Изв.вузов «ПНД», т.7, № 2,3, 1999

УДК 621.373;533.9

ВЛИЯНИЕ НЕЛИНЕЙНОСТИ ПЛАЗМЫ НА ПРОЦЕСС СТОХАСТИЗАЦИИ КОЛЕБАНИЙ, ВОЗБУЖДАЕМЫХ В ПУЧКОВО-ПЛАЗМЕННЫХ СВЧ-ГЕНЕРАТОРАХ

Ю.П. Блиох, М.Г. Любарский, Г.С. Нусинович, В.О. Подобинский

Рассмотрен ЛБВ-генератор с замедляющей структурой, частично заполненной плазмой, плотность которой меняется под воздействием возбужденной волны. Причиной изменения плотности является поперечная компонента силы высокочастотного давления. Показано, что дополнительный набег фазы волны, связанный с возникающей таким образом неоднородностью плотности плазмы, приводит к существенному понижению порогового значения тока пучка, при котором возникает стохастическая автомодуляция выходного сигнала генератора.

Введение

В 1998 году исполнилось пятьдесят лет открытию пучково-плазменной неустойчивости ¹ [1], послужившей основой плазменной электронике. Одним из направлений плазменной электроники является генерация и усиление мощного СВЧ-излучения в электродинамических структурах, заполненных плазмой – гибридных структурах. В этой области достигнуты значительные успехи, позволившие создать ряд мощных импульсных (с использованием релятивистских электронных пучков) [2,3] и непрерывных (с использованием нерелятивистских пучков) [4,5] источников СВЧ-излучения. На протяжении полувека интенсивного развития плазменной электроники получены многочисленные экспериментальные и теоретические результаты, позволяющие сейчас довольно глубоко понимать физику взаимодействия пучков заряженных частиц с плазмой. Однако один существенный аспект такого взаимодействия — влияние нелинейности плазмы на характер взаимодействия пучка с собственной волной гибридной структуры — остался, на наш взгляд, мало изучен.

Одним из проявлений нелинейности плазмы является изменение ее параметров, в частности, плотности, под воздействием распространяющейся в ней волны. Причиной этого может быть сила высокочастотного давления [6], вытесняющая плазму из области с высокой напряженностью высокочастотного поля, либо высокочастотный разряд, возникающий в области с достаточно большой амплитудой волны. Поскольку в плазменной электродинамической

¹ Впервые работа А.И.Ахиезера и Я.Б.Файнберга была помещена в отчет Украинского физико-технического института (УФТЙ) в 1948 году.

структуре дисперсия собственных волн определяется параметрами плазмы, то как в первом, так и во втором случаях фазовая скорость волны зависит от ее амплитулы.

Изменение параметров среды под действием распространяющегося в ней излучения является предметом изучения нелинейной оптики. В указанном выше примере среда (плазма) также меняет свои свойства (плотность) под действием высокочастотного излучения. Однако радикальным отличием данной задачи от рассматриваемых в нелинейной оптике является то, что изменяются те свойства среды, которые влияют не столько на процесс распространения излучения, сколько на процесс его возбуждения. В пучково-плазменном взаимодействии этот элемент является наиболее чувствительным к вариациям параметров среды, что связано с его резонансным характером.

Нелинейность плазмы, пронизываемой электронным пучком, характеризуется нелокальностью и распределенной обратной связью, превращающей рассматриваемую систему в генератор низкочастотных колебаний плазмы. Действительно, возникающие в области максимума СВЧ-поля возмущения параметров плазмы распространяются в виде собственных низкочастотных (ионно-звуковых, магнитозвуковых и др.) плазменных волн и влияют на условия возбуждения СВЧ-волн пучком, меняя тем самым величину поля в области возникновения возмущения. «Память» о возникшем возмущении параметров плазмы сохраняется в системе до тех пор, пока возмущение не покинет пространство взаимодействия.

Если кроме указанной выше распределенной обратной связи существует и цепь обратной связи для возбуждаемых пучком высокочастотных колебаний, то задача описания нестационарных процессов в такой системе сильно усложняется. Основной трудностью является наличие нескольких сильно различающихся временных масштабов: время установления продольного распределения амплитулы волны, время пробега сигнала по цепи высокочастотной обратной связи и время распространения низкочастотных медленных плазменных волн. представляется целесообразным рассмотрение различных более простых предельных случаев. Так, в работе [7] показано, что возбужденные продольной пондеромоторной силой распространяющиеся ионно-звуковые волны в системе без высокочастотной обратной связи приводят к ограничению мощности СВЧизлучения и развитию низкочастотной автомодуляции. Влияние продольной пондеромоторной силы на работу устройства с внутренней высокочастотной обратной связью – в плазмонаполненной ЛОВ – рассмотрено в [8]. Однако специфические условия (генерация вблизи частоты отсечки, низкая плотность плазмы) не позволили обнаружить здесь сколько-нибудь значительного эффекта. В работе [9] рассмотрен другой предельный случай: система с высокочастотной обратной связью (ЛБВ-генератор), в которой поперечная составляющая высокочастотного давления приводит к появлению нераспространяющихся возмущений параметров плазмы.

