

Изв.вузов «ПНД»,т.2,№1,1994

УДК 532.517

МЕХАНИЗМ ОБРАЗОВАНИЯ ЛОКАЛИЗОВАННЫХ СТРУКТУР В СВЯЗАННЫХ ЦЕПОЧКАХ АВТОГЕНЕРАТОРОВ

Г.В.Осипов, М.М.Сущик

Представлен новый механизм образования локализованных структур в ансамблях автогенераторов, связанный с эффектами «вымирания» автоколебаний при разрушении режима их взаимной синхронизации.

1. Известно, что в цепочках автогенераторов с различающимися частотами при достаточно сильной диффузионной связи между элементами цепочки возможно образование локализованных структур или доменов с интенсивными взаимно синхронизованными колебаниями, сосуществующими рядом с областями, где эти колебания отсутствуют или пренебрежимо малы [1,2]. Один из механизмов формирования таких областей связан с эффектом «вымирания» автоколебаний [3,4], «... когда после срыва синхронизации влияние достаточно большой диссипативной связи приводит к увеличению потерь для каждого из автоколебаний». Из-за неоднородности расстройки частот или влияния концевых эффектов срыв синхронизации происходит локально, что и приводит к формированию локализованных структур и фронтов. В настоящей работе продемонстрировано, что в двух связанных цепочках при наличии зависимости частоты автоколебаний от амплитуды этот механизм может приводить к образованию локализованных структур даже в отсутствие концевых эффектов и неоднородности частотной расстройки вдоль цепочки.

2. Рассмотрение ведется на примере двух связанных цепочек автогенераторов, динамика которых в квазигармоническом приближении описывается уравнениями для медленно меняющихся комплексных амплитуд a_i и b_i :

$$a_j = (p + i\Delta)a_j - (1 + i\alpha)|a_j|^2 a_j + d(a_{j+1} - 2a_j + a_{j-1}) + c(b_j - a_j),$$
(1)

$$b_{j} = pb_{j} - |b_{j}|^{2}b_{j} + d(b_{j+1} - 2b_{j} + b_{j-1}) + c(a_{j} - b_{j}),$$
(2)
$$i = 1 \qquad N$$

с граничными условиями: $a_0 = a_1$; $a_{N+1} = a_N$; $b_0 = b_1$; $b_{N+1} = b_N$.

Здесь зависимые переменные $a_j = |a_j|e^{i\varphi a}$ и $b_j = |b_j|e^{i\varphi b}$ характеризуют амплитуды и фазы квазигармонических колебаний x_j и y_j в цепочках $(x_j = a_j(\tau)\exp(it) + a_j^*(\tau)\exp(-it); y_j = b_j(\tau)\exp(it) + b_j^*(\tau)\exp(-it));$ точкой обозначена производная по медленному времени $\tau = 1/2\epsilon t; \Delta$ и α описывают линейную и нелинейную расстройку частот генераторов; p – инкремент, d – связь между элементами в цепочках, а c – между цепочками (здесь мы ограничиваемся случаем чисто активных связей d=|d|, c=|c|). Параметр малости є характеризует близость колебаний в рассматриваемых автогенераторах к гармоническим. В данном конкретном случае прототипом являлись цепочки генераторов Ван–дер–Поля

$$\frac{d^2}{dt^2}x_j + (1 + \epsilon\Delta - \frac{\epsilon}{3}\alpha x_j^2)x_j = \epsilon (p - x_j^2)\frac{d}{dt}x_j + \epsilon \frac{d}{dt}[d(x_{j+1} - 2x_j + x_{j-1}) + c(y_j - x_j)], (3)$$

$$\frac{d^2}{dt^2}y_j + y_j = \varepsilon \left(p - y_j^2\right) \frac{dy_j}{dt} + \varepsilon \frac{d}{dt} \left[d(y_{j+1} - 2y_j + y_{j-1}) + c(x_j - y_j)\right], \quad j = 1, \dots, N, \quad (4)$$

с граничными условиями: $x_0 = x_1, x_{N+1} = x_N, y_0 = y_1, y_{N+1} = y_N$

.

