

Изв. вузов «ПНД», т.9, № 4,5, 2001

УДК 548; 537.611.46

ВОЛНОВЫЕ ПУЧКИ ОБРАТНЫХ ОБЪЕМНЫХ МАГНИТОСТАТИЧЕСКИХ ВОЛН ПРИ ОДНОВРЕМЕННОМ РАЗВИТИИ ПРОЦЕССОВ САМОМОДУЛЯЦИИ И САМОФОКУСИРОВКИ

Г.М. Дудко, Ю.А. Филимонов

В рамках подхода, основанного на численном решении нелинейного уравнения Шредингера, исследовано распространение волновых пучков обратных объемных магнитостатических волн в случае одновременного проявления эффектов самомодуляции и самофокусировки. Определены условия, при которых оба процесса самовоздействия протекают либо бесконфликтно, либо взаимно подавляют друг друга.

Известно [1], что для обратных объемных магнитостатических волн (ООМСВ), распространяющихся в касательно намагниченных пленках железоиттриевого граната (ЖИГ), выполняются условия, необходимые для появления модуляционной неустойчивости относительно как продольных

$$\beta_{i}\gamma < 0, \tag{1}$$

так и поперечных возмущений

$$\beta \gamma < 0, \tag{2}$$

где $\beta_{l,i} = \partial^2 \omega / \partial^2 k_{l,i}$ характеризуют дисперсионное и дифракционное расплывание волны, ω – частота, $k_{l,i}$ – продольная и поперечная составляющие волнового вектора ООМСВ, $\gamma = \partial \omega / \partial |\phi|^2$ – коэффициент нелинейности, ϕ – безразмерная комплексная амплитуда волны. При амплитуде волны ϕ больше некоторого порогового значения ϕ_{th} развитие этих неустойчивостей может приводить, соответственно, либо к самомодуляции и образованию солитонов огибающей ООМСВ [2,3], либо к самофокусировке волновых пучков ООМСВ [4–7].

До сих пор указанные эффекты самовоздействия ООМСВ как в численных, так и в лабораторных экспериментах наблюдались независимо друг от друга. В [2,3] возможность самофокусировки волны игнорировалась ввиду использования в качестве модели исследования одномерного нелинейного уравнения Шредингера, описывающего эволюцию огибающей МСВ только в направлении распространения волны. А в работах [4–7] неустойчивость волнового пучка ООМСВ проявлялась, напротив, лишь относительно процессов самофокусировки и самоканализации. Это было связано с тем, что в [4,7] рассматривалось распространение в изолированных пленках ЖИГ чисто дипольных ООМСВ, для которых соотношение коэффициентов дисперсионного расплывания β, и дифракции β, имеет вид

$$\xi = \beta / \beta << 1.$$

Однако в двуслойных ферритовых структурах [8] или пленках с поверхностной анизотропией типа «легкая ось» [9] за счет взаимодействия ООМСВ с обменными модами структуры возможно формирование участков дисперсии, где по аналогии со случаями взаимодействия обменных мод с прямыми объемными [10] или по-верхностными [11] магнитостатическими волнами коэффициент дисперсионного расплывания β₁ может существенно возрасти, и величины ξ способны принимать значения

$$\xi \sim 1. \tag{3}$$

В этом случае пороговые значения амплитуды ООМСВ φ_{th}^{l} и φ_{th}^{l} , необходимые для появления модуляционной неустойчивости относительно, соответственно, продольных и поперечных возмущений с волновыми числами Q_l и $Q_l(Q_l \sim Q_l)$, выравниваются ($\varphi_{th}^{l} \approx \varphi_{th}^{l}$), и логично ожидать появление параллельного развития эффектов самомодуляции и самофокусировки.

Цель данной работы – численно исследовать распространение волновых пучков ООМСВ в случае одновременного протекания процессов самомодуляции и самофокусировки.

