

Изв.вузов «ПНД», т. 2, № 5, 1994

УДК 621.385.6.01.

СЛОЖНАЯ ДИНАМИКА ПОТОКА ЗАРЯЖЕННЫХ ЧАСТИЦ С ВИРТУАЛЬНЫМ КАТОДОМ

А.П.Привезенцев, Г.П.Фоменко

В работе численным методом рассмотрена нелинейная динамика виртуального катода в трнодных системах. Показано, что различные неустойчивые стационарные потоки переходят в различные колебательные состояния - нелинейные структуры для токов инжекции, близких к критическому. Возмущение тока инжекции приводит к взаимодействию нелинейных мод и переходу высокочастотной моды в низкочастотную. При взаимодействии потока с многомодовым резонатором с определенным уровнем связи и диапазоном собственных частот наблюдается режим синхронизации с колебаниями, близкими к синусощальным. Исследование корреляционных характеристик для локальных величии потока показывает, что динамика является с ложной, когда крупномасштабная когерентность для временных масштабов порядка времени пролета сочетается с хаотическим поведением на меньших временных маспитабах.

1. Интерес к исследованию динамики виртуального катода связан прежде всего с возможностью его использования для генерации мощного СВЧ-излучения. Различные варианты таких генераторов на мощных импульсных электронных пучках, имеющих общее название - виркаторы, можно разделить на две большие группы. В виркаторах триодного типа виртуальный катод формируется в межэлектродном промежутке с тормозящим потенциалом. При этом практически все инжектируемые диодом электроны отражаются, и формируются встречные потоки частиц, осциллирующие в потенциальной яме катод - виртуальный катод.

В многочисленных модификациях виркаторов диодного типа сверхпредельный ток инжектируется в эквипотенциальное пространство. В этом случае наряду с электронами, осциллирующими между катодом и виртуальным катодом, существует поток пролетных частиц. В модификации виркатора, называемой редитроном, отраженный виртуальным катодом поток поглощается. Таким образом, устраняется возмущающее влияние нестационарного потока отраженных частиц на работу диода. Виртуальный катод в редитроне формируется моноэнергетическим потоком, практически ЧТО существенно улучшает спектральные характеристики генерируемого излучения.

Имеющиеся к настоящему времени экспериментальные результаты по генерации СВЧ-излучения виркаторами получены на установках с далекими от оптимальных значений параметрами. Однако, проведенные исследования показывают, что виркаторы могут рассматриваться в качестве перспективных, достаточно простых по конструкции источников электромагнитного излучения в диапазоне 1÷10 ГГц с мощностью около десяти ГВт и длительностью импульса до сотен наносекунд [1-3]. Формирование осциллирующего виртуального катода в сверхпредельном потоке заряженных частиц представляет собой сложный процесс, в котором в полной мере проявляются нелинейные свойства пространственного заряда. Сложность описания такой системы определяется возбуждением большого числа сильно взаимодействующих коллективных степеней свободы. В силу этого, достаточно полное исследование динамики виртуального катода может быть получено путем полномасштабного численного моделирования [4]. Однако, для выяснения общих физических механизмов, определяющих особенности динамики виртуального катода, представляет интерес исследование простейших приближенных моделей.

Ограничимся в дальнейшем рассмотрением одномерного потока, формирующего виртуальный катод в плоском диодном промежутке. Допущение о неограниченных размерах системы в направлении перпендикулярном движению частиц дает возможность игнорировать эффекты, связанные с магнитным полем потока.

Для одномерных потоков такого вида аналитически решаются самосог ласованные уравнения гидродинамического приближения, описывающие стационарные состояния потоков в нерелятивистском [5] и релятивистском [6] случаях. Решения уравнений для стационарных потоков показывают, что в некотором интервале значений токов, инжектируемых в плоский диодный промежуток, существует гистерезис состояний и возможны три различных режима стационарного потока: «быстрый» стационарный поток с полным пролетом, «медленный» стационарный поток с полным пролетом и стационарный поток с виртуальным катодом, когда часть инжектируемого потока отражается. В работах [7 - 9] методом линейной теории показано, что медленная ветвь стационарного потока с полным пролетом неустойчива.

