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Abstract. Purpose. Studying the possibility of implementing a data classification method based on a spiking neural network,
which has a low number of connections and is trained based on local plasticity rules, such as Spike-Timing-Dependent
Plasticity. Methods. As the basic architecture of a spiking neural network we use a network included an input layer and
layers of excitatory and inhibitory spiking neurons (Leaky Integrate and Fire). Various options for organizing connections
in the selected neural network are explored. We have proposed a method for organizing connectivity between layers of
neurons, in which synaptic connections are formed with a certain probability, calculated on the basis of the spatial arrangement
of neurons in the layers. In this case, a limited area of connectivity leads to a higher sparseness of connections in the
overall network. We use frequency-based coding of data into spike trains, and logistic regression is used for decoding.
Results. As a result, based on the proposed method of organizing connections, a set of spiking neural network architectures with
different connectivity coefficients for different layers of the original network was implemented. A study of the resulting spiking
network architectures was carried out using the Free Spoken Digits dataset, consisting of 3000 audio recordings corresponding
to 10 classes of digits from 0 to 9. Conclusion. It is shown that the proposed method of organizing connections for the selected
spiking neural network allows reducing the number of connections by up to 60% compared to a fully connected architecture.
At the same time, the accuracy of solving the classification problem does not deteriorate and is 0.92...0.95 according to the
F1 metric. This matches the accuracy of standard support vector machine, k-nearest neighbor, and random forest classifiers.
The source code for this article is publicly available: https://github.com/sagl11/Sparse- WTA-SNN.
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Annomauyus. lenv. ViccnenoBanne BO3MOXKHOCTH peaH3aldd METoJa KJIaCCH(HUKAIWU JaHHBIX Ha 0a3e crailkoBoW Hei-
POHHOI ceTH, KoTopas 001aJaeT HU3KUM KOJHMUYECTBOM CBA3eH M 00ydaeTcss Ha OCHOBE MPABWJI JIOKAJIBHOW IIACTUYHOCTH
Spike-Timing-Dependent Plasticity. Memoosi. B xauecTBe 6a30BO apXUTEKTYpbl CHAMKOBOW HEWPOHHOW CETH HCIONB3Y-
€TCsl CeTh, BKIIIOYAIOIIAsi BXOAHOM CIIOM M CIIOM BO30OY)KITAIOIIMX M TOPMO3HBIX CIAHKOBBIX HEHpoHOB ¢ yreukoil (Leaky
Integrate and Fire). Mccnenyrorest pa3nuuHble BapHaHTBl OPraHU3allMU CBsi3eil B BRIOpaHHOW HEHPOCETEBOI apXHUTEKType.
[pennoxxeH MeTOA OPraHU3ALMH CBSI3HOCTH MEX]y CJIOSIMH HEHPOHOB, B KOTOPOM CHHANTHYeCKasi CBS3b (OPMUPYETCS C
HEKOTOPOI BEPOSTHOCTBIO, PACCYUTHIBAEMON HA OCHOBE TIPOCTPAHCTBEHHOTO PACIOIOKEHHS HEHPOHOB B cllosx. [Ipu aTom
OTpaHUYCHHUE 00JaCTH CBSA3HOCTH MPUBOAUT K 00JIee BHICOKOH Pa3peKEHHOCTH CBs3el B o0Owiel cetu. KomupoBaHue 1aHHBIX B
CIalfKOBBIE MOCJIEA0BATEILHOCTH MIPOBOIUTCS YAaCTOTHBIM CIIOCOOOM, a ISl JEKOANPOBAHUS MPUMEHSIETCS JTOTUCTHIECKast
perpeccusi. Pesynomamsi. B pesynbrare Ha 6a3ze IpeIoKEHHOTO METOa OpTaHU3aIliy CBI3EH peain3oBaH HA0Op apXHUTEKTYpP
CIaMKOBBIX HEHPOHHBIX CETEH C PA3TUYHBIMU KOS(PPHUINEHTAMH CBI3HOCTH JJIS PA3HBIX CIIOCB UCXOMHOM ceTh. [IpoBemeHO
HCCIIeJOBaHNE TTOJyYeHHBIX apXUTEKTyp CIAKOBBIX ceTell ¢ ucnonp3oBaHueM Habopa Free Spoken Digits, coctosmiero u3
3000 aynuosamuceii, coorBercTByronmx 10 kmaccam mudp ot 0 mo 9. 3axrrouenue. IlokazaHo, 4TO MpeIaraeéMblii METON
OpraHu3aluy CBA3ed Ul BBIOpaHHOW CIaliKOBOII HEHPOHHOM CeTH MO3BOJSET CHU3MUTH KOJNMYECTBO cBszed no 60% mo
CPaBHEHUIO C MOJHOCBA3HOH apXUTEKTypoi. IIpu 5TOM TOYHOCTH pemeHnst Kiaccu(pUKaUOHHOHN 3aJauy He yXyImaeTcs
u coctasiseT 0.92...0.95 mo merpuke F1. DT0 COOTBETCTBYET TOYHOCTH CTAaHIAPTHBIX KIACCU(PHKATOPOB Ha 0a3e MAIIWHBI
OTIOPHBIX BEKTOPOB, k OMMXKaNIIMX coceaeit U caydaiHoro jgeca. MICXomHblid KO 1T JaHHOW CTaThU MPEICTABICH B OTKPHITOM
nocryne: https://github.com/sagl111/Sparse-WTA-SNN