Постановка задачи

В качестве модели использовалось нестационарное двумерное уравнение Шредингера

$$i(\partial \varphi/\partial t + V_g \partial \varphi/\partial x) + \frac{1}{2}\beta_i \partial^2 \varphi/\partial x^2 + \frac{1}{2}\beta_i \partial^2 \varphi/\partial y^2 - \gamma |\varphi|^2 \varphi + i\alpha \varphi = 0$$
(4)

с начальными

$$\varphi(x,y,0) = \begin{cases} \varphi^{0}\eta(y), & x = 0, & |y| \le a/2 \\ 0, & x = 0, & a/2 < |y| \le L_{y}/2 \\ 0, & 0 < x \le L_{x}, & |y| \le L_{y}/2 \end{cases}$$
(5)

и граничными условиями

$$\begin{split} \varphi(0,y,t) &= \begin{cases} \varphi^{0}\eta(y), & |y| \le a/2, & t > 0\\ 0, & a/2 < |y| \le L_{y}/2, & t > 0, \end{cases} \\ \varphi(L_{x},y,t) &= 0, & |y| \le L_{y}/2, & t > 0, \\ \varphi(x,-L_{y}/2,t) &= 0, & 0 < x < L_{x}, & t > 0, \\ \varphi(x,L_{y}/2,t) &= 0, & 0 < x < L_{x}, & t > 0. \end{cases} \end{split}$$

Здесь $V_g = \partial \omega / \partial k_l - групповая скорость волны; <math>\alpha$ – диссипативный коэффициент; L_x , L_y – длина и ширина, соответственно, ферромагнитной пленки; a – апертура возбуждающей антенны; $\eta(y)$ – функция начального распределения амплитуды волны в поперечном сечении пучка, которая при расчетах бралась в виде

$$\eta(y) = \begin{cases} \cos(\pi y/a), & |y| \le a/2\\ 0, & |y| > a/2. \end{cases}$$
(7)

Граничные условия (6) соответствуют режиму непрерывного возбуждения МСВ на входной антенне. Численное решение (4)-(6) проводилось при фиксированных значениях $V_g=2.89\cdot10^6$ см с⁻¹, $\beta_i=4.99\cdot10^4$ см²·с⁻¹, $\gamma=-7.00\cdot10^9$ с⁻¹. Ранее в работах [6, 7] применительно к чисто дипольным ООМСВ исследовался характер решений (4)-(6) в зависимости от уровня входной амплитуды φ^0 при указанных выше значениях V_g , β_i , γ и при $\beta_i=1.37\cdot10^3$ см²·с⁻¹. Было показано, что в этом случае имеют место лишь эффекты стационарной самофокусировки и самоканализации ООМСВ. Причем поведение волновых пучков с различными апертурными функциями $\eta(y)$ качественно подобно при одинаковых значениях усредненной по ширине антенны начальной амплитуды волновых пучков

$$\varphi_0^{\text{eff}} = 1/a \, \varphi_0^{0} \int_{-a/2}^{a/2} \eta(y) dy.$$
 (8)

С другой стороны, известно [10], что для параметров V_g и γ , близких к выбранным нами, самомодуляция магнитостатических волн может развиваться при значениях коэффициента дисперсионного расплывания $\beta_l \sim 10^5$ см² с⁻¹. Поэтому для нахождения режима одновременного протекания процессов самофокусировки и самомодуляции изучалась зависимость решений задачи (4)-(6) от амплитуды φ_0 на входе при различных значениях коэффициента дисперсионного расплывания β_l , меняющихся в пределах от величины $\beta_l = 1.37 \cdot 10^3$ см² с⁻¹, отвечающей случаю чисто дипольных ООМСВ, до $\beta_l = 6.00 \cdot 10^5$ см² с⁻¹, соответствующей по порядку величины дисперсионному расплыванию в области «обменной щели».