Хотя подробно исследовалась лишь система амплитудных уравнений (1),(2), контрольные расчеты показали, что система (3),(4) имеет подмножество решений, качественно совпадающих с решениями амплитудных уравнений (1),(2) вплоть до ε -1.

3. Для качественного анализа режимов, наблюдавшихся в численных решениях для длинных цепочек,

воспользуемся бифуркационной диаграммой для однородных $(a_i = a, b_i = b)$ решений при $\alpha = 0$, которая совпадает с диаграммой для двух связанных генераторов и схематично изображена 1. В зависимости на рис. OT качественных свойств решений на диаграмме можно выделить три основные области [4]: 1-область «вымирания» автоколебаний, в которой устойчивым является тривиальное решение (напомним, что здесь везде идет случае. когла пля речь 0 изолированных генераторов (c=0, d=0) выполнены условия самовозбуждения p > 0; 2 – область синхронизации $(\phi_a = \phi_b)$; 3 – область несинхронизован– ных колебаний (lim $T^{-1}(\varphi_a - \varphi_b) \neq 0$).

Рис. 1. Бифуркационная диаграмма для двух связанных генераторов: *I* – область устойчивости тривиального равновесия; *2* – область синхронизации; *3* – область несинхро– низованных колебаний

Переход между областями 2 и 3 имеет сложную структуру и, в общем случае, здесь возможны автоколебания как с регулярной, так и хаотической модуляцией. Переходы между областями 1 и 2 или 1 и 3 существенно проще и в рамках системы (1),(2) определяются из анализа малых возмущений, для собственных чисел λ которых имеем

$$\lambda_{1,2} = p - c + \frac{i\Delta \pm \sqrt{4c^2 - \Delta^2}}{2}.$$
 (5)

Как видно из этого выражения, при сильной связи (c>p) нарушение условий синхронизации при увеличении расстройки делает невозможным существование устойчивых колебаний с конечной амплитудой (фактически, уже при $\Delta^2 > 4c^2-4(c-p)^2$ сдвиг фаз между *а* и *b* становится настолько большим, что слагаемые связи пропорциональные *с* в (1), (2) вносят потери, превышающие усиление). Однако, если хотя бы в одном из генераторов имеется нелинейный сдвиг частоты (пропорциональный $\alpha |a|^2$), способный скомпенсировать линейную расстройку Δ , то это эквивалентно смещению вниз на диаграмме рис.1 и при

$$4c^{2} - 4(c-p)^{2} < \Delta^{2} < 4c^{2} - 4(c-p)^{2} + \left(\frac{1}{2}\Delta\alpha - 2(c-p)^{2}\right)\left(1 + \frac{\alpha^{2}}{4}\right)^{-1},$$

$$\Delta\alpha - 4(c-p) > 0$$
(6)

появляются еще два нетривнальных состояния равновесия для амплитуд [5]

$$|a_{1,2}^{(0)}| = |b_{1,2}^{(0)}| = \frac{\Delta\alpha - 4(c-p) \pm \sqrt{[\Delta\alpha - 4(c-p)]^2 - (1+\alpha^2/4)[\Delta^2/4 - c^2 - (c-p)^2]}}{4(1+\alpha^2/4)}.$$
 (7)

Одно из этих состояний, соответствующее большим амплитудам, является устойчивым. Наличие тривиального и нетривиального асимптотических состояний, устойчивых в предположении однородности решения свидетельствуют, что при определенных ограничениях на величину связи в цепочках из этих состояний могут быть сформированы локализованные структуры. Этот вывод подтверждается приведенными ниже численными решениями.