Knrouesvie cnosa: cnaiixoBas HeiiponHas ceth, STDP, paspexkeHnas cBA3HOCTS, free spoken digits dataset, kiaccuduxanus
ayauo.
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HHCTUTYT», http://ckp.nrcki.ru/.
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Introduction

One of the motivations for research on spiking neural networks (SNN) is to explore the possibility
of utilizing the abilities of the brain of living organisms in computer models. This fundamental direction
has recently acquired a more practical form, which is associated with progress in the creation of
neuromorphic chips that allow simulating bioinspired spiking neural networks on energy-efficient

*Pabora myOIUKyeTcst 10 MaTepHaliaM JI0KIaa, caeanHoro Ha koudepeniwun «Heliponndopmaruka — 2023».

Puvioxa P. b., Bracos JI. C., Manacypos A. U., Cepenxo A. B., Cooes A. I
240 W3Bectus By3os. [TH/I, 2024, 1. 32, Ne 2


https://doi.org/10.18500/0869-6632-003094
https://elibrary.ru/QTJDPC
https://github.com/sag111/Sparse-WTA-SNN
https://doi.org/10.18500/0869-6632-003094
https://elibrary.ru/QTJDPC

computing devices [1,2]. While many existing approaches are focused on offline learning of SNN with
subsequent transfer to neuromorphic chips, it is promising to create methods for this class of devices
that would allow online learning. These include learning methods based on local synaptic plasticity,
implemented using Spike-Timing-Dependent Plasticity (STDP), where the change in the weight of a
synaptic connection is proportional to the time interval from the arriving of a presynaptic spike to
emitting the postsynaptic spike. The relevance of STDP is due to the prospective possibility of hardware
implementation of SNNs with STDP. Therein, a synapse with STDP could be implemented on base
of a memristor [3-5], the change in conductivity of which depends on the duration of overlapping
presynaptic and postsynaptic voltage pulses.

Currently, there are several methods for training spiking neural networks with STDP [6-9].
One of the efficient approaches for solving classification problems is the SNN network with STDP
based on a three-layer architecture [10].

This architecture was previously used to classify images of handwritten digits [10, 11], real-valued
vector data and audio information [12]. Despite its efficiency, it is quite resource-intensive, so the
purpose of this paper is to study the possibility of reducing the number of connections in such an SNN.
This formulation of the problem is due to the presence of restrictions on the number of connections of
existing neurochips, which makes it relevant to reduce the computational complexity of SNN models.

The principles of sparse connectivity between neurons were studied earlier in a number of works
on spiking and other artificial neural networks. For example, a ~ 70% reduction in connectivity by
zeroing out weights that are below a given threshold in a network [13] consisting of two convolutional
layers that process input data and then pass it on to spiking convolutional layers allows to reduce power
consumption while maintaining the accuracy of image recognition on video in the IVS 3cls [14] dataset
at the level of 71.5%. In [15], limiting the number of connections per neuron by about 50% is shown
to reduce network power consumption and, at the same time, by training a multilayer convolutional
network using the backpropagation method, achieve good performance on MNIST problems (99.51%),
CIFAR-10 (94.10%), N-MNIST (99.53%), DVS-Gesture (98.20%). An SNN [16] in which connections
between neurons are set in a probabilistic way based on the spatial coordinates of neurons, shows the
accuracy of 97.8% on the handwritten digit and letter classification task from the EMNIST dataset.