Значения параметров β_l из заданного диапазона имеют место, например, при распространении ООМСВ в ферритовой структуре, состоящей из двух пленок ЖИГ с разными намагниченностями насыщения ($4\pi M_0^{-1}=640$ Гс, $4\pi M_0^{-2}=1750$ Гс), толщинами ($d_1=4$ мкм, $d_2=15$ мкм) и значениями констант обменной жесткости ($A_1=0.5\cdot10^{-6}$ эрг·см⁻³, $A_2=1.0\cdot10^{-6}$ эрг·см⁻³). Величина внешнего подмагничивающего поля должна быть $H_0=600$ Э, параметр межслойного обмена $A_{12}=1.0\cdot10^{-4}$ эрг·см⁻², а параметры закрепления спинов на контактирующих поверхностях пленок $L_{1,2}\approx$ $\approx 2\cdot10^5$ см⁻¹. В частности, величина коэффициента $\beta_l= 6\cdot10^5$ см²·с⁻¹ наблюдается в окрестности резонанса основной моды ООМСВ пленки с бо́лышим значением намагниченности и обменной моды с номером 15 пленки с меньшим значением намагниченности, который имеет место при f=3132 МГц, k=237 см⁻¹.

Численные исследования показали, что одновременное развитие самомодуляции и самофокусировки волнового пучка при выбранных значениях V_g , β_t , γ и при β_t из диапазона [1.37·10³, 6.00·10⁵] происходит при условии

$$\xi > 0.8,\tag{9}$$

которому отвечают значения $\beta_l > 3.99 \cdot 10^4$ см²·с⁻¹. При $\xi < 0.8$ добиться появления эффекта самомодуляции наряду с самофокусировкой варьированием остальных параметров (a, α, φ_0) не удавалось.

Все множество решений (4)-(6) при ξ>0.8 можно разделить на две основные группы с качественно различным поведением волнового пучка ООМСВ в пленке. Решения, относящиеся к первой группе, отвечают «бесконфликтному» протеканию процессов самофокусировки и самомодуляции. Во втором случае процессы самовоздействия взаимно подавляют друг друга.

Рассмотрим далее названные типы решений применительно к волновому пучку ООМСВ при апертуре антенны *a*=0.3 см и при β₁=6.00·10⁵ см²·с⁻¹ для случая

среды без потерь $\alpha=0$ и для случая, когда диссипативный параметр $\alpha=3.5\cdot10^6$ с⁻¹, что соответствует пленкам ЖИГ с шириной линии ферромагнитного резонанса $\Delta H=0.2$ Э.

Среда без диссипации

Для иллюстрации «бесконфликтного» протекания процессов самовоздействия обратимся к рис. 1, где при эффективной амплитуде волны на входной антенне $\varphi_0^{\text{eff}=1.91\cdot10^{-2}}$ изображены распределение нормированной мощности ООМСВ ($|\varphi|/\varphi_0$)² вдоль координат *x* и *y* в фиксированный момент времени (рис. 1, *a*), а также динамика во времени распределения ($|\varphi|/\varphi_0$)² вдоль оси *y* в сечениях пленки с координатами $x_1=0.3$ см, $x_2=0.7$ см, $x_3=1.5$ см и $x_4=2.5$ см (рис. 1, *б*-*д*, соответственно).

Как видно из рисунка, при $\varphi_0^{\text{eff}}=1.91\cdot10^{-2}$ вдоль всей протяженности пленки по сфокусированному волновому пучку распространяется волна модуляции. Можно заметить, что в направлении *x* происходит ее постоянная трансформация. Так, если в сечении $x_1=0.3$ см (см. рис. 1, δ) амплитуда волнового пучка демонстрирует нерегулярные колебания во времени с едва намечающимся периодом, то при $x_2=0.7$ см (см. рис.1, a) период модуляции становится ярко выраженным. С ростом *x* увеличивается глубина модуляции волнового пучка, в результате чего он приобретает вид последовательности двумерных (2D) «солитоноподобных» импульсов, бегущих вдоль пленки (см. рис. 1, *г*, *д*). Скорость V_M распространения участков с максимальной амплитудой φ_{max} таких 2D импульсов, можно оценить с помощью соотношения