Традиционный для классической СВЧ-электроники линейный подход для анализа работы виркатора использовался в работах [10 - 12]. В основе такого подхода лежит допущение о существовании некоторого равновесного состояния с малыми возмущениями, эволюция которых описывается линеаризованными уравнениями. На ограниченность такого подхода в теории виркаторов показывает приведенное в статье [13] качественное описание режима сильной турбулентности электронной плазмы, формируемой в турбутроне. Турбутрон - вариант виркатора, в котором электроны из плоского диода инжектируются в пролетный промежуток с большим превышением критического тока. Это достигается за счет того, что ширина пролетного промежутка значительно превосходит ширину диода. Согласно [13], сгустки, формируемые в потоке электронов, осциллирующих между катодом и виртуальным катодом, взаимодействуют друг с другом, обмениваясь частицами, изменяясь в размерах и даже рождаясь и умирая.

Очевидно, что процесс интенсивного взаимодействия коллективных степеней свободы электронного пучка характерен для мощных приборов с развитым пространственным зарядом. Сложные колебания электронного потока впервые были обнаружены при исследовании аномально высокого уровня шумов в генераторах магнетронного типа [14].

В настоящей статье рассматривается нелинейная динамика виртуаль-ного катода, определяющая сложность колебательных режимов пространственного заряда в условиях сверхкритического тока. «Сложность» при этом понимается в смысле, принятом в нелинейной физике [15, 16], как сочетание в одном процессе динамических и хаотических свойств. Рассмотрение ведется в рамках модели плоских листов. При очевидных ее ограничениях - отсутствие магнитного поля, одномерность движения - эта модель отражает существенные нелинейные свойства интенсивного потока (наличие критического тока, гистерезис состояний), что делает ее исследование интересным и дает возможность понять некоторые общие закономерности нелинейной динамики пространственного заряда. Практика применения модели плоских листов для описания генерации излучения в виркаторах с плоскими электродами, зазор между которыми меньше их поперечных размеров, как отмечено в работе [13], дает удовлетворительное

57

согласие с экспериментом по уровню мощности и достаточно точно предсказывает частоту излучения.

2. Рассмотрим триодную систему, образованную плоскими параллельными друг другу электродами: катодом, анодной сеткой и коллектором. Электроны, ускоренные потенциалом U_0 в диодном промежутке катод - анод шириной d_1 , инжектируются в пролетный промежуток анод - коллектор шириной d_2 . Потенциал коллектора может равняться потенциалу анода (для виркатора диодного типа) или совпадать с потенциалом катода (для виркатора триодного типа). Возбуждение потоком высокочастотного поля учитывается только в пролетном промежутке, который рассматривается как высокочастотный резонатор. Следуя приближению плоских листов, высокочастотное поле в области взаимодействия считаем однородным, что приближенно выполняется для основных мод, если размеры области, занятой потоком, много меньше размеров резонатора.

Уравнения, описывающие динамику пространственного заряда, получим, используя модификацию модели плоских листов и безразмерные единицы, введенные в работе [17].

За единицу длины примем d_1 . Масштаб плотности заряда σ_M введем соотношением

$$e\sigma U_0 = e^2 d_1 \sigma_M^2 / 2\varepsilon_0,$$

где о - плотность заряда листа. Масштаб потенциала электрического поля определим равенством

$$U_M = e d_1 \sigma_M / \varepsilon_0$$

При таком выборе единиц, безразмерная плотность заряда $\lambda = \sigma/\sigma_M$ и безразмерное напряжение диода $u_0 = U_0/U_M$ связаны равенством

