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Stochastic resonance, 11 which the signal and/or signal/noise ratio in а nonlinear 
system can be enhanced by the addition of random fluctuations (noise) of appropriate 
intensity, 18 discussed. By revealing the relationship оЁ stochastic resonance (0 earlier 
research, and especially to work by Debye in the 1920s, the phenomenon is set 1 а broad 
physical context. It is shown Гаг the traditional techniques оЁ statistical physics, for example 
linear response theory, are applicable to stochastic resonance and their implications for its 
range of occurrence are discussed. 

1. Introduction 

Stochastic resonance (SR) is а phenomenon of some topical interest in which а - 
weak periodic signal 10 а nonlinear system can be optimally amplified by фе addition of 
random fluctuations (noise) оЁ appropriate intensity; even more surprisingly, the 
signal/noise ratio can often be enhanced as well. In its modern form [1,2] the concept of 
SR emerged from the ideas оё Benzi et al. [3,4] апа Nicolis [5]. They were seeking Ю 
account for the earth’s periodic - 105-year ice-age cycie in terms of the small 
variations, also of period ~ 105 years, @ the earth’s orbital eccentricity: SR provided а 
possible mechanism by which a weak periodic effect of this kind could be sufficiently 
amplified by environmental noise to exert a strong influence on the climate, as observed. 

Since then SR, and other phenomena closely related to SR, have been found to 
have a remarkably wide range of occurrence. They have been observed or are to be 
anticipated ш, for example: а Schmitt trigger [6]; а bistable ring laser [7]; а variety оЁ 
electronic circuits [8] -[13]; а passive optically bistable [14]; а laser with saturable 
absorber [15]; а magnetoelastic ribbon [16]; а hybrid ESR device [17]; а magnetoresistive 
oscillator [18]; single-domain uniaxially anisotropic magnetic particles [19]; а bistable 
superconducting quantum interference device (SQUID) [20]; а quantum two-level 
system with ohmic dissipation [21]; а system with а cyclic variable [22]; and а tunnel 
diode [23]. Synchronization of otherwise random switchings between the states has been 
observed for a Brownian particle in a bistable optical trap [24] and also for a two-state 
defect that modulates conductance оЁ а mesoscopic wire [25]. The SR-related 
phenomenon of noise-enhanced heterodyning has been demonstrated in an electronic 
model [26] апа observed experimentally ш ап all-optical bistable system [27]. Although 
most оЁ the work has related to bistable systems that can be characterised by coexisting 
attractors corresponding to the minima of a static bistable potential, it is now understood 
that SR 15 not by any means confined 10 such system. It has also been investigated: in 
monostable systems [11,22]; ш а system with one point attractor and one chaotic attractor 
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[10]; for coexisting periodic attractors, yielding а high frequency form оё SR [12,13]; п 
the transient dynamics оё ап evolving system {28]; and in а level-crossing detector 329]. 
In relation to biology, it has been proposed [30,31] that SR may be relevant to 
transmission оё information by sensory neurons; the effects of neuron coupling have been 
analysed [32]; and SR т а crayfish mechanoreceptor has been observed and investigated 
[33]. Many of these examples are treated in the proceedings [1,2] оё two recent topical 
conferences on SR. 

Perhaps in part because of the context in which SR was discovered [3]-[5], it was 
treated from the outset as a major challenge in its own right, so that the theoretical 
development of the subject (see, for example, [34]-[39]) was undertaken almost оп ап ab 
initio basis, without drawing significantly on related work in condensed matter physics 
that had occurred much earlier. Consequently, @е simplest, most direct and 
straightforward approach (classical linear response theory (LRT): see below) was applied 
[9] to SR only а few years after its discovery and, even then, did not meet with immediate 
acceptance. One of the aims of the present paper is to demonstrate the close connection 
between SR and earlier work, especially that of Debye [40], thus enabling SR to take its 
proper place in the context of other phenomena in physics. A fuller discussion of some of 
these ideas will be presented in [41]. 

