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TOOLS FOR ANALYZING OBSERVED CHAOTIC DATA™ 

Henry D.I. Abarbanel 

1 Introduction 

Most problems in physical and biological science which involve evolution in time 
сап be cast ав sets оё differential equations where variables evolve in contintous time от 
discrete time maps where time is sampled at given intervals. If we allow infinite numbers 
of differential equations then partial differential systems and time delay systems and 
many integral equations also fit into this general category. Certainly the majority of еп- 
gineering systems are typically cast into this frame+work, and it 15 the analysis of the ev- 
olution in time (continuous ог discrete) which is е province оЁ dynamical systems. 
When those dynamical systems involve the dependent variable х(г) ш а nonlinear fashion 
in the evolution equations, and this is typically the case, phenomena occur which are 
substantially different and richer ап those arise when the equations are constrained 10 
be linear ш x(#). In this review we expose some оё е ideas which have been uncovered 
about the solutions 10 such nonlinear systems over the past several decades and discuss in 
detail how these new ideas allow the analysis of complex looking time series which 
might be dismissed as «noise» without the understanding achieved. Our viewpoint is to 
describe tools for the analysis of real data with an eye toward learning enough from that 
data to provide means to make models for prediction and control of the nonlinear systems 
one observes. We restrict the discussion 10 ordinary differential equations and maps, 
though with appropriate care on the kind of space one works in more general questions 
are encompassed as well. 

The solution x(f) 10 sets of ordinary differential equations 

ах(га = F(x()) (1) 

or discrete time iterated maps 

x(r+1) = F(x(?)), (2) 

where x(7) 15 а vector in d-dimensional state space, and F(x) 15 а smooth nonlinear func- 
tion оЁ x, has revealed numerous remarkable surprises over the past two decades. In the 
case where е physical system is dissipative, state space volumes shrink to zero in time, 
апа time asymptotic motion occurs оп а set of points 10 which all orbits x(z) from а large 
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set оё initial conditions x(0) are attracted. The set оЁ initial conditions x(0) is called the 
basin о] attraction associated with the particular time asymptotic set, ап е set itself 15 
called ап attractor. A most remarkable feature of these attractors is аг while they have 
zero volume, they may have а dimension 0< 4, <а which is fractional. Motion on such а 
strange attractor 18 typically nonperiodic т time. 

The study оЁ this nonperiodic motion, called chaos, has been the subject оё abstract 
mathematical investigations as well as laboratory and numerical experimentation in 
physical, biological, chemical and other environments. The knowledge we have of such 
behavior has moved from the realm of analysis of given sets of differential equations and 
given maps to the stage where one can take experimental observations and determine 
characteristic features of the source of the signal. This «inverse» problem is critical for 
the application of ideas of nonlinear dynamics to real world issues. This article is devoted 
to the description of tools which are available for the systematic and quantitative analysis 
of measured data from laboratory experiments and field observations. Using these tools 
one can go from the observed data to model equations on the attractor. These are usable 
for prediction, control, and design of engineering systems in fields ranging from com- 
munications to fluidized bed flows. In this article we report оп «methods Фаг work» and 
allow опе 10 analyze motions which appear complex when viewed one way апа see them 
in other ways where they appear amenable to quantitative analysis and practical use. 

Chaotic motion of physical systems - mechanical, fluid, electromagnetic, hydro- 
logic, optical, ... - is known to occur as a pervasive feature of their motion [1,2]. To a 
traditional linear analyst оЁ these signals е output оё these systems when undergoing 
chaotic motion appears complex in the time domain and broadband in the Fourier do- 
main. Broadband not only by virtue of occupying a wide band of frequencies but also by 
dint оЁ being continuous in its spectral band. In other words, and this 15 е critical featare 
оё chaotic spectra, it 15 continuous, broadband, so the motion т time domain 18 non- 
periodic. Nonetheless, the motion is totally deterministic and often that of a system which 
is composed of a small number of degrees of freedom. Chaotic signals represent a middle 
ground between (1) our traditional view of «noise» which is spectrally continuous broad- 
band but not predictable and is composed of a very large number of degrees of freedom - 
in principle, an infinite number - and (2) our traditional view of acceptable signals which 
are regular, completely predictable, and spectrally composed оЁ а number оЁ sharp sig- 
nals. The time domain version of such regular signals looks complex because of the pres- 
ence of many sinusoids in it, but in Fourier domain its simplicity 15 revealed. 

Chaotic signals are also simple when properly viewed, and the main thrust оЁ this 
review is to discuss how to establish and then use the space in which this simplicity is re- 
vealed. The simplicity is essentially geometric, and using these geometric properties one 
can perform the usual tasks associated with signal processing: 

е signal separation - given observations contaminated by а signal which 15 
not of direct interest, how do we separate the signal of interest from the combina- 
tion presented ш the observation? If one of the signals is «noise», this is often 
called noise reduction, but it is quite important to recognize that separating one 
signal from another is the main problem. This opens up the use of many of the 
techniques we will discuss for communications applications. The task of separating 
signals when one is chaotic is both simpler and more difficult than in the conven- 
tional case where one signal is spectrally broad («noise») and the other is spectrally 
narrow («signal»). One uses the structure оЁ chaos in state space to differentiate it 
from another signal, and the geometric and dynamical features of this structure al- 
low one to separate the signals. 

e establishing the proper state space for the signal - given ап observation 
which is a single scalar quantity, how can we reestablish the essential features of 
the multivariate space which is required for chaotic motion? The analysis of this 
question will occupy the center of this paper, and in the absence of contamination 
оЁ the signal 15 often enough 10 pin down many оЁ the needed properties needed in 
model making and system identification. 