Due to the possibility of spatial localization of neurons in layers in the chosen SNN architecture,
in this work we have chosen an approach to establish sparse connectivity based on the probabilistic
formation of connections in a given area. For this method, the effectiveness of using sparse connections
between different layers of the original SNN is investigated. According to experts [17], the greatest
effect from the use of SNNs implemented on neurochips is achieved when analyzing streaming data,
an example of which is audio data. Therefore, in this work, we used the Free Spoken Digit Dataset
(FSDD), an open benchmark for audio classification algorithms, as data for the study.

The main contribution of this article is:

o the effectiveness of the learning method based on local plasticity for the SNN with sparse
connections was evaluated using a set of audio data,

o the impact of the SNN connectivity level on the accuracy of the audio data classification problem
was assessed,

e the importance of using sparse connections between different layers of a three-layer SNN was
determined.

The article is organized as follows: Section “Data and preprocessing” describes the dataset,
methods for extracting significant features of audio and transforming at spike moments; Section
“Spiking Neural Network™ describes the models of neurons and synapses, the architecture of the spiking
network, and the learning algorithm; Section “Experiments” presents the results of experimental studies
of the selected sparse connectivity method for various configurations of SNN architectures; analysis of
the results and comparison with other approaches is presented in Section “Analysis of results”.
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1. Data and preprocessing

1.1. Dataset. The free-spoken-digit-dataset (FSDD) consisting of 3000 audio recordings of the
pronunciation of numbers from 0 to 9 in English is considered as a test classification task for testing the
proposed method. The FSDD dataset contains 10 classes of 300 WAV-format audio records, up to 1
second long. Examples of audio waveforms for some classes are shown in Fig. 1.

The dataset was formed as follows: 6 people pronounced the numbers from zero to nine 50 times
with different intonations and speed. In order to be able to consistently compare the accuracy when
classifying the dataset by various machine learning methods, the following splitting of data into test and
training samples is recommended by default: the first 5 out of 50 (10%) audio pronunciations by each
person in all classes are assigned to the test sample, the remaining 45 audio (90%) — to the training
sample.
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Fig. 1. An example of using three Gaussian receptive fields with different ;. k is the new vector of the z; component of the
input vector after GRF processing (color online)

1.2. Feature extraction. To feed data to the spiking neural network, a set of Mel-frequency
cepstral coefficients (MFCC) was obtained for the audio records using the fast Fourier transform (FFT)
and the discrete cosine transform. This is done using the open-source python package (ISC License)
for music and audio analysis — librosa [18]. Further, the average value of each MFCC coefficients is
calculated over audio length. The averaged values are normalized from 0 to 1. The result is a new vector
of K = 30 averaged and normalized MFCC coefficients (other features were set by default from librosa
package: the window size for Fourier transform is 250 ms, the stride is 64 ms).

1.3. Encoding into spike sequences. To improve classification accuracy when using SNN, at
the preprocessing stage, the resulting feature vector is processed using M Gaussian receptive fields
(GRF) (see Eq. (1)). To do this, the interval of values of the averaged and normalized MFCC coefficients
is divided into M equal intervals. In each interval j = 1,..., M, a Gaussian peak with center u; in the
middle of the j-th interval. The value of the component x; of the input vector is replaced by a set of
values Gj(x;) characterizing the proximity of x; to the center of the j-th receptive field:

G () = exp (W) | ()

g2

The value of the component z; of the input vector is replaced by a set of values G(x;) characterizing
the proximity of x; to the center of the j-th receptive field. Thus, the dimension of the input increases
by the factor of M. Fig. 1 shows an example for three receptive fields. In this research we used

M = 7 as found to be optimal in an earlier work with the same dataset [12], 0 = W,
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Table 1. Results of the first stage of the research

Type of connection between layers of neurons
From excitatory | From inhibitory From input From input .
to inhibitory to excitatory to excitatory to inhibitory Vmax, Hz | Layer grid ¥
Counter- " Fixed
partnership All-to-all All-to-all Amount(10%) 550 — 0.93
Sparse
(Peze inh = 0.6; 550 Regular 0.93
R(’.:L‘cii’nh = 025)
Sparse " Fixed
(Pope s = 0.7, Aol All-to-all Amount(10%) 550 Irregular | 0.93
Rexc_inh = 055)
Sparse
(Pinnh_exe = 0.4; 550 Regular 0.94
R’inhicwc = 07)
Counter- Sparse All-to-all Fixed
partnership (Pinh_exc = 0.7; Amount(10%) 850 Irregular 0.93
Rinh_emc = 08)
Counter- " Probabilistic Fixed .
partnership All-to-all (Pron coe =0.4)  Amount(10%) 950 Not applicable | 0.94
Counter- Probabilistic .
. All-to-all* All-to-all 550 Not applicable | 0.62
partnership (Pyen_inh = 0.2) PP

