

Изв.вузов «ПНД», т.5, № 6, 1997

УДК 548; 537.611.46

САМОФОКУСИРОВКА ОГРАНИЧЕННЫХ ПУЧКОВ ОБРАТНЫХ ОБЪЕМНЫХ МАГНИТОСТАТИЧЕСКИХ ВОЛН В ФЕРРОМАГНИТНЫХ ПЛЕНКАХ: ЧИСЛЕННЫЙ ЭКСПЕРИМЕНТ

Г.М. Дудко, Ю.А Филимонов

В рамках подхода, основанного на численном решении двумерного нестационарного нелинейного уравнения Шредингера с диссипативным членом, исследованы эффекты самофокусировки и самоканализации обратных объемных магнитостатических волн при их распространении в ферромагнитных пленках.

Введение

Нелинейные магнитостатические волны (МСВ) в ферромагнитных пленках активно изучаются как с практической, так и научной точек зрения [1]. В частности, в последнее десятилетие заметно возрос интерес к исследованию эффектов самовоздействия МСВ [2]. В работах [1-12] были обнаружены и постаточно подробно исследованы эффекты образования солитонов огибающей и автомодуляции МСВ. В то же время явления самофокусировки и самоканализации МСВ изучены гораздо меньше. Кроме работы Звездина и Попкова [2], где была показана возможность самофокусировки обратных объемных магнитостатических волн (ООМСВ) с волновым вектором k, параллельным касательному к пленке магнитному полю H_0 (k|| H_0), известна только одна экспериментальная работа [13] по наблюдению самоканализации данных волн в пленке ЖИГ. Численного моделирования эффектов самовоздействия таких волн до сих пор, по-видимому, не проводилось. Цель данной работы – провести численное исследование эффектов самовоздействия ООМСВ при их распространении в пленке ЖИГ с помощью нестационарного двумерного нелинейного уравнения Шредингера (НУШ) с членом, ответственным за линейное затухание волны; сопоставить характер полученных решений с решениями НУШ для консервативных систем.

Постановка численного эксперимента -

В численном эксперименте моделировалось распространение в пленке ЖИГ магнитостатической волны, возбуждаемой излучателем конечной ширины a. Пленка имеет толщину d, ширину L_y , длину L_x , намагниченность насыщения $4\pi M_0$, ширину линии ферромагнитного резонанса ΔH и размещена в плоскости (x,y) так,

как показано на рис. 1. Внешнее поле направленно вдоль оси x. Возбуждающая волну антенна расположена вдоль оси y при x=0. При такой геометрии и в безобменном приближении в пленке могут распространяться дипольные ООМСВ с законом дисперсии [14]:

$$k_{x}^{2}+k_{y}^{2}-2k(k_{x}^{2}+k_{y}^{2}\mu)^{1/2}[-\mu]^{1/2}\operatorname{ctg} d(k_{x}^{2}+k_{y}^{2}\mu)(-\mu)]^{1/2}+\mu(k_{x}^{2}+k_{y}^{2}\mu)-k_{y}^{2}\nu^{2}=0, \quad (1)$$

где k_x и k_y – составляющие волнового вектора в плоскости пленки, $\mu = (\omega_0^2 - \omega^2)/(\omega_{H^2} - \omega^2)$, $v = \omega_m \omega/(\omega_{H^2} - \omega^2)$, $\omega_0^2 = \omega_{H^2} + \omega_H \omega_m$, ω -частота MCB, $\omega_m = -g4\pi M_0$, $\omega_H = gH_0$, g – гиромагнитное отношение для электрона.

