ¢ апа а). Here, 
synchronized groups, i.c., clusters оЁ stochastic elements, appear. Within each cluster фе 

frequency difference between апу two oscillators vanishes ог 15 small in comparison with 
the difference between neighboring clusters. To describe spatiotemporal patterns (Figs 5, 
а and с) ш terms of the causality principle let us calculate the probability оё interruption 
оё firing оп the j-th element. In the clusterless case, е distribution оё probability along 
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Fig. 5. Spatiotemporal evolution and mean firing frequencies </> of ап array оЁ 100 excitable units at 
D=0.025 for different widths of the coupling range forA=0.002 (4, b) апа for A=0.1 (c, а). A sequence оЁ 
clusters are clearly seen in the latter case 

ап array 15 random (Fig. 6, а). Еог а cluster structure, е function P contains а number оЁ 

1оса! maxima whose locations coincide with the boundary оё фе respective clusters (Fig. 

6, b). Hence, interruption оё mutually-conditioned discharges takes place in excitable 

Р т т т т 

о 20 40 60 80 / b 0 20 40 60 80 Jj 

Fig. 6. Probability оё firing interruption (a) without clustering апа (b) with а cluster structure 
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Fig. 7. Reduction of the number оЁ frequency-locked clusters with ап increasing width of the coupling 
range (D=0.025) 

units at the boundary of a cluster. With a broader coupling interval, the number of clusters 
decrease (Fig. 7) until finally the global synchronous state (one-cluster state), where all 
units fire simultaneously, is achieved. Since the incoherent behavior and the totally 
synchronized behavior are well understood [22, 23], we focus our study on clustering of 
noise-induced oscillations. 

Let us consider now an individual cluster as a spatial meta-unit of an array and 
describe its main properties. Because оё the assumed distribution оё system parameters, 
the elements in a cluster have different randomly scattered frequencies for vanishing 
coupling, i.e. there 18 no correlation between the firing events of different cells. With 
interaction, a frequency locking effect which is responsible for cluster formation takes 
place (Fig. 8, а). In this case, the elements composing the cluster display regular 
synchronous firings. However, the variance оё the pulse duration 0?=(v?)-(t)? changes 
within а cluster. It 15 minimum 1 the center оЁ cluster and е difference in п] between 
neighboring elements increases near the ends of the cluster (Fig. 8, b). Thus, with 
frequency entrainment, oscillators demonstrate different degrees оё mutual 
synchronization. 

Frequency-locking entrainment is closely related to the phase conditions. For 
stochastic systems one has to use the notion of «effective synchronization» [24]. In the 
presence оЁ Gaussian noise (or another random process with unlimited distribution 
function) the phase-locked state inevitably has to be broken at some moment. Thus, the 
system is supposed to be effectively synchronized if the phase locking 15 observed during 
а finite but long enough time (determined a priori). A measure of stochastic 
synchronization is the cross-diffusion coefficient D,/ = Ча( (1))-(d(1)] [25]. This 
quantity describes the spreading in time of an u'unal distribution ©Ё the phase difference 
()" [26] between neighboring elements. In our study, the cross-diffusion coefficient 
attains а vanishing value within each cluster (Fig. 8, с) апа assumes different nonzero 
values for inter-cluster units. This agree with the stronger condition оЁ phase 
synchronization which provides high degree of collective entrainment within clusters of 

* We use the instantaneous phase introduced а5 Ф(к)—?л(: 1)t +1,) +2лё, where 1, 15 the time of 
the k th firing а defined by the threshold crossing of x(r) а!1 х=1 
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Fig. 8. Mean firing frequency <fl> (a), deviation оё pulse duration o?, (), effective cross-diffusion 
coefficient D (с) ап noise-induted regularityR, (d) within а single cluéter. The widths of the coupling 
interval ап noise intensity are fixed аг 0.1 and О.ОЬ„ respectively 

stochastic oscillators. Hence, the notion of effective synchronization can be generalized 10 

the spatially extended group of elements. Similar effects have been observed for coupled 
Van der Ро! oscillators with fluctuations [19]. What are the coherence properties оЁ such 
frequency-locked clusters? It is clearly seen that the regularity exhibits а maximum value 
inside the synchronized state (Fig. 8, d), while the outer-cluster elements demonstrate a 
lower level of coherence. Comparative analyses of the regularity and pulse deviation 
functions allow us 10 assume that high coherence behavior within а cluster is related 10 
synchronization phenomenon. 

