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'CLUSTER AND GLOBAL SYNCHRONIZATION IN A QUASI-HARMONIC 
SELF-OSCILLATORY CHAIN IN THE PRESENCE OF NOISE 

Т.Е. Vadivasova, V.S. Anishchenko, С.1. Strelkova, А.1. Fomin 

We study numerically effects of noise оп synchronization phenomena in а chain оЁ 
Van der Pol oscillators. A structure о frequency clusters in е non-homogeneous noisy chain 
is analyzed. We generalize the notion оё effective synchronization to е case оЁ а spatially 
extended system. The effect of amplitude relations оп the phase dynamics is also explored. 
The possibility of realizing external synchronization of the homogeneous chain was 
considered. We clear ир а role оё two components of coupling (diffusive and one-direct 
coupling) and а noise sources in relation 10 the global synchronization. 

1. Introduction 

The phenomenon of synchronization plays an important role in the behavior of 
ensembles оё interacting nonlinear oscillators. This effect provides the basis for self- 
organization оё ensembles’ dynamics and 15 associated with а variety оё phenomena, such 
ав multistability, growth restriction оё е Kolmogorov entropy and attractor dimension, 
spatio-temporal structure formation, etc. The theory of synchronization, originally 
proposed for quasi-harmonic oscillations [1-4], was generalized to а wide range оЁ 
systems including chaotic [5-11] and stochastic [11-15] ones. 

Phase synchronization in ensembles of locally and globally coupled interacting 
periodic oscillators has been studied for а long time but these investigations still attract а 
growing interest of many researchers [4, 16-29]. Ensembles of periodic oscillators have 
found wide applications in mathematical modeling of physical [30-33], chemical [4, 16], 
and biological [34-38] processes. 

Even е simplest quasi-harmonic oscillators coupled in а large ensemble generate 
a lot of complicated nonlinear effects such as a phase and frequency synchronization [20, 
23, 24, 28, 29, 35, 40], ап oscillatory death [21, 22, 27, 29, 40, 41], frozen states [28], 
formation of а collective chaotic behavior [27, 33, 39] e.t.c. АП these effects are the 
manifestations of the phase - frequency synchronization phenomena. 

It is known that fluctuations are inevitably present in real ensembles and a 
parameter mismatch (random ог definitely specified) оё partial systems also takes place. 

Effects of noise and parameter mismatch on phase locking in an ensemble of oscillators 
are considered in [4, 17, 18, 20-22, 24, 25, 29, 31, 40, 42, 43]. The presence оё а linear 
gradient of native unperturbed frequencies along the medium consisting of locally 
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coupled oscillators leads to the formation оЁ so-called frequency clusters оЁ 
synchronization [20, 29, 40]. 

Recently, numerous works have appeared devoted to the study оЁ ensembles оЁ 
chaotic oscillators [30, 44-52]. It has been shown that the synchronization effect also 
plays an important role in the dynamics of chaotic ensembles. They demonstrate a 
number of phenomena which appear to be quite similar to those occurred in ensembles of 
periodic oscillators. Particularly, effects оЁ phase-locking and cluster phase 
synchronization have been found in ensembles of chaotic oscillators [50-52]. This fact 
testifies that the effect оё synchronization is generic for а variety оЁ oscillatory systems. 

However, even in the case of quasi-harmonic oscillatory ensembles it remains a 
number of unresolved problems, which devote a special attention. One part of these 
problems concerns the cluster synchronization in а chain оЁ non-identical oscillators. 
How much can cluster synchronization be stable to the influence of fluctuations? Is it 
possible to generalize е notion оЁ effective synchronization оЁ self-sustained 
oscillations in е presence оЁ noise [54, 55] to spatially extended systems? It is 
interesting to elucidate how significant may it be if а variation оЁ instantaneous amplitude 
values of oscillators is taken into consideration? Can the behavior of an ensemble be 
qualitatively described by the phase equations only? The other part of the problems is 
connected with the global external synchronization оё а chain (i.e. the synchronization оЁ 
ай oscillators of the chain at the external frequency force). What are the conditions оЁ 
global synchronization of the chain by a harmonic external force applied to the first 
oscillator? How does the type оё coupling between oscillators influence оп the global 
synchronization effect? Is the global synchronization possible in the presence of noise? 