2. A physical picture of stochastic resonance 

To set the scene, we first discuss the SR in terms of the adiabatic approximation 
introduced by McNamara, Wiesenfeld and Ray [7] апа McNamara апа Wiesenfeld [34] 
in order 10 account for SR phenomena observed in a ппа laser. A particular advantage оЁ 
this approach is that it provides a simple and intuitively appealing physical picture of the 
mechanism of SR. We consider a Langevin equation of the type 

9= - %П+ А cosQr + E(1), <€()>=0, <&()5(7)> = 206(7 - t) (1) 
9 

where D is the characteristic noise intensity and the potential U(g) is assumed to be 
bistable, with local minima а! the two coordinate values g;, when A=0. When A=0, а 

delta-shaped spike occurs in the power-spectrum оЁ g(¢) аг frequency Q (and its 
overtones), and it is the increase in the height of this spike with D that signals the 
occurence of SR. For small D, the fluctuations оЁ g about g, are small compared 10 
4› 41. Nevertheless, although the noise 18 weak оп е average, there can occur, 

occasionally, outbursts large enough to cause switchings between the stable states. The 
probability W, оЁ а switching from е nth to the mth state for а white-noise driven 
system was found by Kramers [42] to be of the activation type, 

Wi =11{U"(g,)IU” (¢:)}12exp(-AU/D), AU,= 4;) : 0(4,). (2) 
Here, AU, is the depth оё the nth well оё the potential U(g) measured relative to the value 

U(q,) оё U(g) at its local maximum g, between the minima оЁ U(g) at g; and g,, U'(g,)=0 

and U”(g,)<0. The balance equation for the average populations w;; of the stable states 

can be written 

wi(t) = Wa(t)wo(t) - Wia()wi(8), и(г + т(г = 1. (3) 

The transition probabilities W,,(r) can readily be evaluated ш the adiabatic 

approximation: 1.е. assuming (аг the frequency © of е sinusoidal driving 15 small 
compared to the reciprocal relaxation time of the system. In this case the probability 
W,(2) is determined by the instantaneous value of the potential well depth AU ,(AcosCx) 

where AU, (A) 15 the depth оё the nth potential well in е potential tilted by the external 
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force. (/(4) -Ад. For small enough amplitude of the force only linear terms need be 
retained in the potential well depth. Using Ед. (2), one can then write И(г in е form: 

2 g 
where W, is the value of the transition probability 1 е absence оё the force. 

It is evident from Eq.(4) that the parameter which determines the effect of the 
driving is proportional to the ratio of е amplitude of the force A 10 the noise intensity D. 
Thus, in agreement with what was said above, for small D we can have strong effects 
even for comparatively small А. Moreover, if A 18 so small that lg;,l << 1, the 
probabilities 1,,,(7) can be expanded in g, and Ед.(3) can then be solved analytically. To 
first order т lg; э: the dependence оё the populations и» э(7) on time is sinusoidal. 

The solution is particularly simple in е important case оЁ а symmetric potential 
U(g), for which AL =AU, g,= -g,. An important byproduct of this solution is an inter- 

esting behaviour оё е spectral density оё fluctuations Q(®) of the coordinate оЁ е sys- 

tem q(r): 

И„( = W, 0exp(g,cosQt),  g,=gAD, g,= 

О(о) = Вт(Алт)- 1 | dr а(г ехр(гог)?. (5) 

Н the coordinate 4(7) is approximated by Ше sum оЁ its values т the stable states g, 
weighted by the populations wy5(¢) (the two-state approximation), then, because оЁ the 

sinusoidal dependence оё the populations оп time а 8-shaped spike occurs in О(о) at the 

frequency о=О. The ratio of its intensity (area) to е value оё the power spectrum 

0(0(0) т the absence оЁ the driving, i.e. the signal-to-noise ratio R, 18 given by the 

expression [7,34}: 

R = 11:32И/(0)/4‚ g= g§: - 2, W(O) = И/-12(0›)+ W21(0) = 21’V]2(0). (6) 

It follows from (4) апа (6) that the signal-to-noise ratio increases exponentially with 
increasing noise intensity for small enough D, 

R o< exp(-AU/D), AU =AU = AU,, AU>>D 

ie. SR occurs. It was this amazing result that stimulated so much interest in е 
phenomenon оЁ SR among physicists, biologists, апа engineers. 