$$\lambda u_0 = 1/2.$$

Единицей времени в принятой нормировке служит время пролета одиночного электрона через диод с максимальной скоростью, приобретаемой в ускоряющем потенциале U_0 ,

$$t_M = d_1/v_0, \quad v_0 = \sqrt{2eU_0/m}.$$

Единицей тока является максимальный ток диода в режиме ограничения эмиссии пространственным зарядом

$$J_M = 4/9(\varepsilon_0/d_1^2)\sqrt{2e/m}U_0^{3/2}$$

Стационарный поток с полным прохождением заряда через эквипотенциальный пролетный промежуток становится неустойчивым, если инжектируемый в него ток равен удвоенному критическому $2J_{\rm kp}$. Стационарный режим частичного прохождения потока с виртуальным катодом может существовать для токов инжекции больших $J_{\rm kp}$.

В дальнейшем предполагается, что диод работает в режиме ограничения тока пространственным зарядом. В этих условиях критический ток пролетного промежутка анод - коллектор выражается через J_M и относительную длину промежутка $D=d_2/d_1$

$$J_{\rm KP} = 4J_M/D^2.$$

Условие срыва режима полного пролета $J_M = 2J_{\kappa p}$ выполняется при ширине пролетного промежутка $D_{\kappa p} = 2\sqrt{2}$. Варьируя D, можно изменять степень превышения током, инжектируемым диодом, величины критического тока.

Если считать, что листы пронумерованы в порядке возрастания коор-

динаты, то уравнения движения листов в дноде и пролетном пространстве в промежутках между моментами обгона и событиями, изменяющими их число, определяются гамильтонианом

$$H = \sum_{i=1}^{N} (p_i^2/2 - \lambda^2 \sum_{j=1}^{N} (\Theta(x_j - x_i) - \mu x_j/2) x_i - \lambda \mu u x_i), \qquad (1)$$

где $\Theta(x)=0, 1/2, 1$ для x<0, x=0, x>0 соответственно; N - число листов в соответствующей области триодной системы; координатная ось x направлена перпендикулярно электродам; $p_i=dx_i/dt$. Для диодного промежутка $0\le x_i\le D$ имеем $\mu=1$, для пролетного промежутка $0\le x_i\le D$ имеем $\mu=1/D$. Внешнее поле u в диодном промежутке равно ускоряющему полю u_0 , а для пролетного промежутка, в зависимости от рассматриваемого режима, может равняться нулю, быть стационарным тормозящим полем $-u_0$ или составлять суперпозицию стационарного поля и собственного поля резонатора u_c , которое представляется в виде суммы по собственным модам

$$u_c = \sum_{s=1}^{M} dq_s / dt.$$

Уравнения для коэффициентов разложения векторного потенциала q_s удобно преобразовать, переходя к амплитудам A_s и фазам φ_s гармоник $q_s = A_s \cos(\omega_s t + \varphi_s)/\omega_s$,

$$dA_{s}/dt = -(\omega_{s}/Q_{s})A_{s}\sin^{2}\psi_{s} + \lambda\Gamma_{s}\sin\psi_{s}\sum_{i=1}^{N}p_{i},$$

$$d\phi_{s}/dt = (\omega_{s}/Q_{s})\sin\psi_{s}\cos\psi_{s} + \lambda\Gamma_{s}\cos\psi_{s}/A_{s}\sum_{i=1}^{N}p_{i},$$
(2)

где $\psi_s = \omega_s t + \varphi_s$, s = 1, 2, ..., M; M - общее число гармоник; ω_s - собственные частоты; Q_s -добротности; Γ_s - коэффициенты связи для *s*-й собственной моды резонатора являются феноменологическими параметрами модели.