Ниже, в продолжение работы [9], более подробно исследовано влияние нелинейности плазмы такого типа на процесс стохастизации сигнала ЛБВ—генератора с плазмонаполненной замедляющей структурой.

1. Исходные уравнения

Отсылая читателя за подробностями к работе [9], изложим здесь схематически вывод исходных уравнений.

Рассмотрим нерелятивистский ЛБВ-генератор, замедляющая структура которого частично или полностью заполнена плазмой. Исходными уравнениями, описывающими работу такого генератора, являются уравнения возбуждения собственных высокочастотных волн структуры электронным пучком и уравнения, связывающие возмущения параметров плазмы с амплитудой возбужденных волн.

В отсутствие пучка распространение волны в продольно неоднородной волноведущей структуре описывается уравнением

$$\partial E_0/\partial t + v_g \partial E_0/\partial z + i(kv_g/v_{ph})(\partial v_{ph}/\partial n)\delta n(z)E_0 = 0. \tag{1}$$

Здесь $v_g = \partial \omega / \partial k$ — групповая скорость волны; $\delta n(z)$ — возмущение некоторого усредненного по поперечному сечению структуры значения плотности плазмы; $v_{\rm ph} = \omega / k$ — фазовая скорость волны; E_0 — ее комплексная амплитуда. Предполатается, что характерный масштаб L изменения плотности велик по сравнению с плиной волны, то есть kL > 1.

Если неоднородность плотности плазмы является заданной функцией координаты, то уравнения, описывающие возбуждение волны электронным пучком, ничем не отличаются от аналогичных уравнений для продольно неоднородной вакуумной структуры. Последние в модели «жестких дисков» имеют следующий вид:

$$\partial a/\partial \tau + \partial a/\partial \zeta - i\kappa \xi a = -1/(2\pi) \int_0^{2\pi} e^{i\varphi} d\varphi_0, \tag{2}$$

$$\partial^2 \varphi / \partial \zeta^2 = -\text{Re}(ae^{-i\varphi}).$$
 (3)

Здесь введены следующие безразмерные переменные: $\phi=\omega t-kz$ — текущая фаза частиц пучка в поле волны, ϕ_0 — ее значение в плоскости инжекции z=0; $\zeta=Ckz$ — безразмерная координата, нормированная на пространственный инкремент неустойчивости Ck; $\tau=C[\upsilon_g/(\upsilon_0-\upsilon_g)]\omega(t-z/\upsilon_0)$, υ_0 — скорость пучка; $a=(2/C^2)[eE_0/(m\upsilon_0\omega)]$ — безразмерная амплитуда волны, C — параметр Пирса, хорошо известный в теории ЛБВ и определяющий эффективность взаимодействия пучка с синхронной волной; $\xi=\delta n/n$ — безразмерное возмущение плотности плазмы; параметр $\kappa\sim C^{-1}(n/\upsilon_{\rm ph})d\upsilon_{\rm ph}/dn$ описывает чувствительность фазовой скорости волны к изменению плотности плазмы в структуре.

Уравнения (2) и (3) следует дополнить граничными условиями, описываю щими состояние пучка в плоскости инжекции ζ=0, и условиями прохождения сигнала по цепи обратной связи, которую будем считать линейной,

$$\varphi(0) = \varphi_0 \in [0, 2\pi), \quad \partial \varphi / \partial \zeta |_0 = 0,$$

$$a(\tau, 0) = qa(\tau - \theta, \zeta_{\text{out}}).$$
(4)

Здесь q — коэффициент обратной связи; θ — безразмерное время прохождения сигнала по цепи обратной связи; ζ_{out} — безразмерная длина пространства взаимодействия.

Предположим, что возмущения плотности плазмы обусловлены только силой высокочастотного давления \mathbf{F} = $-\nabla \Phi$. В конечном магнитном поле с напряженностью H_0 высокочастотный потенциал Φ определяется следующим выражением [6]:

$$\Phi = e^2/(4m\omega^2)[|E_z|^2 + \omega^2/(\omega^2 - \omega_H^2)|E_\perp|^2].$$
 (5)

Здесь E_z и E_{\perp} — продольная и поперечная компоненты высокочастотного электрического поля; $\omega_H = eH_0/(mc)$ — электронная циклотронная частота.

Пусть плазма и пучок расположены вблизи оси структуры. В этой области поперечная компонента поля возбуждаемой пучком симметричной моды мала по сравнению с продольной компонентой. Предполагая, что частота ω достаточно далека от циклотронной частоты ω _H, выражение (5) можно упростить

$$\Phi \cong e^2/(4m\omega^2)|E_z|^2. \tag{6}$$

В рамках сделанных предположений продольную компоненту силы высокочастотного давления можно оценить как

$$F_{\parallel} \sim \partial |E_z|^2/\partial z \sim |E_z|^2/L_{\parallel}$$

где характерный масштаб L_{\parallel} продольной неоднородности поля связан с пучковой неустойчивостью $L_{\parallel} \sim (Ck)^{-1}$.