$$V_{M} = \Lambda_{M} / T_{M}, \tag{10}$$

где Λ_M и T_M - длина и период волны модуляции, соответственно. Из рис. 1, *а* можно оценить длину волны модуляции $\Lambda_M \approx 1.4$ см, а из рис. 1, *б*-*д* - период $T_M \approx 5.0 \cdot 10^{-7}$ с. В результате из (10) получим $V_M \approx 2.8 \cdot 10^6$ см с⁻¹, что близко к значению групповой скорости V_g ООМСВ.

Описанный выше режим бесконфликтного сосуществования процессов самофокусировки и самомодуляции реализуется в тех редких случаях, когда параметры задачи β_{l} , β_{l} и *а* подобраны так, чтобы усредненная амплитуда поперечного сечения пучка $|\phi^{eff}|$ (8), проведенного через координату *x* в точке максимального значения амплитуды волны модуляции $|\phi^{eff}_{max}|$, не превосходила порог неустойчивости волнового пучка относительно распада его на пару волноводных каналов [6,7]

$$|\varphi_{\max}^{\text{eff}}| < 2\varphi_{\text{th}}', \tag{11}$$

где ϕ'_{th} - порог появления самофокусировки [7] волнового пучка

$$\varphi_{\rm th}{}' = \pi / (2^{-1/2} a) (-\beta_t / \gamma)^{1/2}, \tag{12}$$

В рассматриваемом здесь случае условие (11) оказывается выполненным. При этом ситуация такова, что порог появления самофокусировки (12) несколько ниже порога самомодуляции $\phi_{th}^{~l}$. При подаче на входную антенну сигнала с $\phi_0^{\rm eff}$ =1.91·10⁻² ≈ $\phi_{th}^{~r}$ порог самомодуляции достигается лишь на завершающей стадии процесса самофокусировки и приблизительно равняется амплитуде сформировавшегося волноводного канала (пространственного солитона). При этом ввиду малой надкритичности развивающаяся волна модуляции имеет квази-гармонический характер. Амплитуда модулированного волнового пучка на гребне волны модуляции | ϕ_{max} | даже при 100-процентной модуляции удовлетворяет

Рис. 1. «Бесконфликтный» режим сосуществования процессов самофокусировки и самомодуляции при $\phi_0^{\rm eff}$ =0.0191 (ϕ_0 =0.030) и отсутствии диссипации

условию (11), и волновой пучок распространяется как целое, не испытывая тенденции к распаду.

Однако режим бесконфликтного сосуществования самофокусировки и самомодуляции может реализоваться только в узком диапазоне значений входных амплитуд φ_0^{eff} вблизи φ_{th}^{I} . В представленном случае уже при амплитуде $\varphi_0^{\text{eff}}=2.04\cdot10^{-2}$ (рис. 2) параллельное развитие самофокусировки и самомодуляции сопровождается лавинообразным нарастанием процессов сжатия каждого «гребня» промодулированного волнового пучка в продольном и в поперечном направлениях. Самофокусировка пучка приводит к увеличению амплитуды φ_{max} , которая, в свою очередь, приводит к нелинейному искажению волны модуляции и трансформации ее в кноидальную (рис. 2, г). Усредненная амплитуда поперечного сечения пучка, проведенного через вершину волны модуляции, $|\varphi_{max}^{\text{eff}}|$ может в два и более раз

Рис. 2. «Взаиморазрушающий» режим сосуществования процессов самофокусировки и самомодуляции при φ_0^{eff} =0.0204 (φ_0 =0.032) и отсутствии диссипации. Временные реализации построены в тех же точках *x*, что и на рис. 1

превзойти порог, характеризующий неустойчивость волнового пучка относительно распада его на систему нескольких волноводных каналов

$$|\varphi_{\max}^{\text{eff}}| > 2\varphi_{\text{th}}^{t}. \tag{13}$$

В результате происходит развал пучка. «Солитоноподобные» импульсы дробятся (рис. 2, *д*). Однако поскольку распад является вынужденным, спровоцированным пиковой амплитудой |ф^{eff}_{max}|, мощность, заключенная в каждом из вновь образовавшихся фрагментов, оказывается недостаточной для поддержания их формы.