Для принятого порядка нумерации листов можно ввести новые координаты $y_1 = x_1$, $y_i = x_i$, x_{i-1} (i=2,3, ..., N), в диодном промежутке $y_{N+1} = 1 - x_N$, в пролетном промежутке $y_{N+1} = D - x_N$. Уравнения для переменных y_i , определяемые гамильтонианом (1), имеют вид

$$d^{2}y_{1}/dt^{2} = -\lambda^{2}(N-1/2) + \mu\lambda^{2}\sum_{j=1}^{N}(N-j+1)y_{j} - \lambda\mu u,$$

$$d^{2}y_{j}/dt^{2} = \lambda^{2}, \qquad j = 2,3, ..., N,$$

$$d^{2}y_{N+1}/dt^{2} = \lambda^{2}/2 - \mu\lambda^{2}\sum_{j=1}^{N}(N-j+1)y_{j} + \lambda\mu u.$$
(3)

При численном интегрировании системы (2), (3) постоянный временной шаг h определялся через известное время пролета заряда диодного промежутка T_{cr} (в выбранных единицах $T_{cr} = 3$) и начальное число частиц в диоде N_0 по формуле $h=T_{cr}/N_0$. Выбор N_0 определялся условием h <<1 и возможностями вычислительной машины, поскольку от этого условия зависело среднее число уравнений (3) и, следовательно, время счета.

В дальнейшем величина шага задает последовательность моментов времени $t_i = t_0 + ih$ (i = 1, 2, ...), для которых вычисляются временные последовательности физических параметров системы, определяющие ее динамический режим. Кроме

того, *h* является шагом интегрирования уравнений высокочастотного поля (2) по методу Эйлера.

Уравнения (3), описывающие динамику листов, решаются с помощью итерационной процедуры, которая определяет координаты $y_{i,k}=y_i(t_k)$ и скорости $v_{i,k}=(dy_i/dt)|_{i=t_k}$ для дискретной последовательности моментов времени t_k (k=1, 2, ...). Наряду с последовательностью $t_i = t_0 + ih$ итерационная последовательность t_k включает моменты времени, когда происходит одно из событий, нарушающих линейный порядок нумерации листов или изменяющих их число. Такие события определяются по обращению в нуль одной из координат y_i . К ним относятся: обгон *i*-го листа (*i*-1)-ым (при этом $y_i=0$), возврат 1-го листа пролетного промежутка в диод или 1-го листа в диоде на катод ($y_1=0$), вылет N-го листа из пролетного промежуток ($y_{N+1}=0$).

Введем 2(N + 1) - мерные векторы, определяющие состояния листов в моменты t_{κ} в каждой части триодной системы

$$\mathbf{Y}_{k^{\pm}} = \operatorname{col}(y_{1,k^{\pm}}, ..., y_{N+1,k^{\pm}}, v_{1,k^{\pm}}, ..., v_{N+1,k^{\pm}}).$$

Значения векторов Y_k и их координат в момент t_k после восстановления линейного порядка нумерации листов обозначаются верхним индексом «+», значения этих величин в момент t_k до перенумерации индексом «-».

Для определения текущего шага итерации запишем решение системы (3), ограничиваясь разложением по степеням $\Delta t = t - t_k$ с точностью до членов третьего порядка, в виде

$$y_{1}(\Delta t) = y_{1,k}^{+} + v_{1,k}^{+} \Delta t + F_{1}(\Delta t)^{2/2} + \lambda I_{\text{nonn}}(\Delta t)^{3/6},$$

$$y_{i}(\Delta t) = y_{i,k}^{+} + v_{i,k}^{+} \Delta t + \lambda^{2}(\Delta t)^{2/2}, \quad i=2, ..., N, \qquad (4)$$

$$y_{N+1}(\Delta t) = y_{N+1,k}^{+} + v_{N+1,k}^{+} \Delta t - F_{N}(\Delta t)^{2/2} - \lambda I_{\text{nonu}}(\Delta t)^{3/6},$$

$$F_{1} = \lambda^{2} (\sum_{j=1}^{N} (N - j + 1)y_{j,k}^{+} - 1/2) + \lambda u(t_{k}),$$

$$F_{N} = \lambda^{2} (\sum_{j=1}^{N} (N - j + 1)y_{j,k}^{+} - N + 1/2) + \lambda u(t_{k}),$$

$$I_{\text{nonu}} = \lambda \sum_{j=1}^{N} (N - j + 1)v_{j,k}^{+} + (du_{c}/dt)|_{t=t_{k}}.$$