Поперечный масштаб неоднородности поля волны в области распространения пучка и расположения плазмы по порядку величины совпадает с радиусом пролетного канала $R_{\rm p}$. Предположим, что выполняется неравенство

$$R_{v}Ck << 1, \tag{7}$$

которое позволит учитывать только поперечную компоненту пондеромоторной силы, приводящую к возбуждению поперечных колебаний плазменного столба. Минимальная частота таких колебаний $\omega_{\min} \sim C_A/R_p$. Здесь $C_A = H_0/(4\pi n_0 M)^{1/2}$ — альфвеновская скорость, M — масса ионов плазмы. Характерное время изменения силы — изменения амплитуды возбужденной волны — определяется временем запаздывания T. Предположим, что время запаздывания намного превышает период основной моды собственных колебаний плазменного столба

$$\omega_{\min}T >> 1. \tag{8}$$

В этом случае собственные колебания плазмы не возбуждаются и плотность плазмы пропорциональна силе высокочастотного давления

$$\delta n \sim |E_z|^2. \tag{9}$$

Связь (9) амплитуды волны с вариацией плотности плазмы позволяет записать (2) в окончательном виде

$$\partial a/\partial \tau + \partial a/\partial \zeta - i\gamma |a|^2 a = -1/(2\pi) \int_0^{2\pi} e^{i\varphi} d\varphi_0, \tag{10}$$

где

$$\gamma \sim \kappa \sim C^3(n_0/v_{\rm ph})dv_{\rm ph}/dn_0. \tag{11}$$

Полученные уравнения представляют простейшую модель ЛБВ-генератора с плазмонаполненной замедляющей структурой, которая учитывает нелинейность плазмы — изменение ее параметров под воздействием распространяющегося в ней излучения. Возможность описания такой нелинейности введением только одного добавочного слагаемого и одного параметра у обусловлена приведенными выше условиями, которые позволили связать локальные значения плотности и амплитуды волны. Условие (8) позволило исключить возбуждение распространя—ющихся в продольном направлении возмущений, сделав связь между амплитудой волны и плотностью плазмы локальной в пространстве. Локальность связи во времени обеспечивается условием (9), позволяющим исключить поперечные колебания плазменного столба.

Заметим, что в работе [7] рассмотрено возбуждение распространяющихся возмущений плотности плазмы продольной компонентой силы ВЧ-давления и их влияние на свойства СВЧ-усилителя. Естественно, такие возмущения появляются и в генераторе, но их роль в формировании спектра и мощности СВЧ-излучения теоретически еще не исследована. По-видимому, оба механизма – исследованный в данной работе и в [7] — действуют в реальных устройствах одновременно. В настоящее время мы не можем указать параметры (ток пучка, длина структуры, плотность плазмы и т.д.), при которых тот или иной механизм превалирует. Эта задача будет темой дальнейших исследований.

2. Механизм стохастизации

В отсутствие силы высокочастотного давления (γ =0) уравнения (4), (10) с соответствующими граничными условиями описывают вакуумный ЛБВ-генератор. Аналитические и численные решения этой системы представлены в [10,11]. Поведение такой системы аналогично поведению вакуумной ЛОВ, исследованной в [12,13], и поведению гиротрона, исследованного в [14]. При постоянном малом коэффициенте обратной связи q по мере возрастания тока пучка I_b (увеличение безразмерной длины $\zeta_{\rm out} \sim I_b^{1/3}$) сначала возникает генерация монохроматического сигнала, затем возникает регулярная и, наконец, стохастическая автомодуляция выходного сигнала генератора. Общая картина поведения системы (4), (10) при γ =0 представлена на плоскости параметров ($q,\zeta_{\rm out}$) (рис. 1, a.)

Отметим, что стохастическая автомодуляция возникает только при достаточно больших токах пучка, то есть при $\zeta_{\text{out}} \ge 5 \div 6$. Поэтому область значений ζ_{out} на рисунке начинается с $\zeta_{\text{out}} = 8$, где стохастическая автомодуляция присутствует при достаточно малых q.

Аналогичная область параметров для системы с γ =0.1 приведена на рис. 1, δ . Легко видеть, что порог самовозбуждения остается тем же, но область монохроматической генерации во втором случае существенно уже. Для объяснения такого влияния нелинейности плазмы на динамику системы рассмотрим кратко процесс стохастизации в вакуумном ЛБВ—генераторе.

2.1. Механизм стохастизации вакуумного ЛБВ-генератора. Нестационарные уравнения ЛБВ-усилителя содержат два семейства характеристик. Информация со входа усилителя передается на его выход частицами пучка и синхронной волной, имеющими скорости распространения v_0 и $v_{\rm g}$, соответственно. Поэтому значение выходного сигнала определяется значениями входного сигнала на отрезке времени $\Delta t = L(v_0 - v_{\rm g})/(v_0 v_{\rm g})$, где L — длина пространства взаимодействия. Если этот отрезок времени мал по сравнению со временем T прохождения сигнала по цепи обратной связи, то, казалось бы, его величиной можно пренебречь и считать, что выходной сигнал $E_{\rm out}(t)$ является некоторой функцией от входного сигнала $E_{\rm in}$ в момент времени $t-L/v_{\rm g}$ (или, с точностью до Δt , $t-L/v_0$). В безразмерных переменных ζ , τ интервалу Δt соответствует интервал $\Delta \tau = \zeta_{\rm out}$. Включив $\Delta \tau$ в общее время запаздывания θ , запишем уравнение, описывающее динамику генератора, в виде

$$a(\tau + \theta, 0) = F(a(\tau, 0)). \tag{12}$$

Уравнение (12) представляет собой точечное отображение функции $a(\tau,0)$ через дискретные промежутки времени. Свойства такого отображения