Исследование эффектов самовоздействия ООМСВ проводилось с помощью нестационарного двумерного НУШ с феноменологическим членом, ответственным за линейное затухание волны в процессе распространения

Рис. 1. Геометрия задачи

$$i(\partial\varphi/\partial t + V_g\partial\varphi/\partial x) + \frac{1}{2\beta_0}\partial^2\varphi/\partial x^2 + \frac{1}{2\beta_0}\partial^2\varphi/\partial y^2 - \gamma|\varphi|^2\varphi + i\alpha\varphi = 0.$$
(2)

Здесь φ – связанная с переменной намагниченностью **m** и намагниченностью пленки M_0 соотношением $|\varphi|^2 = |\mathbf{m}|^2/2M_0^2$ безразмерная комплексная амплитуда волны, которую можно представить в виде $\varphi = F(x,y,t)\exp(i\Psi(x,y,t))$, где F – действительная амплитуда ООМСВ, Ψ – фаза комплексной амплитуды, которая является добавкой к фазе волны; $\beta_{l,l} = \partial^2 \omega / \partial^2 k_{x,y}$ – характеризуют дисперсионное и дифракционное расплывание волны, $\gamma = \partial \omega / \partial |\varphi|^2$ – коэффициент нелинейности, $V_g = \partial \omega / \partial k_x$ – групповая скорость волны в направлении x, $\alpha = \partial \omega / \partial \omega_{H'} g \Delta H$ – диссипативный коэффициент. Уравнение (2) рассматривалось со следующими условиями: начальными

$$\varphi(x,y,0) = \begin{cases} \varphi^0 \eta(y), & x = 0, & |y| \le a/2, \\ 0, & 0 < x \le L_x, & |y| \ge a/2 \end{cases}$$
(3)

и граничными

$$\varphi(0,y,t) = \begin{cases} \varphi^{0}\eta(y), & |y| \le a/2, t \ge 0, \\ 0, & |y| \ge a/2, t \ge 0, \end{cases}$$

$$\varphi(L_{x},y,t) = 0, & |y| \le L_{y}/2, t \ge 0, \\ \varphi(x,-L_{y}/2,t) = 0, & 0 \le x \le L_{x}, t \ge 0, \\ \varphi(x,L_{y}/2,t) = 0, & 0 \le x \le L_{x}, t \ge 0. \end{cases}$$
(4)

Здесь $\eta(y) - функция начального распределения амплитуды волны в поперечном сечении пучка. Приведенные ниже численные результаты получены для функции вида$

$$\eta(y) = \cos(\pi y/a), \quad |y| \le a/2.$$

Для того чтобы выполнить условия (4) на границах пленки и, соответственно, избежать трудностей, связанных с отражением на границах, размеры пленки L_x и L_y задавались в пределах от 2 см до 4 см, а время анализа $t_{\rm max}$ бралось вдвое меньшим времени пробега волны по образцу $T=L_{x,y}/V_g$.

Для решения исходной задачи использовалась неявная схема переменных

Таблица 1

<i>f</i> , ГГц	<i>k</i> , см-1	<i>V_g</i> , см/с	β _l , см²/с	β₁, см²/с	γ, c-1	α, c-1
5.82	63	-3.5.106	1.72.103	2.13.105	-7.3·10 ⁹	3.50.106
5.7	300	-2.89.106	1.37·10 ³	4.99.104	7.0·10 ⁹	3.53.106

направлений (схема Писмена – Рэкфорда) [15]. Считалось, что пленка имеет типичные для пленок ЖИГ параметры: d=7.2 мкм, $4\pi M_0=1750$ Гс, $H_0=1391$ Э, $\Delta H=0.2$ Э. Значения частоты возбуждения ООМСВ $f=\omega/2\pi$ брались равными $f_1=5.82$ и $f_2=5.7$ ГГц. Значения коэффициентов НУШ V_g , $\beta_{l,l}$, γ , α и волновых чисел ООМСВ k, рассчитанные с помощью (1) при указанных параметрах пленки для значений частоты возбуждения волны f_1 и f_2 , приведены в табл. 1. Из таблицы видно, что для ООМСВ выполняются условия [2], необходимые для развития процессов самомодуляции

$$\beta_i \gamma < 0 \tag{5}$$

и самофокусировки

$$\beta_t \gamma < 0. \tag{6}$$

Будем рассматривать случай возбуждения ООМСВ антенной шириной *a*=1 см, для которой практически во всей полосе частот возбуждения условие квазиоптического приближения *ka*>>1 оказывается выполненным, что позволяет рассматривать пучок ООМСВ как пучок с узким угловым спектром и использовать НУШ для моделирования эффектов самовоздействия.