где

Шаг итерации находится как интервал времени до ближайшего события из ряда: обгон, возврат, вылет, перелет или очередной момент записи состояния системы t_m . Значение очередного шага Δt_{k+1} вычисляется как наименьший из интервалов Δt , определяемых уравнениями

$$y_i(\Delta t) = 0, \quad i = 1, 2, ..., N+1,$$

 $\Delta t = t - (t_0 + mh).$
(5)

Поскольку одновременно решается $N_{\rm g}$ +1 - уравнений (3) в диодной области и $N_{\rm n}$ +1 - уравнений в пролетной области, общее число уравнений (5) для определения наименьшего интервала равно $N_{\rm g}$ + $N_{\rm n}$ + 3, где $N_{\rm g}$ и $N_{\rm n}$ - число частиц в диодной и пролетной областях соответственно.

По найденному Δt_{k+1} очередное значение \mathbf{Y}_{k+1} - определяется оператором сдвига по трасктории системы (3), который можно записать в виде

$$\mathbf{Y}_{k+1} = \Lambda_k + L_k \mathbf{Y}_{k+1} \tag{6}$$

где вектор Λ_k и матрица L_k определяются правой частью выражений (4) после замены Δt на Δt_{k+1} . Далее проводится точечное преобразование перенумерации координат

$$\mathbf{Y}_{k+1}^{+} = S_{\alpha} \mathbf{Y}_{k+1}^{-}, \tag{7}$$

где индексом α отмечены возможные типы преобразований, соответствующие различным событиям, которые определяют моменты итераций (обгон, возврат, вылет, перелет). Последовательность отображений (6) и (7) определяет динамику пространственного заряда.

Для моделирования условий эмиссии, ограниченной пространственным зарядом на катоде, очередной лист в диод вводился при выполнении неравенства

$$\lambda \sum_{i=1}^{N} x_i - N + 1/2 + u \gtrsim 1/2,$$

которое обозначает, что суммарное поле на катоде превышает тормозящее поле одного листа. Начальное значение скорости вводимого в диодный промежуток листа v_{μ} и его координаты x_{μ} удовлетворяли равенству

$$\upsilon_{\rm H} = x_{\rm H}^{3/2} + \delta R,\tag{8}$$

где величина $x_{\rm H}$ выбиралась равной половине координаты ближайшего к катоду листа, R - случайная величина, равномерно распределенная в интервале $0 \le R \le 1$; δ - параметр, определяющий величину разброса скоростей при эмиссии и отклонение от идеального закона 3/2, который имеет место при $\delta = 0$.

Листы, проходящие анод в прямом (из диода) или обратном (из пролетного промежутка) направлениях могли поглотиться (перестать существовать) с вероятностями $0 \le P_f \le 1$ и $0 \le P_b \le 1$ соответственно. Варьируя величину P_b , можно изменять степень влияния отраженных электронов на работу системы. В частности, значения параметров $\delta=0$, $P_f=0$, $P_b=1$ соответствуют режиму идеального редитрона, когда в пролетное пространство инжектируется моноэнергетический поток при условии полного поглощения отраженных виртуальным катодом зарядов на аноде.

3. Рассмотрим результаты численного моделирования динамики пространственного заряда в рамках описанной модели. В этом разделе приводятся результаты исследования собственных колебаний потока без учета возбуждения им высокочастотного поля в эквипотенциальном пролетном промежутке длиной $D \approx D_{\rm kp} = 2\sqrt{2}$. При этом ток диода, инжектируемый в пролетный промежуток, близок к $2J_{\rm kp}$.