3. Linear response theory and stochastic resonance 

An aliernative approach to SR which, ав we shall see, makes it possible to place е 
phenomenon in И5 natural context within statistical physics and condensed matter 
physics, апа to relate it to what had been done in ihese areas before, is based оп linear 
response theory (LRT). According to LRT, if а system with а coordinate д is driven by а 
weak force AcosQ (the addition to the Hamiltonian function of @е system is оЁ the form 

оЁ -AgcosQr), there arises а small periodic term in е ensemble-averaged value о the 

coordinate, 8<q(f)>, oscillating аг the same frequency © and with amplitude а 
proportional to that оё @е force [44]: 

d<g{t)> = асов(О1+ф) = Ве[Х(О)Ае- ©, A0, (7) 

a=Aix(Q)l, © = -arctan[Imy(Q)/Rex(Q)]. 

The quantity () here is the susceptibiliry оЁ the system. Eq.(7) holds for dissipative апа



fluctuating systems Фаг do not display persistent periodic oscillations т the absence оЁ 
the force AcosQr. In the more general case оЁ а system performing phase-locked 

oscillations with а period 2/, (this case 15 оЁ particular interest for systems driven by 

strong periodic fields with а frequency @р, e.g., by laser radiation) the linear response is 
described by the expression 

8<q(f)> = Ве З. Х®(О) Aexpli(key - Q)t], А — 0. (8) 

In this case а weak force gives rise 10 vibrations not only аг its own frequency, but а150 аё 
the combination frequencies [Qtkawyl, and у(0(5) are the corresponding susceptibilities. 

The function y(Q) (or the functions Х(9(0)) contains аП information оп the 
response of the system to a weak driving force. It gives both the amplitude of the signal, 
а, апа И5 phase lag with respect 10 the force, ¢ (or partial amplitudes and phase lags for 
the vibrations at the combination frequencies). In fact, Egs.(7), (8) still hold even 1Е the 
force is of a more general nature than just an «additive» coordinate-independent force 
described by the extra term -Адсов©; т the Hamiltonian. Та particular, the force can be 
coordinate-dependent (а multiplicative force), от it can be the intensity оё the noise 
driving the system (e.g., the temperature, if the noise is of thermal origin) that is 
modulated periodically. In any case, if the amplitude of the modulation is weak enough, 
the response оЁ the system is linear and is described by (7), (8). The onset of SR in 
response to the modulation of the noise intensity (temperature) was investigated in [45], 
and in [21] SR in response to the modulation of the temperature was considered for a 
mesoscopic wire with a two-state dissipating defect. 

The periodic terms (7), (8) induced by the force give rise Ю 8-shaped spikes т the 
spectral density оё fluctuations (SDF) Q(w) (5) at the frequency оё the force © (and at 
the combination frequencies |Q + kwgl). The intensity (i.e., the area) of these spikes 15 
equal 10 one quarter of the squared amplitude оё the corresponding vibrations, i.e., 10 
H4A2lx{(Q)2, ог ю МА2 (О(О)Р. The signal-to-noise ratio R 15 thus expressed in terms оЁ 
the susceptibility as 

R = 1A%l (Q)RIQO(Q), A — 0, (9) 

and for periodically oscillating systems the signal-to-noise ratio К( at е combination 

frequency 1Q- Коу! 

R® =1/ A2y®(Q)2/QO(1Q- kwpl), A — 0. (10) 

Therefore, the evolution оё the susceptibility and оё Q0) ) with varying noise intensity 
D show immediately whether or not SR (understood as an increase, with the increasing 
D, of the signal or of the signal-to-noise ratio in a certain range of D) is to be expected 
at a given frequency. 

Describing SR т terms оЁ the susceptibility is particularly advantageous for 
systems that are in thermal equilibritm ог in quasi-equilibrium. In this case the 
susceptibility can be expressed immediately т terms оё the SDF Q(O)(Q) т the absence 
of periodic driving via the fluctuation-dissipation relations [44]: 

Im y(0) = по/Т QO(w), Rey(w)=2/TP 0_[ ае О©(ом) 02/ (m2- @?) (11) 

where P implies the Cauchy principal part and T 15 the temperature in energy units. It 
follows from (10), (11) that the onset of SR can be predicted from purely experimental 
data on the evolution of the SDF of a system with temperature without assuming anything 
аг аП about the equations that describe its dynamics, i.e. for а system treated ав а «black 
Бох». 