Some of these problems were considered in [56, 57]. In the present work we try 10 
answer the above stated questions and this is the main objective of this paper. 

The paper is organized as follows. In Sec. I we study the effects of cluster 
synchronization 1 а chain оЁ non-identical Van der Pol oscillators with diffusive 
coupling. The effect оЁ noise оп clusters structure is analyzed. In Sec. П муе explore the 
peculiarities of the behavior оё the chain of diffusively coupled non-identical Van der Pol 
oscillators described by the phase equations only. $ес.Ш 18 devoted ю the external 
synchronization оё а chain of identical Van @ег Pol oscillators with а harmonic force 
applied to the first element of the chain. The role оё two coupling components (diffusive 
and one-direct) is discussed. The global synchronization of the chain in the presence of 
noise 15 studied. And finally, we give our conclusions in Sec. IV. 

2. Effect of noise on cluster synchronization in a chain 
of non-identical Van der Pol oscillators 

The model ю study is а chain оё Van @ег Pol oscillators, being similar 10 that 
considered in [29, 40] апа including additive noise оп the chain elements. The chain 15 
described by а system of equations which, in а truncated form, аге а$ follows: 

0, =7(1 - 070, + #(р1е05($ - Ф1) + P 1€08(dy,; - ф) -2p;) + О/ру+ (2D)'75, (1), ® 

ф = 0, + #(ру/р) 510( - $) - Р/р 5( - ф) + (2D) 2, (Vp,, 

J =12 ВнЙ 

where j is the number оГ ап oscillator, representing а discrete spatial coordinate, p; and ¢, 
аге the amplitude апа the phase оё oscillations оё the jth oscillator, respectively. 5(г and 
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nl.(t) are assumed to be identical uncorrelated Gaussian white noise sources with zero 

means and with the same intensity D". 
The boundary conditions were chosen to correspond to а free-ended chain, i.e., 

Ро=р;» Og=01s i1 =Pps O,41=0,,- The initial conditions for е oscillators аге chosen to be 

close to ?mmogeneous ones with а small random dispersion within 8=0.1. 
The model (1) has the following parameters: r is the excitation parameter (in 

computation, ме fix r=0.5), w, is the unperturbed frequency о the jth oscillator, i.e., 
oscillation frequency without coupling and external forcing, g is the parameter of diffu- 
sive coupling оё nearest-neighbor oscillators. For the model (1) we suppose а case of li- 
near dependences оё the unperturbed frequencies оп spatial coordinate , i.e., о; =o+(j-1)a, 
where A is Ше frequency mismatch оЁ two neighboring oscillators. The peculiarities of the 
chain dynamics do not depend on the choice of the frequency origin. Therefore, we can 

set о =1. 
"We study numerically the chain (1) with m=100 elements using a fourth-order 

Runge-Kutta routine. In the course of numerical experiments, we analyze the dynamics оЁ 
each element, estimate the variation оё phases ¢; during а large enough time T and 

compute the average (perturbed) frequencies ‹Б] of the partial oscillators: 

&= () = т [(8, 1, +T) - , ()T . ® 
The angle brackets mean time averaging. 