Отметим, что представление о характере процессов самофокусировки и самоканализации для случая антенн другой ширины можно будет получить, воспользовавшись зависимостью пороговых мощностей от ширины антенны [2]

$$\varphi_{th}^{0} \sim (1/a)(\beta_{t}/\gamma)^{1/2}.$$
 (7)

Обсуждение результатов численного эксперимента

На рис. 2 и 3 представлены результаты численного эксперимента для ООМСВ на частоте f_1 . На рис. 2 изображены линии равного уровня квадрата модуля комплексной амплитуды волны $|\phi|^2$ при различных значениях амплитуды волны ϕ^0 на входе в бездиссипативном случае ($\Delta H=0$, левая колонка) и при наличии диссипации (правая колонка). Для наглядности и для облегчения установления соответствия данных, представленных на рис. 2, с распределением интенсивности волнового пучка в пленке, на рис. 3 приведены профили интенсивности, полученные при тех же параметрах.

Рассмотрим сначала результаты расчетов, выполненных без учета потерь волны, представленные на рис. 2 и 3 в левых колонках. При $\varphi^0 < \varphi^0_{th}$ основную роль в эволюции пучка играет дифракционное расплывание волны: ширина пучка заметно увеличивается в процессе распространения. С ростом амплитуды волны на входе расплывание пучка уменьшается за счет компенсации дифракционного рассинхронизма фаз в пучке порядка β_t/a^2 нелинейной расстройкой от синхронизма порядка $\gamma |\varphi|^2$ [18,19]. При $\varphi^0 = \varphi^0_{th} = 0.02$ нелинейная и дифракционная добавки к фазе волны полностью компенсируют друг друга – наблюдается волноводное распространение пучка ООМСВ. Дальнейшее увеличение амплитуды волны на входе φ^0_{th} приводит к самофокусировке волнового пучка. Отметим, что при

Рис. 2. Линии равного уровня величины $|\phi|^2$ для различных значений амплитуды ϕ 0 входного сигнала в среде без диссипации (левая колонка) и в среде с диссипацией (правая колонка) на частоте f_1 =5.82 ГГц

 $\phi^0 > \phi^0_{th}$ режим волноводного распространения сохраняется, но поведение пучка имеет осциллирующий характер.

В интервале амплитуд волны $\phi^0 \approx 0.05 - 0.09$ можно наблюдать результат развития неустойчивости волнового пучка относительно малых поперечных

Рис. 3. Распределение интенсивности волнового пучка в бездиссипативной пленке (левая колонка) и в пленке с диссипацией (правая колонка) для различных значений амплитуды ϕ^0 входного сигнала на частоте f_1 =5.82 ГГц

возмущений («распадной» неустойчивости [19]): энергия основного пучка перекачивается в два симметрично расположенных относительно него других пучка, распространяющихся в волноводном режиме под некоторым углом θ к оси *х*. Все описанные режимы распространения стационарны во времени. Это означает, что, несмотря на выполнение при данных параметрах волны условия (5), развития неустойчивости относительно продольных возмущений (самомодуляции) не происходит.