The relevance оЁ this approach 10 SR 18 seen from Fig.1 where some data from 
analog experiments for electronic systems simulating Brownian motion in а bistable [9] 
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Fig. 1. Stochastic resonance for е Brownian motion ¢+2g+U’(g)= (21`) 126( +Асовбу, for the white 

noise (1) (1) with the intensity D=T (after [9]): а - bistable potential U{g)=-q*2+q*/4. The values о! 
R=6.51-10-4R are given for Q=0.0695, A=0.1, Г=0.125. - Direct measurements, + - data calculated 

from е measured ((O(w) via fluctuation-dissipation relations (11); Ь - Monostable potential, 

U{q)=Bg+q%2+g*4. The stochastic amplification factors, г2=а?(Т)/а?(0) equal ю the squared ratio оЁ 

the amplitude of the signal with апа without noise, В - B=0, O - B=2; А=0.02, Г=0.011. The full curves 

represent theoretical predictions derived using LRT (after [11] (5)) 

and in а monostable [11] potential are compared with the LRT theoretical predictions. 
The simulated systems are guasi-thermal. The results of Fig. 1, а demonstrate that SR т 
the signal-to-noise ratio is described gquantitatively by the fluctuation-dissipation 
relations (11), even in е range where ап explicit analytic calculation оЁ @е 
susceptibility of the system was not possible. The data in Fig. 1, b show that, contrary to 
what had been comumonly accepted, а noise-induced increase оЁ @е signal in а system 
does not require that it be a bistable one: the effect can arise in monostable systems as 
well. The particular mechanism explored [11] is based on the fact that the frequency of a 
nonlinear system depends on the amplitude (energy) of the vibrations. By varying the 
temperature of the system (the noise intensity) one varies the distribution of the system 
over the energy, and hence over the frequency. It is possible therefore to «tune» the 
вуз!ет, and thus 10 increase е response at ап appropriate frequency. The strong and 
rather interesting temperature dependence оЁ the spectral density of the fluctuations 
Q{w) оЁ underdamped systems was reviewed in [46]. Recent results obtained for а 
special class of underdamped systems where the dependence of the eigenfrequency of the 
vibrations оп the araplitude 15 nonmonotonic - the upper curve т Fig. 1,5 refers to а 
system оё this sort - are reported ш [47]. - 

4. Susceptibility and relaxation in solids with reorienting dipoles 

To the best оЁ опг knowledge, analytical results for the susceptibility оё а flucta- 
ating symmetrical system with two coexisting stable states, which traditionally has been 
of primary interest in the context of SR, were first obtained by Debye [40]. Debye an- 
alyzed the dielectric response of polar molecules in a solid. He assumed that a molecule 
can switch between гуо equivalent positions within а unit cell, and that in these positions 
the dipole moment of the molecule is pointing in opposite directions. The expression for 
the transition probability И „ he used was equivalent to Eq. (4), with g,= -Ка Т where Е 
is the amplitude оЁ the electric field апа @, is the dipole moment т the и position 
(n=1,2; d;= -d,); he linearized И,„ т Ed,/T (however, he @а not specify @е form оЁ the 
Transition probabilitizs W), in the absence оё е external field). 

The well-known expression for the susceptibility Debye derived was, in the 
present notation, of the form 
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Тв expression made # possible to explain е experimental data оп the dispersion of the 
real part of the dielectric constant оЁ ice. It is straightforward to see from фе 
fluctuation-dissipation relations (11) that the signal-to-noise ratio R that follows from 
(9), (12) is precisely of the form (6) (cf. [9,48]) that describes SR in фе linear regime. 

In the context of condensed-matter physics, the quantity of special interest is 
usually the phase shift between the force and the signal, since it is the phase shift that 
determines е absorption оЁ the energy from the force, in particular from @е 
electromagnetic field in the case considered by Debye. In the symmetrical two-state 

model with thermally activated transitions between the states the phase shift ¢ as given by 
(7), (12) decreases monotonically with increasing temperature [40, 5, 34]: 

(ф)ішо-э!а[е = - arctan(Q/W(O)). (13) 

The phase shift 15 one of Ше characteristics used 10 describe the elastic properties 
of solids: in this case the force is stress, the signal is strain, and the phase Тар 15 referred 
10 ав internal friction [49]. For finite frequency оё е stress there arises а phase shift 
between the stress and the strain, even though the stress is linear in the strain (and thus 
reversible), In some metal alloys internal friction displays а strong nonmonotonic 
temperature dependence ав shown in Fig. 2 taken from [50]. A simple mechanism оё this 
dependence for body-centered cubic metals with interstitial impurity atoms was 
suggested by Snoek [51]. He assumed that ап impurity occupies one оЁ the equivalent 
interstitial points in an elementary cell thus forming an elastic dipole. The dipole can 
reorient as a result of thermal fluctuations. Uniaxial stress breaks the symmetry, like an 
electric field in the case of electric dipoles, and the response to the stress is given 
basically by Debye’s theory, slightly modified to allow for а different number of 
equivalent stable states. 