Equality of the mean frequencies o, and @, corresponds ю the limitation of the 
phase difference of the oscillators 0=9, M(rj—¢j(t) in time: 

И,„ 16, ()1 <M, where ( # М # о. (3) 

The condition (3) 15 the generalization оё the phase locking definition [9]. So defi- 
ned phase locking notion may be applied not only to harmonic oscillations but also to non- 
periodic selfsustained oscillations. The group of oscillators (j=k;....,k,) synchronized in 

the sense (3) is named as a frequency cluster. The instant values of the frequencies r}zl,(l) 
of partial oscillators belonging to the same cluster may be different but their time 

averaged values . must be equal. 
For the chain (1) with a linear frequency gradient along the spatial coordinate j, 

one can observe frequency cluster formation in a certain range of coupling parameter g 
values [29, 40]. The partial oscillators exhibit the quasi-periodic oscillations 
x(r):pl(t)cosq;j(t) and y(t)=p/(r)sing(r), and фе number оЁ independent frequencies 15 
determined by the number of synchronized clusters. Fig. 1, а, b illustrate (.rjyl) projec- 
tions of oscillations in the regime оЁ cluster synchronization, which are characteristic for 
the center and the boundary of a cluster, respectively. If we consider the oscillators within 
the same cluster, then а representative point rotates around the origin, x=0, y=0, оп the 
average, with the same frequency and a bounded phase shift. Oscillators belonging to 
different clusters have distinct rotation frequencies. Consequently, the form of phase 
projections (x,x,) 15 qualitatively different when jth апа kth oscillators belong Ю one 
cluster (Fig. 1, с) and to different clusters (Fig. 1,d). 

Now ме are going to elucidate how the noise influences е cluster 
synchronization. We fix A=0.002 апа compute the distribution оё perturbed frequencies 

* In fact, in numerical experiments the same pseudo-random number generator was used having a 
Gaussian distribution. Successive values produced by the generator may be treated as practically independent. 
To make sure that the noise disturbances are uncorrelated, the noise source added to each subsequent element 
of the chain was shifted with respect to the previous one by five iterations of the pseudo-random number 
generator. 
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Fig. 1. Phase projections of oscillations of partial oscillators in the regime оё cluster synchronization for 
A=0.002 and g=3.8 

o, of oscillators along the chain without and in the presence of noise. The calculation 
results, shown т Fig. 2, а (I), b (1) for two different values of the coupling parameter g, 
clearly demonstrate the effect оё cluster synchronization 1 the noise-free chain (D=0) 
and completely correspond (0 the analogous results presented in [29, 40]. 

Now consider the case when all oscillators are subjected to noisy perturbations. 
Fig. 2, а (1), b (П) апа а (Ш), b (Ш) presents the distributions о the perturbed 
frequencies for two different noise intensities D=0.00001 апа D=0.001, respectively. It is 
clearly seen that for both coupling parameters, the clusters of synchronization are 
destroyed as the noise intensity increases. If the noise is weak, the clusters’ boundaries 
are only smoothing slightly (graphs II). Both smoothing and gradual destruction of the 
clusters begin with the chain center. For sufficiently large noise (graphs III), all middle 
clusters are completely destroyed. However, our computations have shown that the first 
and the last clusters appear to be highly stable to noisy disturbances and only a very 

strong noise is needed to destroy them. 
The effect of noise on cluster synchronization can be more clearly understood by 

considering how the phase differences Bl(l) of neighboring oscillators, located near the 
clusters boundary, change with time without and in the presence of noise. Without noise, 
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Fig. 2. Distributions of the perturbed oscillator frequencies forA=0.002 апа for different strengths of 

coupling: (a) g=0.55; (b) g=3.8. Dependences (1), () апа (Ш) are obtained for фе chain in the presence 
оЁ noise with intensity D=0, D=0.00001, and D=0.001, respectively 

е phase difference of oscillators belonging ю different clusters increases, оп the 

average, linearly ав фе time goes on. At фе same time, the phase difference remains 

strictly bounded if the oscillators considered belong 10 the same cluster. When е noise is 

added, the phase difference о any neighboring oscillators grows indefinitely with time 
but this growth is linear for none of j. The average growth rate of phase difference is 

different for different j. This fact allows one to find certain segments оё the chain, for 

which this rate is low. Hence, we can identify clusters оё effective synchronization in the 

presence of noise [55]. 
The clusters’ boundaries in the presence of noise can be estimated by using the 

effective diffusion coefficient D, оё the phase difference оё neighboring oscillators [54]). 
D,y defines е average rate with which the variance oy*(r) оё phase difference 6, 
increases in time. Its mean value can be calculated as follows: 