* means excluding connections between counter-partners

wj = min, +(max, — ming) - #;1, where max, and min, are maximum and minimum values of x;
among all training set vectors.

Frequency coding is used to transform the components of the input vector into sequences of
spikes: each element of the input layer emits spikes with a certain frequency v during the entire time
te = 350 ms, of processing the current audio:

V = Vmax * K, 2)

where vpax 18 the maximum frequency constant, & is the value of the input vector component after
preprocessing. After presenting an audio recording, the input are silent for ¢, = 50 ms so as to allow
the neuron potentials relax. The remaining parameters set during the experiments are presented in the
Table 1.

2. Spiking Neural Network

2.1. Neuron model. The spiking neuron models in this work are Leaky Integrate-and-Fire (LIF),
in which the state variable, membrane potential V' (¢), changes in accordance with Eq. (3), as if the
neuron’s membrane was an electric capacitor with capacitance C}, and with a leakage that would drive
the potential to its resting level Ve in the characteristic time Ty, if the synaptic input gy, (t) was
absent.
av V(t)—V; Tsyn (2
oy () rest+ syn()' (3)
dt Tm Cn

The postsynaptic current gy, () is described by the synaptic conductance model (see Eq. (4)): each

incoming synapse 4 has the conductance g;(t) - w;(t), through which the neuron’s membrane is charged
by a voltage source with the potential Erey exc/inh-

Isyn(t) = Z wi(t)gi(t) ’ (Ereviexc/inh - V(t)) : (4)
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Fig. 2. An example of the Leaky Integrate-and-Fire neuron dynamics

The synaptic conductance increases by Ogyy, exc/inn Whenever a spike arrives (let the input spike times
be denoted ¢,,¢), and then relaxes to zero (see Eq. (5)). The trainable strength of the synapse is modelled
by modulating the synaptic conductance with the non-dimensional weight w;(¢) in the range [0; 1].

dg;(t) gi(t)
= — . h O (t—thre) . 5
dt Toyn_ exc/inh T Osym_excinh O (= pre) ©)

As soon as V/(t) reaches the threshold Vi, the neuron fires an output spike, and V'(¢) is
instantaneously reset to Vieset. After a spike, a refractory period t,..; begins during which the input
spikes have no effect on the neuron. The operation of a LIF neuron is schematically depicted in Figure 2.

In order to prevent the neurons from firing too many or too few spikes, the threshold potential is
adaptive, increasing by ©®" whenever a spike is fired and gradually relaxing to Oyt

dVin _ Va(t) -

®res
dt i SO H(V() - Vin(t), (6)

where H is the Heaviside step function.

The constants of the neuron and synapse models are chosen following prior work on similar
SNN architectures [10, 12]. Their values, different for different layers of the network, are in Table 2.
There, the values of the postsynaptic current constants Eey exc/inh> Osyn_exc/inhs @0d Tsyn exc/inh depend
also on whether their synapse ¢ is excitatory or inhibitory, and are denoted with subscripts syn_exc or
syn_inh respectively.

Table 2. Neuron model constants for neurons of excitatory and inhibitory layers

Parameter Exc. neurons | Inh. neurons
Refractory period t,.f, ms 4 3
Membrane leakage t,,,, ms 130 30
Membrane capacitance CY,, pF 100 10
Synaptic conductance increment ¢sypn, S 1 1
Conductance decay constant for exc. synapses Tsyn exc, MS 1 1
Conductance decay constant for inh. synapses Tgyy inh, ms 2 2
Dynamic threshold resting value ®yest, mV —72 —40
Dynamic threshold increment ®, mV 0.05 0
Membrane potential resting value Viest, mV —65 —45
Initial threshold Vi, (¢ = 0), mV —52 —40
Reversal potential for excitatory synapses Erey exc, mV 0 0
Reversal potential for inhibitory synapses Fiey exc, mV —160 —160
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2.2. Connections between neurons. Synaptic connections in SNNs ensure the transfer of
information between neurons via spikes. Connections between neurons can be with static or dynamic
weights. The weight of the connection, multiplied by the spike passing through it, determines the
contribution of the spike to the change in the membrane potential of the postsynaptic neuron.