Рис. 1. Карта решений уравнений (4), (10) на плоскости параметров (q,ζ_{out}) при γ =0 (a); при γ =1 (δ)

тождественны свойствам отображения $x_{n+1}=F(x_n)$. При изменении параметров функции F (ток пучка и коэффициент обратной связи) неподвижная точка отображения x^* , определяемая уравнением $x^*=F(x^*)$, может потерять устойчивость и возникнет периодическая автомодуляция, которая при дальнейшем изменении параметров через цепочку удвоений периода сменяется стохастической автомодуляцией — известный сценарий Фейгенбаума перехода к хаосу [15].

Вернемся теперь к уравнениям (3), (10). Нетрудно видеть, что система уравнений допускает монохроматические решения вида

$$a(\tau,\zeta) = a_{\nu}(\zeta)e^{i\nu\tau}.$$
 (13)

Если амплитуда a_v и частота v удовлетворяют граничным условиям (4), то функции вида (13) являются решениями рассматриваемой задачи и описывают монохроматический режим генерации, являющийся аналогом неподвижной точки отображения (12). Функция отображения F определяется связью между величинами амплитуд выходного и входного сигналов. Таким образом можно перейти от системы уравнений в частных производных к точечному отображению.

Существуют, однако, две трудности на этом пути. Во-первых, уравнения (3), (10) для решений вида (13) переходят в уравнения в полных производных, содержащих частоту ν в качестве параметра. Это означает, что не существует единой функции отображения F для всех монохроматических решений. Вовторых, функции отображения F, полученные численным решением уравнений для $a_{\nu}(\zeta)$ при всех значениях ν , при изменении параметров задачи ζ_{out} и q меняются таким образом, что монохроматическое решение либо остается устойчивым, либо возникает только периодическая автомодуляция, не переходящая в стохастическую. Это находится в противоречии с описанным выше поведением системы (см. рис. 1, a). Следовательно, описанный переход от уравнений в частных производных к точечному отображению приводит к потере механизма возникновения стохастических решений.

Учтем теперь, что для вычисления значения выходного сигнала необходимо знание входного сигнала на малом, но конечном интервале времени $\Delta \tau << \theta$. Другими словами, учтем, что значение выходного сигнала $a(\tau, \zeta_{\text{out}})$ является не функцией, как это предполагается в точечных отображениях, а функционалом от значения входного сигнала $a(\tau,0)$. Предполагая, как и ранее, что цепь обратной связи линейна, мы приходим к функциональному отображению

$$a(\tau + \theta, 0) = \hat{F}_{\Delta \tau} \{ a(\tau, 0) \},$$
 (14)

где $\hat{F}_{\Delta\tau}$ — нелинейный функционал с носителем $\Delta\tau$. Функциональное отображение (14) — это просто сокращенная запись решений уравнений в частных производных с граничными условиями, описывающими цепь обратной связи.

При $\Delta \tau \rightarrow 0$ отображение (14) переходит в точечное отображение (13). Поэтому динамическую систему (14) при $\Delta \tau << 0$ естественно назвать распределенной системой, близкой к дискретной [16].

В общем виде найти явный вид функционала $F_{\Delta \tau}$ невозможно, но в представляющем практический интерес случае малого коэффициента обратной связи (|q|<<1) и $\Delta \tau<<\theta$ можно найти приближенное выражение для $\hat{F}_{\Delta \tau}$. Общие свойства решений, описывающих пучковую неустойчивость (инвариантность относительно начальной фазы, принцип причинности), в этом случае приводят к следующему выражению для $\hat{F}_{\Delta \tau}$ [11]:

$$\hat{F}_{\Delta\tau}\{a(\tau)\} = F(|\hat{G}_{\Delta\tau}\{a(\tau)\}|) \exp(i\arg\hat{G}_{\Delta\tau}\{a(\tau)\}). \tag{15}$$

Здесь $\hat{G}_{\Delta \tau}$ — линейный функционал, совпадающий с функцией Грина линеаризованных уравнений ЛБВ—усилителя, F — комплексная функция.

Сравнение функций $a(\tau,0)$, полученных решением уравнений в частных производных и с помощью отображения (15), показало их хорошее качественное и количественное совпаление.