Проанализируем результаты расчетов с помощью дисперсионного уравнения [18]

$$\Omega(Q_y) = \pm \frac{1}{2} [\beta_t Q_y^2 (4\gamma |\phi^0|^2 + \beta_t Q_y^2)]^{1/2}, \tag{8}$$

связывающего, при отсутствии самомодуляции волны ($Q_x=0$), частоту Ω волны модуляции с поперечным волновым числом малых пространственных возмущений Q_y . Легко видеть, что в рассматриваемом случае ($\beta_t > 0, \gamma < 0$) при

$$4\gamma |\varphi|^2 + \beta_l Q_{\nu}^2 < 0 \tag{9}$$

подкоренное выражение в (9) становится отрицательным и возмущения нарастают с инкрементом $\Gamma = Im \Omega(Q_v)$.

В численном эксперименте допустимый интервал значений Q_y определяется шириной пленки и волновым числом k

$$2\pi/L_{\rm v} < Q_{\rm v} << k. \tag{10}$$

При фиксированном значении амплитуды на входе из выражения (9) получим, что диапазон волновых чисел Q_y , соответствующих неустойчивым поперечным возмущениям, ограничен сверху значением $Q_y \leq Q_y^0 = [-4\gamma |\phi^0|^2/\beta_I]^{1/2}$. Максимальным инкрементом $\Gamma_{\max} = \gamma |\phi^0|^2$ обладают возмущения с волновыми числами $Q_y^* = Q_y^0/2^{1/2}$, а характерная длина развития неустойчивости таких возмущений равна $L^* = V_g/\Gamma_{\max}$. Значения параметров $Q_y^0, Q_y^*, \lambda^* = 2\pi/Q_y^*, \Gamma_{\max}$ и L^* при значениях параметров волны, отвечающих рис. 2, показаны в табл. 2. Отметим, что при расчетах мы ограничились уровнем входных сигналов $\phi^0 \leq 0.1$. При этом оказываются выполненными два существенных требования применимости HУШ. Во–первых, амплитуда волны оказывается достаточно мала $\phi <<1$ [1]. Во–вторых, в указанном диапазоне ϕ^0 и при выбранных параметрах волны между длиной волны ООМСВ λ и характерной длиной развития неустойчивости выполняется соотношение $L^* \leq \lambda/3$.

Сопоставляя данные табл. 2 и результаты численного эксперимента можно заметить, что самофокусировка пучка начинает проявляться при таких значениях входных амплитуд φ_{lh}^0 , когда неустойчивыми оказываются возмущения с $Q_y^0=2\pi/a$. Пучок ООМСВ заметно фокусируется, если апертура антенны *а* и длина волны наиболее быстро нарастающего возмущения $\lambda^*=2\pi/Q_y^*$ связаны соотношением $a/\lambda^*\approx 1$. С помощью (9) легко убедиться, что указанное условие будет выполняться при значениях входных амплитуд $\varphi^*=2^{1/2}\varphi_{lh}^0$. При $\varphi^*<\varphi_y^0\leq 2\varphi^*$ выполняется Таблина 2

ϕ^0	Q^0 , см $^{-1}$	$Q^*,$ см-1	λ*, см	Г _{іпах} ,мкс-1	<i>L</i> *, см	$R_f^{\text{числ}},$ см	$R_{f}^{(11)}, cm$
0.01	3.7	2.6	2.42	0.73	4.79	ļ	2.05
0.02	7.4	5.2	1.19	2.92	1.20	-	1.03
0.03	11.1	7.9	0.79	6.57	0.53	0.7	0.68
0.04	14.8	10.6	0.59	11.7	0.30	0.5	0.51
0.05	18.5	13.2	0.48	18.3	0.19	0.4	0.41
0.06	22.2	15.9	0.40	26.3	0.13	-	0.34
· 0.07	. 25.9	18.5	0.34	35.8	0.10	-	0.29
0.08	29.6	21.2	0.30	46.7	0.075	_	0.25
0.09	33.3	23.8	0.26	59.1	0.059	0.25	0.23
0.10	37.0	26.4	0.24	73.0	0.048	-	0.21

Примечание. $R_{f}^{\text{инсл}}$ и $R_{f}^{(11)}$ – расстояния от входной антенны до нелинейного фокуса, полученные в численном эксперименте и с помощью выражения (11), соответственно.