In general, the collective response of a cluster is characterized by two aspects. The 
first is а synchronization effect that leads 10 the frequency and phase entrainment. The 
second is the regularity of each functional unit due to coherence resonance effects. 
Remarkably, the regularity averaged over the spatial coordinate can be maximized within 
each cluster by tuning the noise (Fig. 9). At weak external noise, а cluster considered а5 а 
whole functional unit demonstrates weak coherence in spite of the fact that firings in the 
elements of the cluster tend to occur simultaneously. This 15 related 10 е relatively large 
fluctuations of the pulse duration of each composed elements. With increasing D, the 
coherence of the temporal and spatial structure of the firing process is enhanced and 
reaches а maximum. At large noise, the frequency and phase fluctuations grow rapidly 
and this leads to the destruction of the coherence properties for the composed units and, 
hence, of the spatial coherence structure. Because of the phenomenon of array-enhanced 
coherence resonance [23], the regularity of the whole cluster is much higher than that of 
the uncoupled elements (compare the curves 7, 2 ап the dashed curve in Fig. 9). 

50 55 60 j 
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8.0 

4.0 

0077002 004 006 008 D 
Fig. 9. Illustration оЁ synchronization-enhanced 
coherence resonance for е system (1) demon- 
strating cluster structure for A=0.1. The regularity 
averaged over spatial the coordinate R is plotted 
versus noise intensity for individual clusters (curvel 
and 2) and for the whole array with а cluster 
structure (curve 3). Dashed curve corresponds to the 
uncoupled array 

Let us return 10 the full system. Now 
an array composed by excitable elements 

can be considered in macro level as a 
sequence оЁ clusters whose size and 
structure is determined by а random 
distribution of firing properties and №е 
degree оё interaction. Fig. 10 illustrates the 
ordering effect caused by the stochastic 
synchronization and the resulting high 
coherence within each cluster at е 
optimal level of noise. The coherence of 
the net output is averaged over a set of 
clusters. Because of the frequency 
difference between clusters, the regularity 

of the array output is lower than the 
maximum value оё each cluster (curve 3 in 
Fig.9). 

р К, NN о, 

30 150 

20 100 

0.0 50 

1.0 TN S 0.0 pn g e 
N N аян 

Fig. 10. Synchronous (@) апа coherence (5) properties along the array with cluster structure for varying 
noise level. The width of the coupling interval is fixed аг 0.1 

5. Conclusions 

Our investigations of the coherence properties in an ensemble of diffusively 
coupled excitable systems showed that self-organization can manifest itself in two ways: 

(i) А one-dimensional lattice оё excitable units with аг least one inhomogeneous 
element (in our case, a unit with lower excitation threshold) demonstrates excitation 
waves. The degree of coherence of such a structure can be enhanced by tuning the noise 
intensity and/or the coupling strength; 

(ii) A random distribution of the system parameters responsible for the excitory 
ргорегйев and the strength оё interaction leads 10 cluster formation defined а$ stochastic 
phase locking and as a mean frequency entrainment between a group of cells. Composed 
by a number of elements with different properties, each cluster can be considered as a 
«spatial» excitable unit exhibiting coherence resonance. Gain of regularity within each 
cluster is associated with the effect of stochastic synchronization. 
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We believe а! these effects can be оЁ importance for biological applications 
where the background noise may play a constructive role in ordering phenomena in a 
large networks оЁ excitable elements through the synchronization mechanisms. 

This work was partly supported by grant CRDF (REC-006), grant RFBR (01-02- 
16709). O.S. aslo acknowledges INTAS grant (YSF 01/1-0023). 
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ОБРАЗОВАНИЕ ИНДУЦИРОВАННЫХ ШУМОМ 
ПРОСТРАНСТВЕННЫХ СТРУКТУР В ВОЗБУДИМЫХ СРЕДАХ 

О.В. Сосновцева, Д.Е. Постнов, А.И. Фомин 

Исследуется образование когерентных структур в популяции возбудимых 
систем, находящихся под ВОЗД&ЙС’ГВИЁМ шума. ПОКЗЗЗНО‚ что однородные 

одномерные решетки с хотя бы одним «вырожденным» элементом демонстрируют 

индуцированные шумом волны зажигания, степень упорядоченности которых 
имеет максимум при некоторой оптимальной интенсивности шума. При случайном 
разбросе параметров одномерного массива, ответственных за ВОЗбуЖдеНЁИЁ и силу 

взаимодействия элементов, наблюдается эффект кластерной синхронизации 
индуцированных шумом колебаний. 

Dmitry Postnov 15 а professor оё the Chair of Radiophysics and Nonlinear 
Dynamics оЁ Saratov State University, Candidate of Science т Physics and 
Mathematics since 1990, Doctor оё Science in Physics and Mathematics since 2001. 
He is ап author оЁ 50 papers in scientific journals and of book «Chaotic 
Synchronization. Applications to living systems» (World Scientific, 2002). 

Olga Sosnoviseva received her PhD degree in 1997. She is ап author of 
3 more ап 30 papers in international journals. Her present research interests аге 
<k focussed оп modelling dynamics о! coupled biological oscillators. 

E-mail: olga@chaos.ssu.runnet.ru 

136