Решения вида (13) являются инвариантами отображения (14) с функционалом (15). При изменении параметров функции F решение (13) может потерять устойчивость и возникнут нарастающие во времени возмущения. Существуют два различных механизма потери устойчивости, которым соответствуют различные виды нарастающих возмущений. Первому механизму соответствуют нарастающие возмущения амплитуды решения при постоянной фазе, а второму — возмущения фазы при постоянной амплитуде. Будем называть эти механизмы потери устойчивости соответственно амплитудным и фазовым. Амплитудный механизм потери устойчивости является естественным обобщением на распределенные динамические системы механизма потери устойчивости неподвижной точки точечного отображения. Он определяется видом модуля функции F и слабо зависит от свойств функционала $\hat{G}_{\Delta\tau}$. Фазовый механизм, наоборот, слабо зависит от вида |F| и определяется амплитудно—частотной характеристикой линейного функционала и зависимостью фазы функции F от амплитуды a_n .

Двум механизмам потери устойчивости соответствуют различные сценарии возникновения хаоса в динамической системе (14). Для амплитудного механизма — это переход к хаосу через бесконечную цепочку бифуркаций удвоения периода автомодуляции. Фазовый механизм характеризуется переходом к хаосу через перемежаемость: участки квазирегулярного поведения решения $a(\tau,0)$ сменяются участками со случайным, хаотическим поведением. По мере роста параметра надкритичности доля участков с хаотическим поведением возрастает.

Динамическая система, описываемая отображением (14) с восстановленным по решениям уравнений (3), (10) при q=0 функционалом (15), устойчива относительно амплитудного и неустойчива относительно фазового механизма потери устойчивости [11]. Этим же свойством обладают и полученные численно решения уравнений: при увеличении параметра надкритичности режим монохроматической генерации сменяется регулярной автомодуляцией, которая при дальнейшем росте параметра надкритичности переходит в стохастическую. Переход к стохастической автомодуляции имеет вид перемежающейся турбулентности. Такое совпадение свойств динамических систем, задаваемых функциональным отображением (14) и системой уравнений (3), (10), позволяет утверждать, что именно фазовый механизм неустойчивости ответственен за стохастизацию сигнала вакуумного ЛБВ—генератора.

Рассмотрим теперь, как влияет содержащее γ слагаемое в (10) на поведение системы. В ЛБВ-усилителе влияние этого члена на динамику взаимодействия пучка с волной существенно, если $\gamma \ge 1$. Если $\gamma <<1$, то слагаемое, содержащее γ , может быть опущено. Действительно, амплитуда насыщения неустойчивости $|a_{\max}| \sim 1$, а указанное слагаемое описывает отстройку фазовой скорости волны от резонансного значения. Поскольку инкремент неустойчивости вблизи своего. максимума квадратично зависит от расстройки, последняя сказывается на зависимости амплитуды от длины только при $\gamma \sim 1$.

В генераторе роль этого слагаемого может проявиться и при существенно меньших значениях γ . Фазовый механизм стохастизации связан с наличием нелинейного набега фазы $\Delta \phi(|a|^2)$ функции отображения F или, что то же самое, выходного сигнала $a(\tau,\zeta_{\text{out}})$. Третье слагаемое в (10) при γ <<1 меняет существенно именно эту зависимость, не затрагивая зависимость $|a(\zeta)|$. Действительно,

дополнительный набег фазы, обусловленный нарушением точного синхронизма, линейно зависит от величины расстройки

$$\Delta \phi \approx \gamma \int_0^{\zeta_{\text{out}}} |a^2(\zeta)| d\zeta \tag{16}$$

и при достаточно большой длине области взаимодействия может быть порядка единицы даже при γ <<1.

Нелинейный набег фазы, связанный с нелинейной стадией взаимодействия пучка с волной, является основной причиной стохастизации сигнала ЛБВ-генератора. Поэтому добавочный набег фазы (16), обусловленный нелинейностью плазмы, влияет именно на механизм стохастизации и может сильно изменить пороговый ток возникновения хаотической автомодуляции и спектры генерации в этом режиме. То, что при малых γ именно добавочный набег фазы, а не изменение зависимости $|a(\zeta)|$ влияет на процесс стохастизации, проверялось следующим образом. Граничное условие $a(\tau,0)=qa(\tau-\theta,\zeta_{\text{out}})$ заменялось на условие $a(\tau,0)=|qa(\tau-\theta,\zeta_{\text{out}})|$ и система, демонстрировавшая стохастическое поведение, быстро переходила в режим монохроматической генерации.

Таким образом, рассматриваемая нелинейность плазмы, имеющая вид простейшей нелинейной реактивности, в первую очередь влияет на механизм стохастизации сигнала ЛБВ-генератора, не меняя его энергетические характеристики. Отметим, что по мере роста параметра у, описывающего чувствительность фазовой скорости волны замедляющей структуры к изменениям плотности плазмы в ней, начинают меняться и энергетические характеристики генератора или усилителя (см., например, [7]). Зависимость фазовой скорости от плотности плазмы увеличивается по мере роста последней. Ограничение случаем низкой плотности плазмы, возможно, является основной причиной, по которой в [8] не обнаружено существенного влияния пондеромоторных сил на работу плазмонаполненной ЛОВ.