д () =1im, ., /2((0% 1) - ()t - 1)), 

(1) = (00 - (B0 
We compute the effective diffusion coefficient versus the spatial coordinate within 

one cluster (39</<62) for three different values оё noise intensity О. Numerical results 

) 
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are presented in Fig. 3. They testify a 
gradual destruction оЁ the clusters boun- 
daries as the noise intensity increases. One 

can note that фе dependence D (/) is quite 
similar (taking into account that j is а 
discrete variable) to a well-known depen- 
dence of the diffusion coefficient of the 
phase difference between а self-sustained 
system and ап external forcing versus 
detuning. The clusters boundaries of (, 
effective synchronization can be defined by 30 40 50 60 7 
specifying some tolerable level оЁ №е 
diffusion coefficient D - In this case Fig. 3. Effective diffusion mef‘ficiemlfl]= as a func- 

. . Г. tion of spatial coordinate / ог D=10"" (thin dashed 
oscillators for which D <D™ can be 0 "n210°5 (thin solid line), апа D=10" (thick 
considered аз belonging 10 the same cluster. — ой line). The horizontal dotted Нпе marks фе level 
Such а determination оё clusters boundaries of D ™", defining the clusters boundaries. The 

is enough arbitrary since the value оЁ D™ detuning and the coupling strength are A=0.002 апа 
can be given in different ways depending 8738 
on a particular task. However, in any case the length of a cluster decreases with 
increasing noise intensity. For example, given D **=0.001, the boundaries оЁ the cluster 
shown in Fig. 3 for D=0.0001 correspond to the 44th ап the 56th oscillators. 

3. Phase dynamics approach 

In the previous section we have numerically studied the chain оё Уап @ег Pol 
oscillators, which is described by the system of truncated equations (1) where amplitude 
and phase dynamics are combined. However, in many cases only phase equations are 
often used assuming amplitudes to be equal and constant in time. Such an approach 
allows one to qualitatively describe effects of frequency and phase locking and to 
simplify numerical simulation. Besides, in some cases the problem can be solved 
analytically using е phase equations only [4, 16, 20, 24, 25, 27]. Nevertheless, е 
dynamics оЁ ап ensemble may be distorted and some effects may be lost such as, for 
example, «oscillator death» [21, 22, 29, 53], if the amplitude dynamics is excluded from 
consideration. In particular, а$ emphasized in [29, 40], amplitude effects may influence 
the cluster structure formation. To reveal such an effect, we analyze first cluster 

synchronization in the enforced chain described by the phase equations only and then 
compare it with relevant results obtained for е full system of truncated equations (1). 
The system of phase equations can easily be derived from (1) by setting pj=l for any j. 
This means that е amplitudes оё all oscillators аге taken to be equal to their unperturbed 
value. The system of phase equations reads: 

$ =0, + (- 1) A+g(sin(3,,, -4)) - sin(@;- ф) + (2D)n, (), j=12,... 
The boundary conditions corresponding 10 free ends are: ¢;=9,, Ф„ 7Ф The detuning is 
fixed as A=0.002. The frequency distributions calculated from (5) are shown in Fig. 4 for 
different strengths оё coupling. The first ее plots correspond 10 the noise-free case. In 

Fig. 4, а illustrating the frequency distribution for g=0.55 only two clusters can be 

observed being formed а! the boundaries оё the chain. The analogous distribution, 

presented in Fig. 1, а (1) for the full system (1), reflects а more rich synchronization 
picture. With increasing strength of the coupling the middie clusters also appear (Fig. 4, 

b, с) but their structure is somewhat different from that formed when integrating the 

system (1). As seen from Fig. 4, b, c, the extreme clusters are extended, while the middle 

m. (5) 
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4. Distributions of the perturbed frequencies in the chain, described by Ше phase equations (5), ог 
002 and for different strengths оЁ the coupling:a) g=0.55; b) g=0.7; с) g=1.5 without noise, апа 4) 
5 in the presence of noise with intensity D=0.00001 