Как показано в работе [18], гистерезис стационарных потоков приводит к гистерезису колебательных состояний потока в редитронном режиме ($P_f=0, P_b=1$).

Первый колебательный режим - низкочастотная нелинейная мода формируется из начального распределения координат x_i и импульсов p_i листов в пролетном промежутке, которое соответствует стационарному потоку с полным пролетом [17],

$$x_{i} = D[(3v-1)(i/N-1/2)/(2v) + 2(1-v)(i/N-1/2)^{3/v} + 1/2],$$

$$p_{i} = 1 + 6(1-v)(i/N-1)i/N.$$
(9)

Здесь параметр v - безразмерное обратное время пролета листа через промежуток в стационарном потоке - определяется из уравнения

$$v(1-v^2)=8J/9,$$
 (10)

где J - безразмерный ток инжекции.

Второй колебательный режим - высокочастотная нелинейная мода формируется из начального распределения x_i и p_i , соответствующего стационарному потоку с виртуальным катодом, которое существует при том же токе инжекции в силу гистерезиса стационарных потоков,

 $\begin{aligned} x_{i}^{(1)} &= x_{v} (1 - (1 - i/N^{(1)})^{3}), \quad p_{i}^{(1)} &= (1 - i/N^{(1)})^{2}, \quad i = 1, \dots, N^{(1)}, \\ x_{i}^{(2)} &= x_{v} + (D - x_{v})(i/N^{(2)})^{3}, \quad p_{i}^{(2)} &= (i/N^{(2)})^{2}, \quad i = 1, \dots, N^{(2)}, \\ x_{i}^{(3)} &= x_{v} (1 - (1 - i/N^{(3)})^{3}), \quad p_{i}^{(3)} &= -(1 - i/N^{(3)})^{2}, \quad i = 1, \dots, N^{(3)}. \end{aligned}$

Индексами (1), (2), (3) отмечены соответственно инжектируемый, прошедший и отраженный потоки

$$N^{(1)}+N^{(2)}+N^{(3)}=N_0$$
, $N^{(1)}:N^{(2)}:N^{(3)}=x_v:(1-x_v)z:x_v(1-z)$,

где N_0 - начальное число частиц в пролетном промежутке. Положение виртуального катода x_v и отношение прошедшего тока к току инжекции $z=J^{(2)}/J^{(1)}$ определены в [5].

Начальное распределение (9) или (11) для частиц пролетного промежутка дополнялось распределением частиц в диоде, соответствующим режиму ограничения тока пространственным зарядом

$$x_i = (i/N)^3$$
, $v_i = (i/N)^2$.

По результатам расчета динамики пространственного заряда итерационной процедурой (6), (7) вычислялась временная последовательность для наведенного тока $I_{\text{нав}}(t) = \lambda \sum_{i=1}^{N} p_i$ в пролетном промежутке. Спектральная плотность мощности S_n как функция номера гармоники n, вычисленная по реализации $I_{\text{пав}}$ для первой и второй нелинейных мод представлена соответственно кривыми I и 2 на рис. 1. Гармоника с максимальной амплитудой для низкочастотной моды имеет частоту $f_1=1/T_1$, где $T_1\sim 6 x_v t_M$. Для высокочастотной моды максимальную амплитуду имеет гармоника с частотой $f_2=1/T_2$, где $T_2\sim 3x_v t_M$. В приведенных расчетах положение виртуального катода задавалось равенством $x_v=0.751$. Таким образом характерный масштаб частоты колебаний потока определяется временем пролета листа от сетки до виртуального катода в стационарном потоке $3x_v t_M$.

В системе с идеальной сеткой $P_f = P_b = 0$ независимо от начальных условий устанавливается режим колебаний с интенсивной шумовой компонентой (см. кривую 3 рис. 1).