соотношение $a/\lambda^* < 2$, и волновой пучок распространяется как единое целое, не разбиваясь на каналы, в режиме «осциллирующего» волновода. При $2\phi^* < \phi^0 \le 3\phi^*$ вышолняется соотношение $2 < a/\lambda^* \le 3$ и волновой пучок разбивается на два сфокусированных канала.

Следует отметить, что все наблюдаемые в численном эксперименте для бездиссипативного случая режимы соответствуют описанным в [18,19] решениям квазиоптического уравнения нелинейной оптики.

Обсудим положение нелинейного фокуса R_f , которое определим как расстояние от антенны, на котором ширина пучка W_f минимальна. Из рис. 2 и табл. 2 видно, что расстояние от входной антенны до местонахождения нелинейного фокуса и ширина пучка в точке фокуса тем меньше, чем больше амплитуда волны на входе. Оказалось, что для нашего случая значения R_f можно достаточно точно оценить с помощью соотношения

$$R_f \approx R_{nl}/3,\tag{11}$$

где R_{nl} характеризует «силу» нелинейной рефракции [19]. Выражения для R_{nl} применительно к используемым нами коэффициентам НУШ можно записать в виде

$$R_{ni} = aV_{g} [1/(2 \beta_{l} \gamma |\phi^{0}|^{2})]^{1/2}.$$

Выпие в (11) введен множитель 1/3 для лучшего согласования с результатами численного эксперимента, что обусловлено, по-видимому, отличием выбранного нами профиля пучка от параболического профиля, используемого в [19]. Это несоответствие может привести к возникновению аберрационной картины самовоздействия двумерного пучка, проявляющейся в «размытии» фокуса. Кроме того, выражение для R_{nl} было получено в [19] без учета влияния дисперсионного расплывания, которое в численном эксперименте присутствует.

В условиях «распадной» неустойчивости каналы начинают формироваться на расстояниях $x>R_f$, хотя характерная длина развития L^* таких процессов оказывается меньше или порядка R_f (см. табл. 2). То обстоятельство, что процесс самофокусировки пучка как целого на длине R_f выдерживает конкуренцию с распадами пучка на отдельные каналы можно объяснить достаточной «гладкостью» профиля пучка, которая обеспечивает отсутствие в его пространственном спектре компонент порядка Q^* .

Рассмотрим теперь распространение пучка ООМСВ в пленке с потерями, показанное в правых колонках на рис. 2 и 3. Очевидно, что в присутствии потерь неустойчивыми могут оказаться возмущения с инкрементом $\Gamma > \alpha$. Из рис. 2 и табл. 2 следует, что при $\varphi^0 \ge \varphi^0_{th} = 0.03$ и при выбранном значении параметра потерь α (см. табл. 1) становится заметным проявление нелинейной самофокусировки. В интервале $0.03 \le \varphi^0 \le 0.04$ это проявление еще очень слабое. Как видно из табл. 3, значение R_f при этом сравнимо с диссипативной длиной $l_d = V_g/\alpha \approx 1$ см. Явление нелинейной самофокусировки хорошо наблюдается при $\varphi^0 = 0.05$. В этом случае величина R_f в два раза меньше l_d . При $R_f < l_d/3$ процесс развития самофокусировки на длине пленки l порядка $2R_f$ мало отличается от бездиссипативного случая. А именно, расстояние до нелинейного фокуса и поперечный размер пучка в точке фокуса имеют примерно одни и те же значения в консервативной среде и в среде с диссипацией. Кроме того, хорошо виден распад основного пучка на отдельные каналы, успевшие сформироваться на длине l.