2.2. Влияние нелинейности плазмы на спектральные характеристики стохастического излучения ЛБВ-генератора. Как было сказано выше, стохастическая динамика ЛБВ-генератора имеет вид перемежающейся турбулентности и может быть описана как нерегулярные переходы между собственными частотами генератора. Этот результат был первоначально получен в [11] с использованием функционального отображения вида (14) и означает следующее. Собственные частоты ν_n определяются условием

$$v_n \theta = 2\pi n + \arg F(|a_n|) + \arg g(v_n) + \alpha, \tag{17}$$

означающего, что полный набег фазы в цепи обратной связи кратен 2π . Здесь $g(\nu)=e^{-i\nu\tau}\hat{G}\{e^{i\nu\tau}\}$ — амплитудно—частотная характеристика линейного функционала \hat{G} ; α — фаза коэффициента обратной связи q. Если система неоднородна в продольном направлении, то к α следует добавить набег фазы β , связанный с изменением фазовой скорости волны при ее распространении вдоль структуры. Равенство абсолютных величин правой и левой частей (14) совместно с (17) позволяет найти как собственные частоты ν_n , так и амплитуды a_n монохроматических решений. При θ >> Δ т собственные частоты расположены почти эквидистантно, положение «решетки» частот определяется величиной α + β .

При превышении параметром надкритичности порогового значения монохроматические решения теряют устойчивость и возникают нарастающие во времени возмущения. Спектр нарастающих возмущений состоит из частот, расположенных на расстоянии $2\pi k/\theta$, $k=\pm 1,\pm 2,...,K$ от частоты ν_n потерявшего устойчивость монохроматического решения. Когда возмущение дорастает до достаточно большой величины, система после сильно нерегулярного переходного процесса оказывается вблизи менохроматического решения на одной из

Рис. 2. Зависимости безразмерной мгновенной частоты $v(\tau)$ ≡ $d\arg a(\tau)/d\tau$ и амплитуды $|a(\tau)|$ выходного сигнала от времени τ , полученные итерацией функционального отображения (15) с квадратичной функцией F(a) и решением уравнений (4), (10) (δ)

собственных частот и весь процесс повторяется. Наиболее наглядно такой сценарий представляется зависимостью мгновенной частоты сигнала от времени. В качестве примера на рис. 2, a изображены зависимости мгновенной частоты (верхняя кривая) и амплитуды (нижняя кривая) решения от времени, полученные с помощью отображения (14). В качестве функции F использовалась стандартная функция логистического отображения с таким значением параметра, при котором устойчива неподвижная точка соответствующего точечного отображения, то есть наблюдаемая неустойчивость связана только с фазовым механизмом.

Вблизи максимума коэффициента усиления arg g(v) линейно зависит от v и неэквидистантность системы частот v_n обусловлена только слагаемым $\arg F(|a_n|)$ в (17). Как правило, в описанном выше движении системы эффективно принимают участие только несколько потерявших устойчивость монохроматических решений, для которых коэффициент усиления близок к максимальному. Например, на приведенном на рис. 2, а фрагменте реализации видно присутствие пяти таких решений. При $\Delta \tau << \theta$ расстояние между соответствующими им частотами ν_n мало. Мало и различие между амплитудами $|a_n|$. Последнее же означает, что неэквидистантность частот v_n слабо проявляется в результирующем спектре движения системы и даже в сильно стохастическом режиме собственные частоты сильно выделены. В качестве примера на рис. 3, а представлен спектр решения, изображенного на рис. 2, а. Линейчатый вид спектра объясняется тем, что в использованной модели неэквидистантность собственных частот генератора мала. Поэтому колебания вблизи различных частот имеют разную форму, но близкие периоды. Кроме того, при малом превышении порога хаотизации (рис. 2, а соответствует именно этому случаю) система довольно длительное время находится вблизи одной из собственных частот.

Если изменить значение набега фазы β в (17), то это никак не скажется на характере развития неустойчивости, на величине порогового значения параметра надкритичности и на расстоянии между собственными частотами, но положение собственных частот изменится: вся «решетка» частот сместится как целое. Поэтому изменение неоднородности будет приводить к смещению спектра сигнала как целого.

В рассматриваемой задаче неоднородность создается самой волной и β в (17) определяется набегом фазы $\Delta \phi(|a|^2)$ (16), а именно, $\beta = \Delta \phi |a|^2$. Для каждого моно-хроматического режима характерно свое продольное распределение амплитуды поля и, следовательно, своя неоднородность плазмы. Поскольку $\Delta \phi(|a|^2)$:

Рис. 3. Спектры сигналов: a — изображенного на рис. 2, a; 6—г — полученных рещением уравнений (4), (10) при γ =0, 0.08 и 0.12 соответственно. Амплитуды спектральных компонент $S(\nu)$ представлены в логарифмическом масштабе

определяется интегральным распределением амплитуды вдоль системы, то даже малая разница в зависимостях $|a_n(\zeta)|$ при $\zeta_{\rm out}>>1$ может привести к значительному (порядка единицы) изменению $\Delta \varphi$.