ones become more shorter. The height оё clusters’ steps, i.e., е difference between the 
frequencies of neighboring clusters, is less than that ог system (1) ап decreases rapidly 
а5 the strength оЁ coupling increases. Thus, the region оЁ cluster synchronization 
significantly shrinks when only phase dynamics is taken into consideration. Moreover, in 
this case the cluster structure appears to be more sensitive to noise perturbations. This is 
illustrated т Fig. 4, а when а weak noise оЁ intensity D=0.00001 15 added 10 е system 
(5). As follows from the figure, the noise causes the middle clusters 10 be destroyed. 

4. External synchronization of a chain of identical 
Van der Pol oscillators 

To study effects of external synchronization in a chain of quasi-harmonic self- 
sustained oscillators we use the following model: 

£ =0.5(1-p?) Р/ + 8,(p;€08(9; - ф) + ру1е05($,у- ф) - р,) + 

+ #2(р1©95($, - ) - ;) + О/р, + Е(0), © 

$, = 0+ (в/р)) (руе($- $) - pysin(9 - ф) - 

- &›(Ру/р,)5т(%, -Ф)) + Р(2), j=123..m. 

Here the same signs аге used а$ in the model (1). The functions F(f) апа Р, (t) 
Jj=1,2,...,m, describe forces which are applied to the oscillators of the chairl. These forces 
include independent sources оЁ Gaussian d-correlated noise E(r) and w(r) for аП 

oscillators оЁ the chain, and also the harmonic force applied only 10 the first oscillator. So, 
Fl(l) and PJ(') are 
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Е () = Csin(w, 1 - ф) + (D) E(), 

Р = (-C Ip)eos (w1 - ф) + (20)ту(/ру 
5(0 = (20)'%(0, Р/( = D)™, (p,., j=23..m, 

where D 15 the intensity оЁ noise sources, С and w,, ате Ше amplitude апа the frequency 
оЁ the external force, respectively. The boundary conditions are chosen as: p;=p;, фрФ 
Рин=б,» Фин=ф„: The initial conditions for the oscillators are chosen 10 be close to 
homogeneous ones (p,(0)=0.5, ¢,(0)=0.1) with а small random dispersion within 5=0.1. 

The parameters оё the chain are the unperturbed frequencies оё partial oscillators 
@, е external force parameters (amplitude С and frequency w,), е coupling 
parameters g, and g,, апа also the noise intensity D. In the model (6) two types оЁ 
coupling are used: diffusive coupling and one-direction coupling. So, g, 15 Ше diffusion 
coefficient, and g, characterizes а propagation оё perturbations along е chain. 

Let us consider first the effects of external synchronization in the homogeneous 
chain (6) with fixed length m=100 without noise sources (D=0). The homogeneous chain 
consists оЁ identical elements. So, we suppose that о=0)=1, j=1.2,...m. The value 
A,=0,-0, determines the mismatch оё фе excitation frequency from the unperturbed 
frequencies оЁ oscillators. We also introduce the phase differences в‚(:):ад„(:)-ф](:)‚ 
6,()=0w,-¢,(t). A perfect phase locking оЁ oscillators оп the main tone 15 given by the 

following conditions: 

6,=0, 6,20, p;=0, j=12..m. (7) 

In this case the phase differences are constant, and the oscillations are harmonic 

with the period equal to the period of the external force. According to a more general 
definition оё the phase locking [9] only the phase differences limitation (3) are needed. 