Synapses with constant weights do not change their value when simulating an SNN. Dynamic
weights change according to the law of plasticity. Spike Timing Dependent Plasticity (STDP) [19] is
used as a plasticity model in this paper. In this approach, the weight of the synapse is adjusted depending
on the relative arrival time of the pre- and post- synaptic spikes within a short time interval (tens of
milliseconds). If the presynaptic neuron emits a spike just before the postsynaptic neuron sends its own,
then the weight of the connection will increase. In the opposite case, if the presynaptic neuron emitted a
spike already after the postsynaptic neuron, then the weight of this synapse will decrease. Thus, the
change in weight is described by the following formulas: [19] according to Eq. (7) each time an input
spike arrives at ¢, Or a postsynaptic spike occurs at £t

=
Aw = (7)
AT -exp (—M) if thost < tpre-

T

*A_ - €Xp (tpOStitpre> if tpost > tpre;

If tpost = tpre, such pair of spikes is by convention excluded from consideration and does not cause any
weight change.

2.3. SNN architecture. The SNN considered in this study (see Fig. 3) is a modification of
an SNN [10] consisting of three layers, input, excitatory and inhibitory. The input layer consists of
K - M spike emitters, one for each component of the preprocessed input vector, that emit spikes with
the mean rate depending on the values of the corresponding input vector components, as described
in Section “Encoding into spike sequences”. Spikes emitted by the input layer arrive at synapses that
connect the input layer to the excitatory and inhibitory layers. These layers contain The excitatory
layer processes incoming spike sequences from the input layer. The connections from the input spike
emitters to the excitatory neurons (the topology of which is described in more detail in Section “Sparse
connectivity”) are excitatory, and have their weights changed by Spike-Timing-Dependent Plasticity
(STDP). The inhibitory layer is used to create competition between neurons in the excitatory layer.
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Fig. 3. Three-layer SNN architecture
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For each excitatory neuron, there exists one associated inhibitory neuron, which receives spikes from
it via an excitatory synapse with a fixed weight weyxc—inn > 0 (marked with a black arrow in Fig. 3).
This inhibitory neuron is connected to all other neurons of the excitatory layer, except the one it gets
spikes from, by static inhibitory connections with a fixed weight winn—exc < 0 (in Fig. 3 indicated by
the area between the inhibitory and excitatory layers). Additionally, for greater activity of neurons in the
inhibitory layer, static connections are introduced from the input layer with weights winput—inn > 0.

2.4. Sparse connectivity. In the spiking neural network used, the layers of excitatory and
inhibitory neurons are two-dimensional square areas, located mirror-symmetrically relative to each other.
Neurons in layers can be located inside a square layer either randomly (irregular grid) or structured at
the nodes of a regular square grid. The formation of sparse connections between the layers of excitatory
and inhibitory neurons occurs as follows:

1. The presynaptic neuron (from which connections will begin) is projected onto the square area of
the postsynaptic neurons layer (with which the connection is established).

2. The projection of the presynaptic neuron will be the center of a circle of a certain radius on the
postsynaptic layer. Only those neurons of the postsynaptic layer that fell into the region of the
circle can, with some probability, establish a connection with the presynaptic neuron.

This process is shown in Figure 4 and is carried out for all neurons of the presynaptic layer.
Thus, the sparse connectivity method is characterized by the following parameters:

e probability P of the formation of a connection between neurons of different layers falling into the
specified areas;

o the radius R of the area for connections;

e the regularity or irregularity of the network of neurons in the layer to which the connection is
established.

In this work, this method is used to organize connections between the following layers of neurons:

o From the layer of excitatory neurons to the layer of inhibitory ones. For synapses with static
positive weights (Wezc inn > 0), the following configuration parameters are selected: connection
formation probability (P... inn), connection region radius (R, inn) and the grid regularity of
the layer of inhibitory neurons. B

e From the layer of inhibitory neurons to excitatory ones. For synapses with static negative
weights (Winp exze < 0), the following configuration parameters are selected: connection formation
probability (F,p exc), connection region radius (F2i,n eac) and regularity of the excitatory neurons

layer grid.
. . . . . ™ L -
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Fig. 4. An example of the sparse connectivity method
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The size of the 2D areas for layers of excitatory and inhibitory neurons was initially set to select
the R coefficient in the conducted experiments (1 mm x 1 mm). The size can be set to any size; what is
important is the ratio of size and radius, which characterizes the sparse connectivity.