Рис.2. Стационарные структуры $|a_j|^2$, реализующиеся в системе (1).(2) при значениях параметров $\Delta = 2.0$, $\alpha = 5.75$, p = 0.5, c = 0.5 с начальными условиями $\varphi_{a,j} = \varphi_{b,j}$ для всех j, $|a_j|^2 = |b_j|^2 = 0.434$. при j = 51, ..., 78; $|a_j|^2 = |b_j|^2 = 0.0$ при j = 1, ..., 50 и при j = 79, ..., 128

4. На рис. 2 представлены струккоторые формируются туры, при задании в начальный момент амплитуды локализованных колебаний $a_i = b_i = |a|$ согласно соотношениям (7). В случае связи ($d \approx 10^{-3}$) генераторов слабой внутри распределение цепочки начальных и установившихся амплитуд практически совпадают. С ростом d сказывается влияние связи С невозбужденными генераторами И амплитуда | а | и, следовательно, нелинейная частотная расстройка пропорциональная α | *а* |² становятся зависящими от положения в цепочке. При ≈ 0.1 эта расстройка возрастает đ настолько, что приводит к локальному срыву синхронизации и образованию более мелких структур. Вблизи критического значения параметра связи $d_{\kappa p}$

результирующее распределение амплитуд существенно зависит от величины значения параметра связи (рис. 3) и величины начального значения амплитуды (рис. 4), несмотря на то, что это значение находится в области $|a| \ge |a^{(0)}|$, то есть при заведомо выполненных условиях жесткого возбуждения в каждом из отдельно взятых генераторов.

Пространственно-временные диаграммы на рис. 5 иллюстрируют процессы установления при задании в начальный момент распределения амплитуд в виде ступеньки. На этом рисунке представлены зависимости от времени квадрата модуля амплитуды колебаний на каждом элементе цепочки. Затемненные участки соответствуют | $a_j(t)$ |² > 0.5 max{| $a_j(t)$ |²}, а светлые | $a_j(t)$ |² < 0.5 max{ $a_j(t)$ |²}. Положение границы между ними фактически определяет фронт переброса автогенераторов из возбужденного состояния в невозбужденное, поскольку в переходной области содержится всего лишь несколько элементов цепочки. Средняя сскорость фронта практически не зависела от c в интервале его изменения от 0.5 до 1.0 и имела характерную для критических явлений корневую зависимость от параметра связи $v = 0.92\sqrt{d} - 0.09$ (рис. 6). Вблизи критического значения $d_{\rm kp} \approx 0.09$ одновременно с усложнением формирующихся структур (см. рис. 4) усложняется и переходной процесс (см. рис. 5, a).

Рис. 3. Стационарные структуры $|a_j|^2$, реализующиеся в системе (1),(2) при $\Delta = 2.0$, $\alpha = 5.75$, p = 0.5, c = 0.51 с начальными условиями $\varphi_{a,j} = \varphi_{b,j}$ для всех j, $|a_j|^2 = |b_j|^2$ при j = 51, ..., 128; $|a_j|^2 = |b_j|^2 = 0.0$ при j = 1, ..., 50; a - d = 0.095; 6 - d = 0.0985; 6 - d = 0.102

Рис. 4. Стационарные структуры $|a_j|^2$, реализующиеся в системе (1),(2) при $\Delta = 2.0$, $\alpha = 5.75$, p=0.5, c=0.51, d=0.099 с начальными условиями: $\varphi_{a,j} = \varphi_{b,j}$ для всех j, $|a_j|^2 = |b_j|^2 = a^2$ при $j=51, \ldots, 128$, $|a_j|^2 = |b_j|^2 = 0.0$ при $j=1, \ldots, 50$; $a - a^2 = 2.0$; $\delta - a^2 = 0.72$; $e - a^2 = 0.5$

5. Рассмотренный выше механизм формирования локализованных структур может представлять интерес как для прикладных задач, так и для более глубокого понимания происхождения маломерного хаоса в многомерных и распределенных системах. В частности, в больших ансамблях N автогенераторов (в том числе с различающимися параметрами) часто образуются слабо связанные кластеры с *m* < *N* элементами. При этом, как можно ожидать с учетом приведенного выше рассмотрения, в определенной области параметров возможно выживание лишь кластеров с синхронизованными (по крайней мере, хотя бы частично) элементами. В результате эффективное число степеней свободы, достаточное для описания уменьшается. Предварительный динамики системы, существенно анализ подтверждает, что при определенных условиях этот механизм эффективен также при стохастической синхронизации и приводит к формированию локализованных структур с маломерной хаотической динамикой. С другой стороны, наблюдавшееся формирование разнообразных сложных паттернов при сравнительно простых, но неоднородных начальных условиях, свидетельствует, что рассмотренное явление может быть также ответственно за формирование пространственного беспорядка при распространении фронтов в цепочках автогенераторов.