При описанных выше движениях системы как переходах от одного монохроматического решения к другому меняется и положение доминирующих спектральных компонент. Поэтому спектр достаточно длинной реализации сигнала, содержащей большое число переходов с одной собственной частоты на другую, можно представить как сумму сдвинутых друг относительно друга спектров вида изображенного на рис. 3,a. Если сдвижка таких спектров достаточно велика (разница в величинах $\beta = \Delta \phi$ для разных монохроматических решений порядка 1), то выделенные частоты отсутствуют в результирующем спектре. Таким образом, по мере роста нелинейного набега фазы $\Delta \phi$, определяемого формулой (16), происходит сглаживание спектра стохастического сигнала. Эту динамику демонстрируют рис. 3,6–2, на которых представлено изменение спектров стохастических решений уравнений (4), (11) при росте параметра γ и неизменных других параметрах задачи.

То, что возникновение стохастической автомодуляции в системе, описываемой уравнениями (4), (11), связано именно с фазовым механизмом неустойчивости, как и в модельной динамической системе (14), подтверждается приведенными на рис. 2, a зависимостями мгновенной частоты $darga(\zeta_{out},\tau)/d\tau$ и амплитуды $|a(\zeta_{out},\tau)|$ выходного сигнала от времени. На верхнем рисунке отчетливо видно, что мгновенная частота колеблется в разные моменты времени относительно различных средних значений, которые совпадают с собственными частотами генератора, и совершает нерегулярные переходы от одной собственной частоты к другой.

3. Обсуждение результатов

Представленная простейшая математическая модель описывает ЛБВ-генератор с плазмонаполненной замедляющей структурой. В модели учтено взаимное влияние магнитозвуковых колебаний, вызванных радиальной неоднородностью полей собственных волн структуры, и возбуждаемых пучком высокочастотных волн. В рамках сделанных предположений удалось исключить распространяющиеся возмущения плазмы, сделав локальной связь амплитуды волны с плотностью плазмы, и описать изменения в процессе возбуждения волны пучком введением только одного добавочного слагаемого — реактивной нелинейности. Степень влияния возмущений плотности плазмы на процесс возбуждения волны определяется одним параметром у, характеризующим чувствительность фазовой скорости возбужденной волны к величине плотности плазмы.

Несмотря на ряд сделанных ограничений, полученные качественно согласуются с рядом экспериментальных данных. В первую очередь это относится к спектральным характеристикам генерируемого сигнала. В работах [4,18] приведены спектры стохастического сигнала плазмонаполненных ЛБВгенераторов, которые отличаются сильной опнородностью вакуумных устройств. Вторым экспериментальным аналогичных согласующимся с приведенной теорией, является наличие развитых низкочастотных колебаний в плазме замедляющих структур [4]. Частотный диапазон таких колебаний меняется в зависимости от мошности СВЧ-излучения: от песятков кГп при относительно малых мощностях до десятков МГц при больших мощностях. Первый диапазон хорошо согласуется с ионно-звуковыми колебаниями, второй – с магнитозвуковыми. Проведенные в последнее время в Институте плазменной электроники (Харьков) детальные исследования 2 показали, что у-быстрые изменения плотности плазмы (длительностью несколько микросекунд и меньше) характеризуются своим одновременным появлением вблизи входного и выходного торцов структуры, что может служить косвенным подтверждением локального характера связи таких вариаций плотности с СВЧ-полями и отсутствием распространяющихся низкочастотных плазменных волн.

Работа выполнена при поддержке Украинского научно–технического центра (проект 256), NATO ISCL Grant № HTECHLG951541, DoD MURI program (Grant № AFOSR F496209510358).

Библиографический список

1. *Ахиезер А.И.*, *Файнберг Я.Б.* О взаимодействии пучка заряженных частиц с электронной плазмой // ДАН СССР. 1949. Т. 69, № 4. С. 555. *Bohm D.*, *Gross E.P.* Theory of plasma oscillations//Phys. Rev. 1949. Vol. 75, № 12. P.1851.

2. Carmel Y., Lou W.R., Antonsen T.M. Relativistic plasma microwave electronics: Studies of high-power plasma-filed backward oscillators // Phys. Fluids B. 1992. Vol. 4.

C. 2286.

3. Шкварунец А.Г., Рухадзе А.А., Стрелков П.С. Широкополосный реляти—вистский плазменный СВЧ-генератор //Физика плазмы. 1994. Т. 20, №7-8. С. 682.

4. Блиох Ю.П., Корнилов Е.А., Митин Л.А., Файнберг Я.Б. Экспериментальные исследования возбуждения мощных СВЧ-колебаний электронным пучком в гибридной замедляющей структуре с плазменным заполнением // Физика Плазмы. 1994. Т. 20, № 9. С. 767.

5. Zavjalov M.A., Mitin L.A., Perevodchikov V.I. et al. Powerful wideband amplifier based on hybrid plasma—cavity slow—wave structure // IEEE Trans. Plasma Sci. 1994.

Vol. 22. P. 600.

 $^{^2}$ Экспериментальные исследования проведены в лабораториях Е.А.Корнилова и Н.М.Землянского.