Из рис. 2 видно, что для значения амплитуды входного сигнала $\varphi_0^{\text{eff}}=2.04\cdot10^{-2}$ поведение волнового пучка в сечениях с координатами $x \le x_1$ отвечает режиму, близкому к стационарной самофокусировке (рис. 2, б). На участке пленки $x_1 < x < x_3$

реализуется режим распространения с хорошо развитой волной модуляции, бегущей по сфокусированному пучку. Можно видеть, что на расстоянии $x \ge X_s \approx x_4$ от входной антенны процесс самофокусировки нарушается и промодулированный во времени волновой пучок распадается, приводя к пространственно-временному хаосу в распределении амплитуды.

Дальнейшее увеличение амплитуды φ_0^{eff} волны на входе приводит к тому, что точка X_s все ближе смещается к возбуждающей антенне. В области $x_1 < x < X_s$ характер поведения огибающей ООМСВ во времени по мере роста входной амплитуды меняется (подобно тому, как это было в [10]) от периодического до хаотического (при $\varphi_0^{\text{eff}} > 2.5 \cdot 10^{-2}$). Для поперечных сечений пучка с координатами $x > X_s$ наблюдается сложное нерегулярное поведение величины $|\varphi|$ как во времени, так и вдоль координаты у, вне зависимости от характера движения огибающей в области $x_1 < x < X_s$.

Диссипативная среда

Как известно, для того, чтобы эффекты самовоздействия в диссипативных средах оказались возможными в принципе, необходимо выполнение между длинами «нелинейности» $L_{nl} = V_g / (\gamma \varphi_0^{\text{eff}})$ и «диссипации» $L_{dis} = V_g / \alpha$ [4] соотношения

$$L_{\rm dis} > L_{\rm nl}$$
. (14)

При значениях диссипативного параметра α =3.50·10⁶ с⁻¹ «диссипативная длина» L_{dis}

Рис. 3. «Бесконфликтный» режим сосуществования процессов самофокусировки и самомодуляции в диссипативной среде при $\phi_0^{\rm eff}$ =0.0320 (ϕ_0 =0.050)

составляет примерно 0.8 см, а длина «нелинейности» $L_{\rm nl}$ для используемых нами параметров нестационарного двумерного уравнения Шредингера и при амплитуде сигнала порядка $3.2 \cdot 10^{-2}$ приблизительно равна 0.4 см. Следовательно, при таких уровнях входной амплитуды для выбранного параметра диссипации условие (14) выполняется и по аналогии с «бездиссипативной» средой можно ожидать появление одновременного развития самофокусировки и самомодуляции волнового пучка в плоскости пленки.

Обратимся к рис. 3, где для значения амплитуды входного сигнала $\varphi_0^{\text{eff}}=3.2\cdot10^{-2}$ показано поведение амплитуды огибающей волнового пучка в условиях «бесконфликтного» режима сосуществования различных процессов самовоздействия. Изображено распределение нормированной мощности ООМСВ $(|\varphi|/\varphi_0)^2$ вдоль координат *x* и *y* в фиксированный момент времени *t*=const (рис. 3, *a*) и зависимость от времени величины $(|\varphi(y)|/\varphi_0)^2$ в поперечных сечениях волнового пучка при $x_1=0.3$ см и $x_2=1.5$ см (рис. 3, *б*, *в*).