The strain measured experimentally arises as a combination of the strain related to 

xp(Q) = W(O) = W12(0) + W21(0) = 2 WIZ(O)' (12) 

the reorientation оё the elastic dipoles апа ° 
фе strain due ю the deformation of those 100.0 _ 600 . ЗЗО 10_'0 (З „© 
cells that are free оЁ impurities. This A\ \ 
deformation is characterized by much faster , ЗГ 
relaxation than the reciprocal reorientation “ \ 
rate 1// оЁ the dipoles at room | // /\\\ \\ 
temperature. For low temperatures the 0.6 
reorientation rate W) is negligibly small, Ъ_ 
and the strain is equal to that for а crystal о4 / ‚ / АВС, 
with immovable defects ап@ 18 ш phase ™ й 7Г Ё 
with the stress (Hooke’s law). Therefore | / // / \ 
the phase shift is equal to zero rather than to 0.2 7 N 
- п/2 ав given by (13). Only for higher T _% \\\\ 
does the reorientation of the elastic dipoles ¢ g . @ Ва N ае 
become «switched on» and е term 26 28 30 32 34 3.6 1000/TK 
described by (13) contributes to the phase 
shift. As a result ]_ф| sharply increases with Fig. 2. Peaks of internal friction (normalized phase 
temperature and displays a clearly resolved lag - ф) vs temperature due ю Snoek relaxation in 
peak. T.he 5) osition оЁ @е peak (see fl.le пехё ап Ре-С alloy; №е curves A to E correspond to the 
SUb,SGCFlon may be used to determine the frequencies 2.1; 1.17; 0.86; 0.63; 0.27 Hz (after 
activation energy for reorientation оЁЁ @е Wert ап Zener [50]) : 
elastic dipoles [49]. 

L 

5. Stochastic resonance in continuous dynamical systems 

In many cases, the bistable dynamical systems where SR 15 investigated are 
continuous rather ап being two-state ones. For such systems, the dependence оё the 
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phase lag on the noise intensity (temperature) is similar to that observed for internal 
friction in anelastic solids. This is clearly seen from a comparison of Fig.2 and Fig.3. In 
the latter case, the data [52] are from ап analog simulation оЁ overdamped Brownian 
motion (1) ш а simple symmetric bistable potential 

U(q) = - 1/2 д2 + 1/4 g+, (14) 

The explicit LRT expressions for the phase shift and for the signal-to-noise ratio R of a 

continuous system (1) for low noise intensities апа for low frequency © are of the form: 

ф = -arctan[(QYQ)(Q2WO) + Q2D)(QW©2 + Q2D)], 

КА2 

402 
R= (Q, W02 + 2D(Q2W© + 02D), — О0 << Q,, о<< D (15) 

where Q=i 1=U"{g,,) 15 the reciprocal relaxation time for the intrawell motion 

{corrections to (15) оЁ the order of Q/Q,, D/AU have been dropped). 
Measurements оё @е phase lag 1 ап electronic model оё (1), (14) are plotted ав а 

function оё noise intensity in Fig 3. The variation оЁ ф1 with D exhibits а well-defined 
maximum and clearly has much in common with the internal friction data оЁ Fig.2, 
although the peaks 11 the latter case are noticeably narrower, which shows аё the system 
(1), (14) does not provide а completely adequate quantitative model for anelastic 
relaxation. We notice that the values оЁ О т Fig.3 15 very much higher than the effective 
value of Q for the anelastic relaxation experiments (where the absolute value of the 
driving frequency is ~1 Hz as compared to ~1013 Hz for atomic vibrations in solids so 
that Q ~10-13). For Q=10-13, е function оЁ -¢(1/D) ав given by (15) takes the form 
plotted in Fig. 4, showing a narrower and more symmetrical maximum than that in Fig. 3, 
albeit still slightly broader than those т Fig. 2. The positions оЁ е maxima of ¢l ав а 
function оё D depend оп © in both cases; for the model (1), (14) @5 position Оа is 
given by the equation 