¢ extracting invariant characteristics of the system from е observed 

123



signal - sometimes called system identification. In linear systems we characterize 
the system producing a signal by the collection of narrow lines associated with 
resonant behavior of the dynamics. If the system is driven harder, the energy under 
such lines will change, but their frequency, as long as the system remains linear, is 
unchanged. Similarly if the system is started at a different time, the phase of the 
signal will be altered, but the characteristic lines in the spectrum will not change. 
In nonlinear, chaotic system, these lines are not present, so we turn 10 other char- 

acteristics such а$ fractal dimensions and Lyapunov exponents which are un- 
changed under changes in initial conditions or changes of coordinate system. These 
quantities allow one to identify the system which originates the signal. It is not 
known what constitutes а complete set оё such invariants. Nonetheless, their use т 
characterizing the source of the chaos is clear. 

е model building т the state space - for prediction and control. This is 
the main goal in engineering practice. One studies systems not to catalogue their 
fractal dimensions, regardless оЁ how expert one may become а{ that exercise, but 
to establish а set оЁ evolution equations which govern the motion and еп use 
these equations for predicting future behavior of the system or for providing a 
framework within which to devise controls to make the system perform «better» 
according to some criterion established by the user. We will show how to use the 
neighborhood structure in the system phase space (or state space) to make local or 
global models of the dynamics revealed by the observations. 

There is an important sense of model building which becomes evident when 
one views the geometn'c structure defined by orbits of a chaotic system: since one 
sees motion of the system only on the set of points in state space to which all orbits 
are attracted (а strange attractor 11 the case оё chaotic motions) after system tran- 
sients have dled out, the natural model one can build for evolution оё the system 
will evolve it along 'the attractor ог perhaps within the whole basin of attraction. 
The attractor is typically located on a small subspace of the original system state 
space, so one should not expect to be able to determine the original differential 
equations (partial ог ordinary) which govern е system dynamics in в larger state 
space -infinite dimensional in the case оё partial differential equations. Instead one 
should expect to be able to determine only an effective set of equations which al- 
lows the analysis of motion оп the attractor subspace alone. The effective equa- 
tions may not have any global analytic expression in the phase space, but may be 
composed of a large collection of local evolution rules having no expression be- 
yond а kind оё lookup table оп а computer hard disk. This redefines the traditional 
view of finding some version of Newton’s equations а5 the goal of the signal anal- 
ysis. Since one can use the effective model to perform most of what can do with 
the differential equations, substituting the effective equations for analytic expres- 
stons does not diminish the utility of the analysis for practical tasks. 

Another important use of the analysis tools is to determine the appropri- 
ateness of a proposed set of differential equations for the description of the ob- 
servations. One cannot compare the detailed orbits (time series) of any of the var- 
iables in е solution оЁ the differential equations with е observed chaotic orbits 
because chaotic motion is associated with unstable orbits throughout the system 
state space 50 any roundoff error ог difference 11 initial conditions is exponentially 
amplified in chaotic motion. Any two orbits of the same system are uncorrelated in 
any sense - linear or nonlinear - after a characteristic time. Comparison of the 
output from the model with data must be carried out on other terms: comparison of 
the attractor properties such ав fractal dimensions от l.yapunov exponents ог other 
invariant aspects of the dynamics. Even though the system may be completely de- 
terministic, the essential instabilities which underlie the chaotic behavior means 
that the terms of comparison are statistical. 

It is the purpose of this brief review article to explain many of these statements in 
enough detail and with sufficient elaboration so that the reader can fully understand how 
to go about the kind of time series analysis we describe. We will stick to practical al- 
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gorithms and give examples of their application to quite varied data sets. The algorithms 
described here ай run оп standard serial workstations and, depending оп the length of the 
data sets and the dimension of the state space, run in minutes to a few hours. None of the 
computation 15 prohibitive and much оё it сап be parallelized with accompanying speed- 
ups in execution, 

Many topics will be passed by in this short article. We do not touch at all on the 
applications of the methods to medical or biological problems, though the tools are gen- 
eral enough to be useful there without any alteration. We focus on establishing the proper 
state space for the signal and extracting invariant characteristics of the system from the 
observed signal - two of the items from опг list above. Signal separation, though not dif- 
ficult, requires some ideas beyond what is useful 10 present in this kind оЁ introduction. 
We will only touch оп the ideas 10 model building since that 15 both the easiest and the 
hardest part of the whole process: it is easy to construct models which work; it is difficult 
to construct models which encompass aspects of the physics one is trying to capture. The 
development of efficient and usable models is a wide open subject which knows no hard 
апа fast rales. 1t is unlikely there will be а «handbook» of models to use for this ог that 
data. Much will depend on the interests and goals of the user, and that makes the subject 
rich indeed. We will outline what is known and works, but we expect that to grow rapidly 
with the application of the methods to a wide variety of practical problems. Some of the 
topics not contained here are touched оп п {2,3] and additional detail will be found т [4]. 

The analysis of chaotic time series is by no means a closed or finished subject, so 
what we write on many of these topics will be superseded over the next few years as one 
applies the general viewpoint to numerous real world and practical problems. Out of this 
we anticipate will emerge a set of practices moving within the general sort of guidelines 
we are able to present and even more by what works and what doesi’t work in practical 
situations. At this stage we are able to content ourselves with a consistent set of success- 
ful applications of the framework without having either the chutzpah or necessity to dic- 
tate how аЙ problems should be approached ог solved when dealing with nonlinear 
chaotic systems. 
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