Наличие линейного затухания приводит к тому, что волновой пучок, начиная с некоторого значения продольной координаты, не может поддерживать свою форму и расплывается. Поэтому в «бесконфликтном» режиме сосуществования самомодуляции и самофокусировки волна модуляции распространяется лишь по частично сфокусированному пучку, сохраняющему, однако, свою целостность. Как видно из рис. 3, *а* самофокусировка пучка наблюдается на участке пленки с координатами $x \le 1$ см. Совместное действие самомодуляции и самофокусировки волнового пучка приводит к формированию при x=0.3 см последовательности «солитоноподобных» 2D-импульсов (рис. 3, 6). Из-за действия диссипации при x>1 см нелинейное сжатие не компенсирует дифракционное расплывание и ширина пучка заметно увеличивается (рис. 3, *c*), но регулярность в поведении волнового пучка как во времени, так и в пространстве не нарушается.

При «взаиморазрушающем» режиме (рис. 4) качественное поведение волнового пучка в диссипативной среде практически не отличается от его поведения в среде без потерь. Пучок на некотором расстоянии от входной антенны разрушается в результате развития неустойчивости относительно поперечных возмущений, вызванной критическими для процесса самофокусировки значениями амплитуды волны модуляции. Координата точки X_s в данном случае равна примерно 1.2 см (рис. 4, *a*).

Из рис. 4, \vec{b} , в видно, что в поперечном сечении пучка с координатой $x_1 < X_s$, форма пучка сохранена, а в поперечном сечении с координатой $x_2 > X_s$ наблюдается нерегулярное поведение нормированной мощности пучка как во времени, так и вдоль координаты у.

Локальные характеристики самомодуляции ограниченных самоподдерживающихся волновых пучков

Везде выше при обсуждении возможных режимов взаимовлияния самомодуляции и самофокусировки мы оперировали амплитудой, усредненной по поперечному сечению волнового пучка φ^{eff} . Однако, поскольку в сечении волнового пучка уровень амплитуды $|\varphi(y)|$ меняется от точки к точке, понятно, что должны существовать отличия в поведении волны модуляции в центральной части волнового пучка и на его периферии. В связи с тем, что известные подходы к исследованию распространения ограниченных волновых пучков, основанные на методе бриллюэновского рассеяния света [4] или методе подвижного микрозонда [12], позволяют получать данные о локальных характеристиках волны;

Рис. 4. «Взаиморазрушающий» режим сосуществования процессов самофокусировки и самомодуляции в диссипативной среде при ϕ_0^{eff} =0.0350 (ϕ_0 =0.055). Временные реализации построены в тех же точках *x*, что и на рис. 3

представляет интерес выявление локальных особенностей поведения самомодулированного волнового пучка ООМСВ.

На рис. 5 показано поведение во времени нормированной мощности ООМСВ $(|\phi|/\phi_0)^2$ (временные реализации и проекции фазовых портретов^{*}) в двух фиксированных точках пленки A=(1, 0) и B=(1, -0.15), положение которых внутри волнового пучка показано стрелками на вставке к рисунку. Координата $x_{A,B}=1$ см точек A и B выбрана из соображений $x_{A,B} < X_s$, то есть в области, где пучок при любом режиме сосуществования самомодуляции и самофокусировки поддерживает свою форму.

Сравнения проводились для случая диссипативной среды при трех различных значениях входной амплитуды ООМСВ φ_0 , равных 4.55·10⁻² (рис. 5, *a*), 5.00·10⁻² (рис. 5, *b*), 5.50·10⁻² (рис. 5, *b*), которым соответствуют следующие значения φ_0^{eff} : 2.9·10⁻², 3.2·10⁻², 3.5·10⁻². Как видно из рис. 5, *a* (*1*-4) самомодуляция при $\varphi_0^{=4.55\cdot10^{-2}}$ имеет квазигармонический характер. Фазовая траектория постепенно скручивается к предельному циклу. Из сопоставления временных реализаций можно заметить, что колебания величины ($|\varphi|/\varphi_0$)², совершающиеся на частоте волны модуляции $F_M \sim 4$ МГц, сдвинуты в точках A и B относительно друг друга приблизительно на четверть периода ($\Delta t \approx 1/(4F_M)$, см. пунктирную линию на рис. 5, *a*) и незначительно различаются по форме. Так, в центре волнового пучка участки

^{*}Наличие фазовых портретов позволяет более наглядно продемонстрировать качественные различия в поведении огибающей волнового пучка в его центральной части и на периферии.