-ф 

60.0 

-ф 

40.0 ® 
“ | ‚ 60.0 

@ 
ВО 400 - 

20.0 d 

200 1 
D 

| 14L Н 00 1 

0.0 02 D 50.0 100.0 1500 1D 

Fig. 3. Phase lag - ¢ between the coordinate <g(r)>  Fig. 4. Phase lag - ¢ for the system (1), (14), 
of an overdamped Brownian particle oscillating та — сасшагеа [52] from (7), (11) for Q@=10-13 and 

potential (14) апа е force оё frequency Q=0.1 а5  plotted аз а function of /0 for more convenient 
measured in the electronic experiment; the force  comparison with Ше data оЁ Fig.2 
amplitude:0-4=0.04,8-0.2, The solid line represents 
the theoretical prediction based оп LRT [52] 
(nonlinear corrections 00 пог change this curve 
strongly for the actual value оЁ A). The inset shows 
the normalized signal-to-noise ratio in the region of 
the minimum in R 
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WO(D ) = QD Q)12 
The response of a continuous system differs markedly from that of a two-state 

one, not only in its non-monotonic rather than monotonic variation of ¢ with D, but also 
in the variation of its signal/noise ratio with D: for small D the function R decreases 
rather than increases with the increasing D. Such behaviour, seen in Fig.1, а, has а simple 
explanation. For small D the interwell transitions are frozen out: the susceptibility is then 
determined by the intrawell motion of the system, and is independent of noise, whereas 
the power spectrum is formed by the fluctuations about the minima of the potential and 

increases proportional to the noise intensity, 50 that R o< 1/D, аз seen from (15) for small 

W©. The analysis оЁ the position оЁ @е local maximum оЁ R vs noise intensity was 
performed by Fox and Lu [53]. 

In general, of course, the motion of a bistable continuous system will not be 
described by the simple model (1) of overdamped Brownian motion in a symmetrical 
double-well potential. Neither will the noise be white, nor will the system be moving in a 
static potential. For example, the stable states of interest may be the states of stable 
periodic vibrations in a strong external force (periodic attractors), as is of interest in the 
context оЁ optical bistability [54]. Analytic results for the fluctuations and for the 
response to a weak external force can be obtained [55] provided the noise intensity is 
small 50 that the probabilities оё fluctuational tramsitions between е states are very 
much smaller than е reciprocal intrawell relaxation time, W,,(0<< f.1, апа the 
fluctuations occur mostly within narrow vicinities of the stable states. The results held for 
systems driven by ап arbitrary Gaussian noise, in which case the dependence оЁ the 
transition probabilities on the characteristic noise intensity D is of the activation type, and 
in the absence of the additional weak force 

W, = const exp(-R,/D). (16) 

The activation energy оЁ the escape from the state л, В, is given by the solution о а 
variational problem [56]. For certain types оё non-white Gaussian noise R, was found in 
Refs. [56, 57]. 

For small enough D there are two main contributions 10 the susceptibilities x®(Q). 
One comes from с motion close 10 the stable states where е system spends most оё the 

time. This contribution is given by the sum of the partial susceptibilities y,®(Q) (п=1,2) 

weighted by the populations of the stable states w,. The other contribution, 3,®{(Q), 15 

important in the case where the frequency Q of the weak force is small or is close to the 

frequency @у ОЁ the strong external force. Га this case the weak force modulates @е 
probabilities of the transitions between the states and thus the populations of the states: 

X(k)(Q) =2 =12 Wy Xn(k)(g) + х„(/‹)(О)‚ Wy = 1- Wy = W21(0)/W12(0). (17) 

The partial susceptibilities х,(0(0) can be easily found from the equations of 
motion linearized about the stable states in the absence of noise (noise determines the 
values оё the populations w, via the transition probabilities). They display dispersion оп 

the frequency scale 7,1, whereas in е range оЁ interest for SR, © << f,1 ОГ 

1Q~ gl << 1г 1, they are nearly frequency-independent. 