Комплексные амплитуды дискретного преобразования Φ урье I_m , по которым вычисляется спектр мощности S_m , находятся из выражений

$$\hat{I}_{m} = \frac{1}{L} \sum_{k=0}^{L-1} I_{\text{HaB},k} e^{-i2\pi mk/L} = \frac{1}{L} \sum_{i=0}^{N} \sum_{k=0}^{L-1} p_{i}(t_{k}) e^{-i2\pi mk/L},$$
(12)

где L - длина выборки, $I_{\text{нав,к}} = I_{\text{нав}}(t_k)$. В осциллирующем потоке пространственного заряда периодически повторяются близкие по форме траектории пролетных и возвратных частиц с различными временами пролета. Легко вычислить вклад в сумму (12) периодической последовательности p_i с периодом K. Величина периода определяется временем пролета. Предположим для простоты, что длина выборки кратна периоду L=MK. Для такой последовательности траекторий Фурье-спектр представляет набор гармоник $I_{kM}(1 \le k \le K)$, номера которых кратны M, а частоты составляют гармоники основной частоты 1/K. Спектр мощности нелинейных мод показывает, что когерентная часть высокочастотной моды определяется частицами с меньшим временем пролета, чем в низкочастотной моде. Этот качественный вывод подтверждается анализом траекторий листов в различных колебательных режимах.

В триоде с прозрачной сеткой поток частиц, осциллирующих в промежутке катод - виртуальный катод, имеет значительный разброс по скоростям и временам пролета. Этот разброс связан с образованием большой группы «медленных» частиц, наличие которых обуславливает увеличение шумовой компоненты спектра в области низких частот. Таким образом, кривая 3 на рис.1 представляет режим турбулентных колебаний, вызванный сильным взаимодействием встречных потоков в системе.

Рис. 1

Введение в поток малых возмущений позволяет наблюдать режим слабого взаимодействия нелинейных мод. Кривые на рис. 2 показывают эволюцию во времени спектра мощности наведенного тока высокочастотной нелинейной моды для диода с небольшой прозрачностью сетки для отраженных частиц ($P_f = 0$, $P_b = 0.983$). Частичное проникновение отраженных листов в диодную часть и вызываемое ими возмущение инжектируемого тока приводит к возбуждению низкочастотной нелинейной моды, обладающей большей областью устойчивости [19]. При меньшем возмущении инжектируемого потока ($P_b = 0.99$) наблюдается режим биений, когда стадия существования двух мод сменяется переходом к первоначальной высокочастотной моде. Аналогичный эффект конкуренции двух мод наблюдается при полупрозрачном аноде ($P_f = 0, P_b = 1$) за счет разброса по скоростям на катоде при инжекции ($\delta = 0.07$) [20].

Наведенный ток, спектры которого в различных режимах приведены на рис. 1, является усредненной характеристикой потока. Для выяснения более детального поведения системы воспользуемся методом символической динамики [16]. Эволюция потока однозначно определяется временной последовательностью

Рис. 2

событий из ряда: обгон, вылет, возврат, перелет. Поставим в соответствие каждому событию число по следующему правилу: обгон *i*-й частицы (i-1)-ой (i=2,...), возврат - 1, вылет - N+1, перелет - N+2, где N - полное число частиц в пролетном промежутке в данный момент времени. В рассматриваемом представлении эволюция системы кодируется числовой последовательностью

$$z_1, z_2, z_3, \dots, z_k, \dots$$
 (13)

Очевидно, что для простых движений, имеющих место в слаботочных аналогах виркатора - монотроне и отражательном клистроне, последовательность (13) будет близка к периодической. В монотроне она образуется из двух чисел (перелет диод - пролетный промежуток - N+2, вылет -N+1). Для символической сложная отражательного клистрона более периолическая траектории (13) определяется встречным движением прямого и последовательность отраженного потоков. На рис. З представлены графики автокорреляционной функции последовательности (13) для монотрона (кривая 1), отражательного (кривая 2) и потока пространственного заряда в клистрона режиме высокочастотной нелинейной моды (кривая 3). Сложность динамики виртуального катода приводит к тому, что автокорреляционная функция имеет δ - образную форму, характерную для широкополосного шума.