Рис. 5. Поведение во времени нормированной мощности волнового пучка в точках наблюдения A и В в зависимости от уровня входной амплитуды при одновременном развитии процессов самомодуляции и самофокусировки в среде с диссипацией

спадания и нарастания величины $(|\phi|/\phi_0)^2$ симметричны относительно друг друга, а на периферии спадающий участок имеет точку перегиба, что хорошо видно на фазовом портрете.

Качественные отличия и временной сдвиг Δt становятся все более существенными при увеличении φ_0 . При φ_0 =5.00·10⁻² (рис. 5, 6, 1-4) временные реализации поведения огибающей ООМСВ становятся квазипериодическими. При этом в точке *B*, соответствующей периферии волнового пучка, на пологих спадающих участках зависимости ($|\varphi(t)|/\varphi_0$)² появляются мелкомасштабные осцилляции (рис. 5, 6, 3), отсутствующие в центральной части пучка. Сдвиг Δt между колебаниями в точках *A* и *B* становится равным половине периода, соответствующего доминирующей частоте самомодуляции $F_1 \sim 5$ МГц (рис. 5, 6, 1, 3).

По всей видимости, мелкомасштабные осцилляции на спадающем участке колебаний мощности ООМСВ в периферийной области пучка связаны с наложением на волну модуляции хвостов пространственного солитона, представляющих собой расплывающиеся бессолитонные части решения задачи, описываемой соотношениями (4)-(6).

Наличие временного сдвига между колебаниями величины $(|\varphi(t)|/\varphi_0)^2$ в точках *A* и *B*, а также увеличение этого сдвига с ростом φ_0 свидетельствуют об искривлении поверхности огибающей МСВ, связанном с зависимостью нелинейной групповой скорости волны от ее амплитуды.

При $\phi_0 = 5.50 \cdot 10^{-2}$ движение огибающей ООМСВ приобретает нерегулярный характер (рис. 5, *в*, *1*-4), хотя колебания величины ($|\phi|^2(t)/\phi_0)^2$ в центральной и периферийной областях пучка коррелируют друг с другом (всплески мощности в точках *A* и *B* никогда не происходят одновременно), что говорит об отсутствии при $x < X_s$ пространственного хаоса.

Заключение

Таким образом, в результате проведенных исследований показано, что

• для обратных объемных MCB, возбуждаемых антенной с конечной апертурой, при наличии большой дисперсии β_i≥β_i возможно параллельное развитие двух различных процессов самовоздействия: самофокусировка волнового пучка и самомодуляция волны;

• как для диссипативной, так и для бездиссипативной среды одновременное сосуществование названных эффектов может быть «бесконфликтным», позволяющим наблюдать их проявление на всей заданной протяженности среды, либо «взаиморазрушающим», приводящим к развалу волнового пучка. В первом случае, начиная с некоторого значения продольной координаты *x*, имеет место хорошо выраженная волна модуляции, бегущая по сфокусированному пучку. Во втором случае вдоль пленки можно выделить три участка с различным поведением волны: участок с режимом, близким к режиму стационарной самофокусировки; участок с хорошо развитой волной модуляции; участок, где процесс самофокусировки нарушается, и промодулированный во времени волновой пучок распадается, приводя к пространственно-временному хаосу в распределении амплитуды.