The characteristic frequency scale which determines the dispersion 0Ё x.®(Q) is 

given by the relaxation rate оЁ the populations, i.e., by /0 = W, @ + W,(0. A simple 

way 10 obtain %, (Q) for © << v, ог @- Wz << v, (v=min(tr1, Гсог 1), Where Гоог 15 the 
correlation time of the noise) is based [55] оп the fact that the major effect of the 
additional weak force AcosQt оп @е populations оЁ the states comes from е modulation 

оё the activation energies of е transitions between е states R,. For small O one can 
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find this modulation just by evaluating R, for а system biased by a constant force 4, i.e., 

by finding R,=R,(4), and then by replacing A by AcosCk. In this case е escape 
probability can be written in the form similar 10 (4): 

OR(A) 

дА 

In е case of periodic attractors corresponding to forced vibrations in а strong 

periodic force Fcos{wgi+dz), with the frequency wy>>v. the additional weak force 

AcosQr with Q very close 10 @; can be considered as а modulation оё the amplitude оё @е 
strong force, 

1Vnm([) = ш„т(О)еХР(Ь’пСОЗШ)‚ gn = g,,A/D, ёп = ‘[ ]A:Os Q<<vc- (18) 

Fcos(wgt+0r) + Асо5Ог = Ее]Ё(г)ехр(і(ш,—г + фг)), 

Е( = F + A ехр[ (0 - op)1 - ]. 

The activation energies R,=R,{F) are independent of the phase ¢, and when е weak 

force AcosQt 18 applied they take оп time-dependent values corresponding to 

the instantaneous value оё the amplitude [F(¢), 50 аг 

И/пт(г) = И/„,„(О)ехр[д„соз((щ - mF)t - фР)}› 8л :;›]пА/Б › (19) 

@ L 9R.(F) Q- @й! << v,0 у - — ‚ - @l << v, 0. 
8 Г aF F /а 

Egs. (18), (19) сап be inserted into Eq. (3) for the populations. For small am- 
plitudes A, when g, <<1, one can expand the transition probabilities in g,. Terms linear 
in g, are sinusoidal т time, апа so also are @е corresponding terms 10 the populations 
w1(2). It the value of the coordinate in the лй periodic attractor 

С[„(Г) = ЕА’ (]„(Ё)ЁХР(”СШ}:Г) 

then е expression for Ше susceptibility х,(0(0) for 1Ю- @< <у, 15 of the form 

И/ OWor(®) gy - @. 1) - goli1) 12 28 81 - ©2 1 92 o (20) 
(9(0) = - i 
(0 W) D WO -{Q-ap)" 

The equation for the susceptibility with respect 10 а low-frequency force 18 very 
simiiar: 

WiOWu® g1 - g2 G - g0 
40 D WO - 70 

%l 2) = - : Q<<v, . (20a) 

It can easily be seen that in the symmetrical case, W1,0=W,(0), g= -g,, 41=010= -g,=- ¢,©), 
this expression goes over into Debye’s result (12). 

Note that, for a simple model of overdamped Brownian motion in the bistable 
potential (1), the expressions for the susceptibility (17), (20a) (and also the explicit form 
ог the partial suscepiibility ¥,(€2)) can be obtained аг low noise intensities directly from 
an analysis of the eigenvalues and eigenfunctions [58] of the Fokker - Planck equation, 
both in the case of a symmetric [59] (а) апа an asymmetric [59] (b) potential. A detailed 
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numerical analysis of the Fokker - Planck 
equation for the system (1), (14) is [60] in 
full agreement with the analytic results 
derived above, and in particular with those 
for the phase shift shown in Fig. 3. Note 
also some earlier numerical work on the 
Fokker - Planck equation for periodically 
driven bistable systems [33]. 

From (18) - (20) (cf. [55]) it is 
clear: (i) that the susceptibility due to the 
transitions between the states increases 
exponentially sharply with noise intensity 
D та №е range оё very small D; (ii) Фаг this 
susceptibility is greatest within a frequency 
range that is extremely narrow compared 
with the characteristic inverse relaxation 
time f 1, (iii) that the susceptibility is 
proportional 10 the reciprocal noise 
intensity, which is why it can become large, 
and (iv) that it becomes large only within 
the narrow range of the system parameters 
for which R;=R,, and thus @е transition 
probabilities, W,® апа Wy, апа the 
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Fig. 5. The response of a noise-driven underdamped 
nonlinear oscillator with coexisting periodic at- 

tractors Ю ап extra force AcosQr (after [13]). The 
equation of motion of the oscillator for А=0 is оЁ the 