For the input layer, consisting of spike emitters, a clear position in space is not specified since
when establishing connections from emittors, only the probability of its formation is used, and the
projection of the neuron on the postsynaptic layer is not built. In this case, Pyep inn and Pyep exc are
adjustable hyperparameters, and values found for them will be presented below, in Table 1.

2.5. SNN learning. The process of adjusting the weights during training in the layer with STDP
(from input to excitatory neurons) is performed using Algorithm.

Algorithm. SNN learning process

Input: training data matrix X*"%¥" of preprocessed input vectors x; of each audio in dataset, neuron
parameters, plasticity parameters, synapse parameters, initial weight distribution
Optlmlzed parameters: Nepocha Vmazxs Pe:pciinhs Pinhiea:ca Pgeniea:ca Pgenjnha Rezcﬁinh: Rinhiexc
Constant network parameters: Table 3
Output data: SNN model, vector of neuron activity frequencies in the excitatory layer for each example
of the training set v;.
1: Neural network initialization: neurons, synapses and initial weights.
2: for k in Nepocn, do
3:  for each x; in X*"*" do
for each k; ; in x; do
Generating spikes sequences x; ' with length ¢, and frequency v; ;.
end for
Simulating SNN during ¢ time steps using spikes sequences array x; 7.
Simulating SNN without inpus signal during ¢,, time steps for membrane potential resting
to initial value.
9: end for
10: end for
11: Stop changing weights.
12: Collecting and saving frequencies vector of excitatory neuron layer activities v; during presenting
samples of input data.
13: Return SNN model, vector of neuronal activities frequencies v;.

SIS A

After obtaining the trained SNN, the general process of classifying an audio recording consists of
the following steps:
1) preprocessing of audio test samples using MFCC and GRF methods,
2) conversion of the received values into spike sequences,
3) simulation of the SNN and calculation of the excitatory neuron activity frequency vectors,
4) defining audio sample class from frequency vector.

3. Experiments

The experiments were carried out in two stages. At the first stage, the feasibility of using sparse
connectivity in different layers of the chosen SNN architecture was investigated.

To do this, sparse connectivity was applied in turn to the links between different layers. Based on
the results of the experiments, layers were selected the use of sparse connectivity in which led to the
best results. At the second stage of the experiments, we studied the application of sparse connectivity
to several layers of the network at once. All experiments were carried out in the mode with automatic
selection of hyperparameters based on the open-source HyperOpt library [20].
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Measuring accuracy was performed using the micro-averaged F1-score metric which is calculated
from the precision and recall of predicting that class (Eq. 8), where the precision is, for each class L, the
number True Positive (TPy) of samples from the class L predicted correctly as belonging to L, divided
by the total number of samples predicted as belonging to L, including the False Positive (FPy,) samples
that do not actually belong to L but were misattributed to it by the network. Recall is the number of
true positive samples divided by the number of all samples belonging to L, including the False Negative
(FPr) samples that belong to L but were not identified as such by the network.

.. EL TPL
Precision = )
TP
Recall = ZL L (8)

ZLTPL+ZLFNL,

Fl— 2 - Precision - Recall

Precision + Recall

The results of the first stage of experiments are presented in the Table 1.

Baseline for comparison is the accuracy of the original SNN architecture, which was 0.93 F1 with
the network parameters specified in the Table 3 and the maximum spike frequency viyax = 550 Hz.

As can be seen from the Table 1, when replacing the initial connections with a fixed number
(10% of all-to-all connections) between the input and inhibitory layers with sparse ones there is a
significant decrease in the accuracy of audio classification (the best result on HyperOpt is 0.62 F1 at
Pyen inh = 0.2. In this regard, in the experiments at the second stage, only the initial connection was
used between the input and inhibitory layers, which is also discharged with the probability of connection
formation Py, i, = 0.1. It is also worth noting that the regularity or irregularity of the network of
excitatory and inhibitory neurons does not significantly affect the classification accuracy, so the variation
of this parameter can be neglected.