Уменьшение амплитуды волны за счет линейного затухания приводит к тому, что нелинейная поправка к фазе, сдерживающая расплывание пучка, становится по мере удаления от антенны все меньше и, начиная с некоторого $x=x^*$, поведение пучка ничем не отличается от его поведения в линейной среде. На рис. 4 показаны линии равного уровня фазы комплексной амплитуды волны $\Psi(x,y)$ в линейном

Таблица З

φ0	Q^0 , см-1	$Q^*,$ см-1	λ*, см	$\Gamma_{\rm max}$, мкс-1	<i>L</i> *, см	$R_{f}^{_{ m HHCJ}}$, см	<i>R_f</i> ⁽¹¹⁾ ,см
0.01	7.5	5.4	1.17	0.70	4.13	_	4.4
0.02	15.0	10.7	0.59	2.80	1.03	2	2.2
0.03	22.5	16.1	0.39	6.3	0.46	1.3	1.46
0.04	30.0	21.4	0.29	11.2	0.26	1.0	1.09
0.05	37.5	26.8	0.23	17.5	0.17	0.9	0.87
0.06	44.9	32.1	0.20	25.2	0.11	0.7	0.73
0.07	52.4	37.5	0.17	34.3	0.084	0.6	0.63
0.08	60.0	42.8	0.15	44.8	0.065	0.55	0.55
0.09	67.4	48.2	0.13	56.7	0.051	0.5	0.49
0.10	74.9	53.2	0.12	70.0	0.041	0.45	0.44

случае (рис. 4, a), когда порог самофокусировки не достигнут, и в нелинейном (рис. 4, δ), когда этот порог превышен. Видно, что в нелинейном случае при $x > x^*$ фаза комплексной амплитуды волны ведет себя аналогично линейному случаю.

Результаты расчетов при значениях параметров волны на частоте f_2 (см. табл. 1) показаны на рис. 5. В табл. 3 приведены значения параметров $Q_{y^0}, Q_{y^*}, \lambda^*$, Γ_{max} и L^* , отвечающих этому случаю. Сопоставление результов, полученных для частот f_1 и f_2 в бездиссипативном случае (см. левые колонки на рис. 2 и 5), показывает, что в соответствии с (8) порог φ_{th}^0 самофокусировки ООМСВ на частоте f_2 уменьшается по сравнению с соответствующим порогом на частоте f_1 в два раза:

Рис. 4. Вид линий равного уровня фазы $\Psi(x,y)$ комплексной амплитуды волны при $\varphi^0 < \varphi^0_{th}(a)$ и при $\varphi^0 > \varphi^0_{th}(\bar{\sigma})$ на частоте $f_1 = 5.82 \Gamma \Gamma \eta$

Рис. 5. Линии равного уровня величины $|\phi|^2$ для различных значений амплитуды ϕ^0 входного сигнала в среде без диссипации (левая колонка) и в среде с диссипацией (правая колонка) на частоте f_2 =5.7 ГГц

$\varphi_{th}^{0}(f_{1})/\varphi_{th}^{0}(f_{2}) \approx \{\beta_{t}(f_{1})\gamma(f_{2})/[\beta_{t}(f_{2})\gamma(f_{1})]\}^{1/2} \approx 2.$

Из сравнения значений параметров Q_y^0 и Q_y^* , отвечающих одинаковым уровням входного сигнала в табл. 2 и 3, видно, что на частоте f_2 ООМСВ неустойчива к более «коротковолновым» поперечным возмущениям по сравнению с частотой f_1 . В результате на частоте f_2 уже при $\varphi^0=0.05$ «длина волны» наиболее быстро растущего возмущения оказывается $\lambda^* < a/4$, и пучок разбивается на четыре канала. При $\varphi^0=0.08$ имеем $\lambda^* < a/5$, и число каналов увеличивается до пяти, причем образующаяся в результате система волновых пучков имеет сложный характер.