The synchronization оё е j-th oscillator оп the external frequency was detected 

numerically by the condition 
р -< 104, (8) 

where р-®/ю, 15 the relative mean frequency (winding number) оё the j-th oscillator. 
We consider the validity оё condition (8) for all oscillators оЁ the chain а$ а numerical 
criterium оё а global synchronization оё а chain (i.e. synchronization оЁ а chain 
elements). In the case оё global synchronization the condition (7) must also be valid for 
а! oscillators. If only а part of oscillators is synchronized, фе oscillations are not 
perfectly periodic (as in е case оЁ frequency clusters exist). In this situation the 

synchronization in the sense of (8) does not correspond to (7). 
We will study а region of the global synchronization а5 е parameters А., С, &› 8, 

are varied. Disregarding perturbations оё the partial amplitudes р it 15 possible 10 estimate 
the region оё global synchronization. Supposing in (6) that p=1, j=1,2,...m ме obtain 
from (7) the approximate synchronization conditions: 

C<Ia,)(g48) / в; 18,158, ©) 

The equality С=!АМ(е,+8,)/8, at 1A |<g, determines the external synchronization 
boundary оё е first oscillator оЁ the chain, assuming that all elements of the chain are 
mutually synchronized. The equality 1A, |=g, at C<IA, I(g,+g,)/g, corresponds to the 
boundary of mutual synchronization of all chain elements in condition that the first 
oscillator 18 synchronized with the external force. The estimation оЁ the global 
synchronization region in accordance with (9) does not reflect the dependence of 
synchronization effect on a chain length m. Notwithstanding, in some cases these 
estimations agree rather well with results оё numerical simulations. The conditions (9) 
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result in the impossibility оё global synchronization оё the chain with purely diffusive 
interaction оё oscillators (g,=0). On the contrary, numerical simulation shows Фаг @е 

finite length chain can be synchronized. But the synchronization region is very small even 
for а short chain (m=10-20). 

The calculation results оё the global synchronization boundaries are given in Fig. 5, 
а. The global synchronization region 5 is obtained for а chain with m=100 elements оп 
the parameter plane (A,,,C). The signs (°) апа (*) mean the numerically obtained points 
оё а boundary for the cases оё one-direction and combined coupling, respectively. Dashed 
lines mark the boundaries described by (9). The estimation (9) for the case of Fig. 5,a is 
in a well agreement with the numerical data. When a diffusive component of coupling 
prevails е one-direction coupling, then а distribution оЁ partial amplitudes p; influences 
essentially оп the dynamics of phases ¢. In these circumstances relations (9) do пог give 
a satisfactory estimation for synchronization boundaries. As it follows from simulation 
data, there exists а certain maximal value оё фе diffusive coupling parameter value g,"* 
when global synchronization is уег possible in а chain оё any length. Fig. 5, b shows the 
numerically calculated values оЁ а half-width band A, оё global synchronization а$ 
functions of a chain length at fixed external amplitude and different coupling component 
relations. The signs (о), (*), (x) mark the results for the cases оЁ one-direction coupling, 
combined coupling and purely diffusive coupling, respectively. It is well seen that the 
value A, tends to the certain constant level ав the т increases. For m220 а value оЁА, 
does not practically depend on the next increasing of a chain length. So, it is reasonable to 
suppose that in the presence of one-direction interaction of oscillators directed from an 
external excited element, a global synchronization can be observed for the chain of an 
infinite length. It takes place in the band of external frequencies of nonzero width. This 
width essentially depends оп the relationship between the coupling parameters g, and g,. 
As the diffusive coupling parameter g, increases, the synchronization band becomes more 
narrow. For the pure diffusive interaction the band width quickly goes to zero with m 
increasing. 

With crossing different parts оЁ the region S boundaries two scenarios оЁ the 
transition to global synchronization may be realized. In Fig. 5 two routes (Q and R) on 
the parameter plane corresponding to these scenarios are marked with arrows. The routR 

corresponds to the gradual simultaneous approaching of the mean frequencies ‹Б] оё all 
partial oscillators to е external frequency о,. Approaching to the boundary оё фе 
region $ from outside along direction О ме can observe external synchronization оЁ 
several first oscillators in the chain. If g;#0, the synchronization of the first oscillators 