Thus, after the first stage of the study, the following intermediate conclusions were made:

e The sparse connectivity method works successfully in all connectivity areas of neuron layers,
except for the area of connections between the input and inhibitory layers.
e The regularity or irregularity of the network of neurons in the layer has no significant differences.

The results of the second stage are presented in the Table 4. The best classification accuracy was
achieved by architectures 3 and 4, in which sparse connectivity was simultaneously used to connect
the following layers: a) input and excitatory; b) inhibitory and excitatory. In both areas, in the original
architecture, the layers are connected in an all-to-all manner. Thus, the use of the sparse connectivity
method can significantly reduce the number of connections between layers without sacrificing accuracy.

Table 3. Network and synapse parameters

Parameter | Value Description
Wexc—inh 13 Static synaptic weights from exc to inh neurons
Winh—exc —12 Static synaptic weights from inh to exc neurons
tp 50 ms | Intervector pause
te 350 ms | Spike train length
N 400 Number of neurons in every layer
A~ 0.55 STDP weight depression amplitude
AT 1.0 STDP weight potentiation amplitude
T_ 20 ms | STDP depression time window constant
T4 20 ms | STDP depression time window constant
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Table 4. Results of the second stage of the research

Type of connection between layers of neurons Fraction of
FI'OII‘I eyfci.tatory From in-hibitory From. input Fr-om. il-lpllt Virwo, Hz | remaining | Fi
to inhibitory to excitatory to excitatory to inhibitory connections
(P, e 09; (P e 0.2; All-to-all Fixed 950 0.95 | 0.94
exc_inh — Y.7, inh_exc — Y&, -l0= . .
Rezc_inh = 08) Rinh_ewc = 08) Amount(l()%)
Sparse - .
Probabilistic Fixed
(Pewciinh = 09> All-to-all* _ 950 128.21 0.94
Reve sun = 0.8) (Pyen_eze =0.4)  Amount(10%)
Sparse e .
Counter- Probabilistic Fixed
: (Pinh_exc =0.4; _ 950 40.31 0.96
Partnership Rinh vae = 0.9) (Pyen,_exe =0.4)  Amount(10%)
Sparse Sparse ) S .
(Peac inn = 085 (Pauneae = 025 PP IObabﬂ_‘sgz 5 Am:ﬁ&? o 50 45.09 | 0.95
- - en_exc — V. 0
Remc_vinh, =0.3) Rinh_ea:c = 0.95) e

* - excluding connections between counter-partners

Also, according to the results of the study at both stages, it is possible to obtain the overall average
value of the probability of the formation of a connection between the input and excitatory layers at the
level Pyep e = 0.4

4. Analysis of results

According to the results of the study, carried out in two stages, it was found that the sparse
connectivity method can be successfully applied to the connections between layers, initially organized
according to the all-to-all principle, significantly reducing the number of connections in the SNN. The
best result in reducing the number of connections was achieved on an architecture in which sparse
connectivity was implemented between a) input and excitatory, b) inhibitory and excitatory layers, and
amounted to 40.3% of the original number (reduction from 252400 connections to 101746) without
losing accuracy on the audio classification

problem compared to the original SNN Table 5. Comparison of various machine
architecture. Table 5 presents the results of learning methods on the FSDD dataset
comparing the accuracy of various machine using MFCC
learning methods on the problem of classifying Machine learning method F1
audio recordings from the FSDD set converted SNN with all-to-all connectivity | 0.93
to 30 MFCC. It is shown that the accuracy (by SNN with sparse connectivity | 0.90
the Fl-score metric according to Eq. (8)) of Random Forest 0.96
classification of audio data by means of SNN k-Nearest Neighbors 0.97
is comparable to the results of classification by Support Vector Machine 0.95
classical methods of machine learning. Multilayer Perceptron 0.90

Conclusion

In the present work, we evaluated the efficiency of using the sparse connectivity method in a
three-layer spiking neural network consisting of input, excitatory, and inhibitory layers for a little-studied
problem of classifying an audio recording with SNN based on local plasticity. The connections between
layers of neurons are established within a limited area of neurons using a given probability. Testing this
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method on an audio classification problem showed that the number of connections in an SNN can be
reduced by 60%. In this case, the accuracy of solving the classification problem is also achieved at
the level of conventional machine learning classification methods. Thus, the prospects for using this
method to reduce the computational complexity of spiking neural networks can be explored in relation
to various classification problems.
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