form Ej+2Fi]+m02q+q3=FcosmFt. The quantities P 

and P provide signal-to-noise ratios at the fre- 

quencies © and 20у- Q. The data refer Ю the kinetic 

phase  transition — гапре, {®p- 00)/Г=0.236, 

3F2/320p3(@p- wg)3=0.0814 
populations, w; and w,, are of е same 
order of magnitude (the range of the kinetic phase transition). All of these features have 
been observed in experiments and are immediately related to the onset of SR in bistable 
systems. In particular, the feature (iv) shows that SR in bistable systems is a kinetic 
phase ftransition effect. A demonstration оЁ SR ш а system with periodic attractors, 
obtained from ап analog electronic experiment [13] is shown in Fig. 5. The experimental 
data (points) exhibit an increase of signal-to-noise ratio both at the frequency of the 

force © and аг the combination frequency 2wz ©; they agree well with the LRT 
theoretical predictions (curves). 

Finally in this section, we would point out also that an important corollary of LRT 
18 that, for small-amplitude signals, the signal-to-noise ratio а{ the output оЁ а system 
driven by a stationary Gaussian noise does not exceed that at the input, even if the system 
displays SR. Indeed, the Fourier components of the noise are statistically independent and 

the total power оё the noise Z(Q)dQ т а small spectral interval dQ about the frequency оЁ 

the signal © 18 small. The signal-to-noise ratio а{ the input is given by 1/4A%/E(Q), 

whereas Щаг at the output is 1/4ly(Q)RAY/[Ix(Q)2E(Q)+Q'©(Q)]. The quantity О’0(9) 

gives the value of the spectral density оЁ fluctuations @ the system at frequency © ав it 

would be if there was no signal and the spectral components of the noise at frequency Q 

were suppressed, i.e., the power spectrum оЁ the input noise had а hole а! frequency Q. 

By construction Q’®(Q)>0, which proves the statement. (In linear systems, оп the other 

hand, which 40 not mix frequencies, Q’(Q)=0 and the signal-to-noise ratio at the 

output must be the same as at the input). 

6. Conclasion 

The main advantages of the LRT approach to SR are its simplicity, generality and 
predictive power. It follows on naturally from earlier work in physics, especially that of 
Debye [40]. Of course, LRT is by definition restricted to the small signal limit. Beyond 
this range of linear response, where LRT is inapplicable, other (perhaps numerical) 
methods become necessary (though analytic results can be obtained [9,43, 61] for the 
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system (1), (14) in the low noise limit, still using classical techniques of theoretical 
physics), and the early theories of SR may then be expected to come into their own. 
Inevitably, they lack the generality of LRT and, in most cases, are directly applicable only 
to the particular type of system for which they were introduced. The LRT approach meets 
a fortiori the acid test of any theory in science, namely, the possession of predictive 
power. For example, it enables the presence ог absence оЁ SR ш any given thermal 
equilibrium system to be predicted simply from the evolution оё its SDF with increasing 
neise intensity ш the absence of the periodic driving force: the discovery оЁ SR in 
monostable systems [11] was arrived at in precisely this way. . 

With the benefit of hindsight, therefore, it can be seen that there 18 nothing 
particularly mysterious about SR, and its position in the mainstream evolution of physics 
has become clear. The next stage in the development of the topic seems likely to be in 
terms of applications, perhaps related to SQUIDs [20], ог ю information transfer in 
biological systems [ЗОЧЗЗ] ог 10 communications, Рог example through noise-protected 
optical heterodyning {27]. 
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СТОХАСТИЧЕСКИЙ РЕЗОНАНС И ЕГО ПРОИСХОЖДЕНИЕ 

М.И. Дыкман, Д.Г. Лучинский, Р. Манелла, 
П.В.Е. Мак-Клинток, Н.Д. Стейн, Н.Г. Стокс 

Обсуждается явление стохастического резонанса, при котором можно 
увеличить соотношение сигнал-шум (или сигнал-сигнал) в нелинейной системе 
за cuer — добавления — случайных — флуктуаций — (тпума) — соответствующей 
интенсивности. Выявляя связь стохастического резонанса, с более — ранними 
исследованиями и особенно с работой Debye B 20-е годы, авторы дают явлению 
широкую физическую трактовку. Показывается, что K стохастическому резонансу 
применимы ‘традиционные методы статистической физики, например, теория 
линейного отклика, и обсуждаются их сложности в области возникновения 
стохастического резонанса. 
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