с А; 
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Fig. 5. а) Region $ оё global synchronization of the homogeneous chain оё self-sustained oscillators (6) 
оп ше parameter plane (A,,C) for ,=0, ,=0.04 (°) апа g,=g,=0.04 (+). The dashed lines denote the 
boundaries оЁ region S, defined by №е conditions (9). The directions О and R marked by arrows 
correspond to different scenarios оё global synchronization; b) dependence оё the half-width оё the global 
synchronization band оп the chain length for g,=0, g,=0.04 (е); 8,=0.08, g,=0.04 (»); ,=0.08, g,=0 (). 
The amplitude of excitation is assumed to be equal C=0.1 
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Fig. 6. Distribution оё relative mean frequencies р.=0 /__along е chain when crossing different parts 
of the region $ boundary оп the parameter plane (&,,.C) Юг g,=g,=0.04: а) direction R (Fig. 5, а), 
A,,=0.031; 0.0315; 0.0305; b) direction Q ( Fig.5, а), A, 'О 04; 0. d?:9 ;0.039 

must be understood in a sense of (3). The frequency synchronization cluster is formed 
(j=1, 2,...k,m). For all oscillators belonging ю the cluster the relative frequencies p, 

satisfy the condition (8). Oscillatory regimes for аП elements оё the chain (including е 
synchronized ones) are quasi-periodic. With a distance till the synchronization boundary 
decreases а length оё cluster k increases tending 10 т. The evolution оЁ the distribution оЁ 
the relative frequenctes P along the chain with approaching 10 the region S boundary is 
given т Fig. 6, а, b. 

Consider the noise influence on the effect of global chain synchronization with the 
external frequency. In the presence оё Gaussian 8-correlated noise sources the perfect 
synchronization is impossible. In this case we can speak about effective synchronization 
оЁ self-oscillator only, i.e. about а phase locking during finite time intervals. However, if 
the noise intensity is small enough, the times of locking may be very long for some 
nonzero region оЁ mismaich А., values, and а mean frequency of self-sustained 
oscillations is equal to the external force frequency with high accuracy. Therefore, the 
usage of (8) as a criterion of the j-th oscillator synchronization is justified from an 
experimental point оё view both without noise and in the presence of noise. 

We will study the robustness оЁ global synchronization effect in the presence оЁ 
independent sources оё Gaussian §-correlated noise 1 each oscillator оё а chain. Consider 
the chain (6) of fixed length m=100 consists оЁ identical oscillators with combined type 
оё interaction. In Fig. 7, а some curves illustrate the dependence оё relative frequency оЁ 
oscillator with number j=100 оп mismatch A,, for different noise levels. It is well seen 
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1.00 4 
098 1 0.990 й 
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Fig. 7. Effect of noise оп global synchronization of the chain with g;=g,=0.04, С=0.06. а) Dependences 
оЁ the relative frequency оЁ the self-sustained oscillator with 100 on mismatch А., obtained for 
different noise levels: D=0.0 (curve 1), D=0.001 (curve 2), D=0.005 (curve 3), D= =001 (curve 4); b) 
variation of the relative frequencyp, along the chain for Ше given value of mismatchA, =0.02 апа ог two 
different noise intensities D=0.005 (curve 7) апа D=0.01 (curve 2) 
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Fig. 8. Spatio-time diagrams оЁ the phase behavior in 
а chain (6) аг g,=g,=0.04, С=0.06, 4 JAO 02 without 
noise (а) and wuh a noise of intensity D=0.01 the 
tone of gray colour correspond to a value of со:ф 
from -1 (black) till +1 (white) 

that the noise influence оп the chain 
synchronization is analogous to the case of 
one noisy oscillator synchronization. The 
region of effective synchronization dimi- 
nishes when the noise intensity D 
increases. For а small enough noise 
D=0.001 (x) the width оё а global synchro- 
nization region consists nearly 80% (o). 
For фе noise D=0.005 (2) it is nearly 
30%. For the case оё D=0.01 () there is 
no any synchronization region because the 
condition (8) is valid for all oscillators оЁ 
the chain only if A, =0. However, а few 
first oscillators are still remain synchro- 
nized. Fig. 7, b illu-strates how values оЁ Р, 
change along the chain for фе given 
mismatch A, =0.02 and two different noise 
levels: D=0.005, and D=0.01. In a case of 
D=0.005 фе k=13 first oscillators can be 
considered а$ synchronized ones. At 