Диссипация (см. правые колонки на рис. 2 и 5) гораздо сильнее влияет на развитие поперечной неустойчивости ООМСВ на частоте f_2 . Обусловлено это тем, что величина R_f , определяющая расстояние до нелинейного фокуса в бездиссипативном случае, при одинаковых уровнях входного сигнала у пучка ООМСВ на частоте f_2 всегда почти в два раза больше, чем на частоте f_1 (см. табл. 2 и 3). Кроме того, по мере укорочения длины ООМСВ происходит уменьшение диссипативной длины $l_d \approx 0.8$ см, вызванное уменьшением групповой скорости. В результате необходимое для самофокусировки условие $R_f < l_d$ удается достичь липь при $\varphi^0 \approx 0.05-0.06$. А при $\varphi^0 = 0.08$ наблюдается разбиение пучка только на два канала.

Заключение

Таким образом в рамках подхода, основанного на численном решении нестационарного двумерного НУШ с диссипативным членом, изучены явления самовоздействия ограниченных волновых пучков дипольных ООМСВ в пленках ЖИГ. Показано, что при значениях коэффициентов НУШ и уровнях мощности типичных для дипольных ООМСВ в пленках ЖИГ наблюдаются явления самофокусировки и самоканализации волновых пучков. В бездиссипативном приближении характер процессов самофокусировки и самоканализации и особенности их развития в целом согласуются с известными результатами нелинейной оптики. Показано, что при коэффициентах линейного затухания в НУШ, отвечающих типичным пленкам ЖИГ, процессы самофокусировки и самоканализации ООМСВ могут наблюдаться в том случае, если величина R_f оказывается меньше диссипативной длины.

Работа поддержана грантами РФФИ № 96--02-16168, № 97-02-18614 и Министерства науки и высшей технической политики РФ № 3.911/2-96

Библиографический список

1. Nonlinear microwave sinal processing: towards a new range devices / Eds R.Marcelli and S.A.Nikitov // NATO ASI series. High technology. Kluwer Academic Publishers, 1996. Vol.20.

2. Звездин А.К., Попков А.Ф. К нелинейной теории магнитостатических спиновых волн // ЖЭТФ. 1983. Т. 84, вып.2. С. 606.

3. Калиникос Б.А., Ковшиков Н.Г., Славин А.Н. Наблюдение спинволновых солитонов в ферромагнитных пленках // Письма в ЖЭТФ. 1983. Т. 38, № 7. С. 343.

4. Калиникос Б.А., Ковшиков Н.Г., Славин А.Н. Спин-волновые солитоны в ферромагнитных пленках: наблюдение модуляционной неустойчивости спиновых волн при непрерывном возбуждении // Письма в ЖТФ. 1984. Т. 10, № 15. С. 936.

5. Дудко Г.М., Казаков Г.Т., Кожевников А.В., Филимонов Ю.А. Удвоение периода и хаос при четырехмагнонном распаде магнитостатических волн в пленках железоиттриевого граната // Письма в ЖТФ. 1987. Т. 13. С. 736.

6. Chen M., Tsankov M.A., Nash J.M., Patton C.E. Backward volume wave solitons in a yttrium iron garnet film // Phys.Rev.B. 1994. Vol.49. P. 12773.

7. Калиникос Б.А., Ковшиков Н.Г. Наблюдение столкновения солитонов огибающей спиновых волн в ферромагнитных пленках // Письма в ЖЭТФ. 1994. Т. 60, вып.4. С. 290.

8. Nikitov S.A., Su Jun, Marcelli R., De Gasperis P. Modulation instability of surface magnetostatic waves in ferromanetics films // JMMM. 1995. Vol. 145. L.6.

9. Дудко Г.М., Филимонов Ю.А. Развитие модуляционной неустойчивости магнитостатических волн (МСВ) в ферритовых пленках // Письма в ЖТФ. 1989. Т. 15, вып.2. С. 55–60.

10. Slavin A.N., Dudko G.M. Numerical modelling of spin wave soliton propagation in ferromagnetic film // JMMM. 1990. Vol. 86. P. 15.