- 6. *Гапонов А.В.*, *Миллер М.А.* Об использовании движущихся высокочастотных потенциальных ям для ускорения заряженных частиц // ЖЭТФ. 1958. Т. 34, вып. 3. С. 715.
- 7. Bliokh Yu.P., Fainberg Ya.B., Lyubarsky M.G., Podobinsky V.O. Self-consistent plasma motion as a possible mechanism of the power limitation and the pulse shortening in the plasma-filled TWT devices // SPIE Proc. 1997. Vol. 3158, Intense Microwave Pulses V. P. 182.
- 8. Miller S.M., Antonsen T.M., Jr., Levush B. Ponderomotive effects in plasma-filled backward-wave oscillators //IEEE-PS. 1998. Vol. 26. P. 680.
- 9. Granatstein V.L., .Carmel Y, Nusinovich G.S. Chaotic oscillations enhanced by magnetosonic waves in plasma-filled traveling-wave tubes // Physics of Plasmas. 1998. Vol. 5, № 11. P. 4061.
- 10. Гинзбург Н.С., Сергеев А.С. Динамика ЛСЭ генераторов с резонаторами произвольной добротности // ЖТФ. 1991. Т. 61, № 6. С. 133.
- 11. Блиох Ю.П., Бородкин А.В., Любарский М.Г. и др. Применение метода функционального отображения для исследования ЛБВ—генератора с запаздывающей обратной связью // Изв. вузов. Прикладная нелинейная динамика. 1993. Т. 1, № 1–2. С. 34.
- 12. Гинзбург Н.С., Кузнецов С.П., Федосеева Т.Н. Теория переходных пропессов в релятивистской ЛОВ // Изв.вузов. Радиофизика. 1978. Т. 21, № 7. С. 1037.
- 13. Levush B., Antonsen T.M., Jr., Bromborsky A., Lou W.-R., Carmel Y. Theory of relativistic backward—wave oscillators with end reflections // IEEE Trans. Plasma Sci. 1992. Vol. 20. P. 263.
- 14. Ginzburg, Nusinovich G.S, Zavolsky N.A. Theory of non-stationary processes in gyrotrons with low Q resonators//Int. J. Electron. 1986. Vol. f 61. P. 881.
- 15. Feigenbaum M.J. Quantitative universality for a class of nonlinear transformations // J.Stat.Phys. 1978. Vol. 19, № 1. P. 252.
- 16. Bliokh Yu.P., Lyubarsky M.G., Podobinsky V.O. About chaotization mechanisms of the distributed dynamical systems which are close to discrete // Discrete Dynamics in Nature and Soc. 1997. Vol. 1. P. 233.
- 17. Mitin L.A., Perevodchikov V.I., Shapiro A.L. Beam-plasma generators of sto-chastic microwave oscillations used for plasma heating in fusion and plasma-chemistry devices and ionospheric investigations // Intense Microwave Pulses IV, SPIE 1996. Vol. 2843. P. 208.

 Поступила в редакцию 29.12.98 после переработки 12.05.99

INFLUENCE OF PLASMA NONLINEARITY ON PROCESS OF RADIATION STOCHASTIZATION IN BEAM-PLASMA MICROWAVE OSCILLATORS

Yu.P. Bliokh, M.G. Lyubarsky, G.S. Nusinovich, V.O. Podobinsky

A plasma-filled traveling—wave tube with a feedback is considered. The effect of the transverse component of the ponderomotive force on plasma density causes an additional phase shift of the wave which in a system with feedback significantly decreases the threshold for appearance of stochastic oscillations.

Блиох Юрий Павлович – 1946 года рождения. Окончил физикотехнический факультет Харьковского государственного университета (1970). Начальник лаборатории Институга плазменной электроники и новых методов ускорения Национального научного центра «ХФТИ». Область научных интересов — взаимодействие пучков заряженных частиц с плазмой, хаос в пучково—плазменных системах. Имеет более 90 публикаций в отечественных и зарубежных журналах. E-mail: bliokh@kipt.kharkov.ua.

Любарский Михаил Григорьевич — 1947 года рождения. Окончил механико-математический факультет Харьковского государственного университета (1970), профессором которого является в настоящее время. Область научных интересов — теория дифференциальных уравнений и ее приложения к задачам СВЧ-электроники. Имеет более 80 публикаций в отечественных и зарубежных журналах.

Нусинович Григорий Семенович — 1946 года рождения. Окончил Горьковский государственный университет (1968). Работал в НИИ Раднофизики (Горький). Научный сотрудник и руководитель группы Института прикладной физики АН СССР (с 1977 по 1990), занимался разработкой мощных миллиметровых и субмиллиметровых гиротронов. В 1991 году эмигрировал в США и поступил на работу в Лабораторию плазменных исследований (Мерилендский университет). В настоящее время его научные интересы включают изучение различных источников мощного СВЧ-излучения. Является консультантом Sc. Applications Int. Corp., Phys Sc.m Corp., Omega-P, Inc.

Подобинский Виталий Олегович — 1955 года рождения. Окончил физико-технический факультет Харьковского государственного университета (1981). Старший научный сотрудник Института плазменной электроники и новых методов ускорения Национального научного центра «ХФТИ». Область научных интересов — плазменная электроника, взаимо—действие пучков заряженных частиц с плазмой. Имеет около 40 публикаций в отечественных и зарубежных журналах.