Рассмотрены локальные характеристики самомодуляции самоподдерживающегося волнового пучка ООМСВ. Показано, в частности, что колебания мощности в различных точках поперечного сечения пучка происходят с временным сдвигом Δt , нарастающим при увеличении амплитуды волны на входе.

Работа поддержана грантами РФФИ № 99-02-17660, РАН № 28, CRDF № REC-006 и Федеральной программой «Интеграция», проект № 696.3.

Библиографический список

1. Звездин А.К., Попков А.Ф. К нелинейной теории магнитостатических спиновых волн //ЖЭТФ. 1983. Т.84, № 2. С. 606.

2. Chen M., Tsankov M.A., Nash J.M., Patton C.E. Backward volume wave solitons in a yttrium iron garnet film // Phys.Rev.B. 1994. Vol. 49. P. 12773.

3. Chen M., Nash J.M., Patton C.E. A numerical study of nonlinear Schrödinger equation solutions for microwave solitons in magnetic films//J. Appl. Phys. 1993. Vol. 73. P. 3906.

4. Boyle J.W., Nikitov S.A., Boardman A.D., Booth J.G. Self-channeling and nonlinear beam shapping of magnetostatic waves in ferromagnetic films// Phys.Rev.B. 1996. Vol. 53, № 18. P. 12173.

5. Bauer M., Mathieu C., Demokritov S.O., Hillebrands B., Kolodin P.A., Sure S., Dotsch H., Grimalski V., Rapoport Yu., Slavin A.N. Direct observation of two-dimensional self-focusing of spin waves in magnetic films // Phys. Rev. B. 1997. Vol. 56, \mathbb{N} 14. P. 8483.

6. Дудко Г.М., Филимонов Ю.А. Самофокусировка ограниченных пучков обратных объемных магнитостатических волн в ферромагнитных пленках (Численный эксперимент) // Известия вузов. Прикладная нелинейная динамика. 1997.№ 6. С. 29.

7. Дудко Г.М., Филимонов Ю.А. Численное исследование явлений самовоздействия ограниченных пучков обратных объемных магнитостатических волн в ферромагнитных пленках // Известия вузов. Прикладная нелинейная динамика. 1999. Т.7, № 2–3. С. 17.

8. Высоцкий С.Л, Казаков Г.Т., Маряхин А.В., Филимонов Ю.А. Объемные магнитостатические волны в обменно-связанных феритовых пленках //ЖТФ, 1998. Т. 68, № 7. С. 97.

9. Веселов А.А., Никитов Д.С., Филимонов Ю.А. Поверхностные спиновые волны в ферромагнитных пленках // РЭ. 1997. Т. 42, № 9. С. 1097.

10. Дудко Г.М., Славин А.Н. Переход от модуляционной неустойчивости к хаосу в пленках железо-иттриевого граната // ФТТ. 1989. Т. 31, № 6. С. 114.

11. Kalinikos B.A., Kovshikov N.G., Kolodin P.A., Slavin A.N. Observation of dipole-exchange spin wave solitons in tangentially magnetised ferromagnetic films // Sol. St. Com. 1990. Vol .74, № 9. P. 989.

12. Валявский А.Б., Вашковский А.В., Стальмахов А.В., Тюлюкин В.А. Анизотропные свойства волновых пучков безобменных спиновых волн // ЖТФ. 1989. Т. 59, № 6. С. 51.

BEAMS OF MAGNETOSTATIC BACKWARD VOLUME WAVES AT SIMULTANEOUS DEVELOPMENTOF SELF-MODULATION AND SELF-FOCUSING PROCESSES

Dudko G.M., Filimonov Yu.A.

The propagation of magnetostatic backward volume wave beams was numerically investigated using the nonlinear Schrödinger equation for a case of simultaneous manifestation of self-modulation and self-focusing effects. The conditions of non-conflict or mutually damping development of both self-action processes were found.

Саратовское отделение Института радиотехники и электроники РАН Поступила в редакцию 30.10.01