Рис. 5. Пространственно-временные диаграммы установления стационарных структур в системе (1), (2) при значениях параметров $\Delta = 2.0$, $\alpha = 5.75$, p = 0.5, c = 0.51 с начальными условиями $\varphi_{a,j} = \varphi_{b,j}$ для всех j, $|a_j|^2 = |b_j|^2 = 0.72$ при j = 51, ..., 128, $|a_j|^2 = |b_j|^2 = 0.0$ при j = 1, ..., 50; a - d = 0.095, $\delta - d = 0.1$

Рис. 6. Скорость распространения фронта перехода из возбужденного состояния в невозбужденное при $\Delta = 2.0$, $\alpha = 5.75$, p = 0.5, c = 0.51 в зависимости от величины параметра связи d

Отметим также, что ввиду простоты и общности механизма вымирания автоколебаний все сформулированные выводы без особого труда могут быть перефразированы на случай связанных многомерных решеток при наличии частотных линейных и нелинейных расстроек. Кроме того, трактуя две связанные цепочки как предельный случай сильно неоднородной двумерной решетки, на основании приведенного выше можно сделать вывод, что в двумерных системах введение неоднородности (например, частотной расстройки) по одной из координат может приводить к появлению состояний, локализованных по обеим координатам.

Работа выполнена частично при финансовой поддержке Российского фонда фундаментальных исследований (проект 93–02–15424).

Библиографический список

1. Дрендель С.Д., Хорс Н.П., Васильев В.А. Режим синхронизации клеток гладкомышечных тканей // Динамика клеточных популяций. Горький: Изд-во Горьк. ун-та, 1984. С. 108.

2. Васильев В.А., Романовский Ю.М., Яхно В.Г. Автоволновые процессы. М: Наука, 1987.

3. Bar-Eli K. On the stability of coupled chemical oscillators/ / Physica D. 1985. Vol. 14. P. 242.

4. Ermentrout G.B. Oscillator death in populations of «all to all» coupled nonlinear oscillators // Physica D. 1990. Vol. 41. P.219.

5. Aronson D.G., Ermentrout G.B. and Kopell N. Amplitude response of coupled oscillators // Physica D. 1990. Vol. 41. P. 403.

Институт прикладной физики РАН Нижегородский государственный университет

Поступила в редакцию 22.03.94 после переработки 29.04.94

THE MECHANISM OF THE FORMATION OF LOCALIZED STRUCTURES IN COUPLED CHAINS OF SELF-EXCITED OSCILLATORS

G.V.Osipov, M.M.Sushchik

We present a new mechanism responsible for the formation of localized structures in ensembles of self-excited oscillators that is associated with the effects of oscillator death as result of breaking of the phase-locking regime.

Осипов Григорий Владимирович – родился в 1960 г. в г. Горьком, окончил Горьковский госуниверситет в 1982 г. Защитил диссертацию на соискание ученой степени кандидата физико-математических наук в 1989 г. Доцент Нижегородского госуниверситета. Область научных интересов – нелинейная теория колебаний и волн, теория бифуркаций, структурообразование, вычислительный эксперимент в нелинейной динамике. Соавтор монографии «Устойчивость, структуры и хаос в нелинейных сетях синхронизации».

Сущик Михаил Михайлович – родился в 1941 г. в г. Городня Черниговской обл., окончил радиофизический факультет Горьковского госуниверситета в 1965 г. Защитил диссертацию на соискание ученой степени кандидата физико-математических наук в 1972 г. Старший научный сотрудник Института прикладной физики РАН. Область научных интересов – автоколебательные процессы в гидродинамических течениях, когерентные структуры, динамические модели турбулентности.