11. Славин А.Н., Дудко Г.М. Переход от модуляционной неустойчивости к хаосу в пленках железоиттриевого граната // ЖТФ. 1989. Т. 31, вып.6. С. 114.

12. Boardman A.D., Nikitov S.A., Xie K., Mehta H. Bright magnetostatic spinwave envelope solitons in ferromagnetic films // JMMM. 1995. Vol. 145. P. 357.

13. Boyle J.W., Nikitov S.A., Boardman A.D., Booth J.G. Self-channeling and nonlinear beam shapping of magnetostatic waves in ferromagnetoc films // Phys.Rev.B. 1996. Vol. 53, № 18. P. 12173.

14. Damon R.W., Eshbach J.R. Magnetostatic modes of ferromagnetic slab // J. Phys. Chem. Sol. 1961. Vol. 19, № 3/4. P. 308.

15. Самарский А.А. Теория разностных схем // М.: Наука, 1983. С. 446.

16. Валявский А.Б., Вашковский А.В., Гречушкин К.В., Стальмахов А.В. Угловой спектр и спектр направлений групповых скоростей магнитостатических волн // РЭ. 1987. Т. 39, № 9. С. 1830.

17. Рыскин Н.М. Связанные нелинейные уравнения Шредингера для описания распространения многочастотных волновых пакетов в нелинейной среде с дисперсией // ЖЭТФ. 1994. Т. 106, вып.5 (11). С. 1542.

18. Рабинович М.И., Трубецков Д.И. Введение в теорию колебаний и волн // М.: Наука, 1984. С.432.

19. Виноградова М.Б., Руденко О.В., Сухоруков А.П. Теория волн. М.: Наука, 1990.

Саратовский филиал Института радиотехники и электроники РАН Поступила в редакцию 11.12.97

SELF-FOCUSING OF BACKWARD VOLUME MAGNETOSTATIC WAVE BEAMS IN MAGNETIC FILMS: NUMERICAL EXPERIMENT

G.M. Dudko, Yu.A. Filimonov

Self-focusing and self-channeling of backward volume magnetostatic waves propagating in magnetic films were studed in the framework based on the numerical solution of the two-dimensional nonlinear Schrodinger equation with dissipative term.

Дудко Галина Михайловна – родилась в 1961 году. Окончила физический факультет Саратовского университета (1983). Работает в Саратовском филиале Института радиотехники и электроники РАН. Область научных интересов – волновые явления в магнитных пленках.

Филимонов Юрий Александрович – родился в 1955 году. Окончил Московский физико-технический институт (1979). Работает в Саратовском филиале Института радиотехники и электроники РАН. Область научных интересов – волновые явления в магнитных пленках.

Вышло в свет учебное пособие для вузов

Трубецков Д.И. Колебания и волы для гуманитариев. Саратов: Изд-во ГосУНЦ «Колледж», 1997. 392 с. 6 с. илл. ISBN 5-900651-48-1.

Современная наука о колебаниях и волнах представлена в книге своими эффектами и явлениями, встречающимися в медицине, химии, экологии, гидродинамике, электронике, экономике, социальных и других науках. Цель книги – показать, что такие понятия как колебания и волны, неустойчивость и нелинейность, хаос и структуры позволяют понять единство современной картины мира. Приведено множество примеров из литературных прозаических и поэтических произведений, интересных историй о событиях и людях. Математический аппарат книги прост и предполагает знание школьного курса математики. Широко используется анализ размерности.

Художник и автор (совместно с Козьмой Прутковым) «Плодов раздумий» к.ф.-м.н. Д.В. Соколов.

Более подробная информация о содержании пособия в журнале Известия вузов. Прикладная нелинейная динамика, 1997. Т. 5, № 4. С. 120.

Индивидуальные заказы на наложенный платеж (40 руб.) направлять по адресу

410601 Саратов, главпочтамт, а/я 3150 Лёвиной Н.Н.

E-mail: and@cas.ssu.runnet.ru

####