D=0.01 the condition (8) is not satisfied even for the first oscillator of the chain. In Fig. 8 
the spatio-temporal diagrams of the chain are given. They show the behavior of phases of 
all oscillators of the chain in а region оё global synchronization. Without noise excitation 
а well- distinguishable structure оё diagonal strips is observed (Fig. 8, а). It corresponds 
to the regime of a phase wave propagation along a chain. The noise excitation destroys 
this structure (Fig. 8, b). It is clear, аг in the presence оЁ any noise (even very small) 
synchronization with the external frequency w,#w, can be achieved only for а finite 
number (thought it may be very large) of the first oscillators of the chain. 

5. Conclusions 

In this paper we have numerically studied the synchronization phenomena in a 
chain of coupled Van der Pol oscillators with noise. The numerical results obtained allow 
us to make a number of important conclusions. 

The frequency cluster structure observed in a chain of non-identical elements with 
diffusive coupling appears ю be sufficiently stable against uncorrelated Gaussian 
fluctuations added to each element. The cluster structure can be considerably destroyed in 
the presence of noise of large intensities. 

Cluster synchronization in the chain in the presence of fluctuations should be 
understood ав effective synchronization and characterized by е effective diffusion 
coefficient D . 

The amplitude dynamics may play ап essential role in creating the cluster structure. 
Cluster synchronization can also be observed in a chain modeled by the phase equations 
only. But this effect is realized in a considerably narrow range of coupling parameter 
values. Besides, the cluster structure appears to be more sensitive to noise perturbations. 

In a case оЁ harmonic external excitation of the first chain element е character оЁ 
interaction of oscillators plays the principal role. The presence of one-direction 
component оё coupling results 1 а possibility оё а realizing global synchronization with 
an external frequency for a chain of any length. There exists a region of external 
frequency variations in which the synchronization is observed. The width of this region 
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tends 10 а constant level when the chain length m increases. In the case of pure diffusive 
coupling external synchronization is possible only for the chain оё а finite length. 

Two scenarios оЁ the chain transition Ю the regime оЁ global external 
synchronization are observed. One of them corresponds to simultaneous frequency 
synchronization for all oscillators, and the other one - to the formation of group of 
externally synchronized oscillators. The number of elements of this group (cluster) 
increases with approaching to the synchronization boundary. 

And finally, е action оЁ independent sources of Gaussian d-correlated noise 
restricts а number оЁ chain elements which can be considered as synchronized in the 
sense of effective synchronization. The synchronization of a chain of infinite length 
becomes impossible in the presence of noise. 

This work is supported by Grant № REC-006 of the U.S. Civilian Research апа 
Development Foundation (CRDF) апа the RFBR (Grant Ne 00-02-17512). 
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КЛАСТЕРНАЯ И ГЛОБАЛЬНАЯ СИНХРОНИЗАЦИЯ B ЦЕПОЧКЕ 
КВАЗИГАРМОНИЧЕСКИХ АВТОГЕНЕРАТОРОВ С ШУМОМ 

Т. Е. Вадивасова, B.C. Анищенко, Г.И. Стрелкова, А.И. Фомин 

В работе исследуется влияние шума на эффекты синхронизации в цепочке 
осцилляторов Ван дер Поля. Анализируется режим частотных кластеров в неодно- 
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родной цепочке с шумом. Понятие эффективной синхронизации обобщается на 
случай пространственно распределенной системы. Исследуется также влияние 
амплитудных соотношений на поведение фаз осцилляторов. Рассматривается 
возможность вынужденной синхронизации однородной цепочки. Выясняется роль 
двух компонент связи (диффузионной и однонаправленной) и источников шума по 
отношению к эффекту глобальной синхронизации. 
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