4. Рассмотрим взаимодействие потока с многомодовой резонансной системой в виркаторе триодного типа. Выберем параметры модели так, чтобы по возможности приблизиться к условиям эксперимента [21]. В этом эксперименте объем вакуумной камеры V, в которой формировался виртуальный катод и которая выполняла роль CBЧ-резонатора, намного превосходил объем, занятый пучком. Наличие большого окна для вывода излучения определило низкую добротность системы, а большие размеры приводили к тому, что основная частота резонатора $f_c = c/V^{1/3}$ была существенно меньше величины $f_b = v_0/d_1(v_0 \sim c)$, которая определяет масштаб характерных частот в колебаниях виртуального катода (в эксперименте использовались релятивистские электроны).

На рис. 4 приведены спектры мощности колебаний пространственного заряда (кривые 1, 2, 3) и высокочастотного поля (кривая 4). Кривые 1 и 2 представляют

Рис. 4

спектры мощности наведенного тока в триодной системе без учета возбуждения высокочастотного поля для D=9.84. Кривая I соответствует редитронному режиму ($P_f=0, P_b=1$). Такой спектр с четкой системой пиков на кратных частотах, характерный для релаксационных колебаний, устанавливается в редитронном режиме, когда имеет место незначительный разброс по скоростям инжектируемых и возвращаемых частиц, и последние не влияют на работу диода. Для D>3 форма спектра не зависит от ширины пролетного промежутка и потенциала коллектора. Спектры редитронных режимов в триоде с тормозящим полем и эквипотенциальном промежутке совпадают.

Кривая 2 представляет спектр мощности Інав в триоде с прозрачностью сетки около 0.7 (P₁=P_b=0.3). Значительный разброс по скоростям (примерно на 50%) и временам пролета за счет появления большой группы медленных частии приволит к увеличению интенсивности низкочастотного шума. Кривая 3 представляет колебания І_{нав} в режиме синхронизации колебаний виртуального катода в многомодовом резонаторе для триода с конечной прозрачностью сетки (D=9.84, *P_t=P_b=0.3*). В приведенных расчетах частоты гармоник резонатора перекрывали соответствующий первым восьми гармоникам интервал, на графиках. Собственные частоты резонатора задавались выражением $\omega_s = \omega_1 + (s-1)\Delta\omega$, ω₁=0.095, Δω=0.059, 1≤s≤15. Интервал частоты между гармониками графика определяется величиной ω_n - $\omega_{n-1}=0.115$. Добротность гармоник Q_s плавно уменьшалась от величины почти равной 50 (для 7-ой гармоники) до величины, приближенно равной 15 (для 1-ой и 15-ой). Аналогично изменялся параметр Г_s от Г₇=0.012 до Г₁= Г₁5=0.010. Кривая 4 представляет спектр мощности полного высокочастотного поля резонатора в режиме синхронизации. Усредненный по времени электронный КПД режима синхронизации плавно изменяется в пределах 5÷1%.

Как видно из сравнения кривых 1-3, режимы колебаний пространственного разных условиях носят принципиально различный характер. заряда в Релаксационые колебания периодического накопления и сброса заряда виртуальным катодом в редитронном режиме (кривая 1) переходят в турбулентные пульсации, если отраженный поток попадает в диод (кривая 2). Эти колебания с большим уровнем динамического шума могут перестроиться и перейти в режим колебаний, близких к синусоидальным, если обеспечить взаимодействие частиц с большим временем пролета с резонатором, имеющим плотный спектр собственных мод в низкочастотной области (кривая 3).

Характер перестройки динамики потока при смене режима колебаний и наглядное представление о хаотичности локальных характеристик потока демонстрируют приведенные на рис. 5 графики корреляционных функций $I_{\text{нав}}$ (сплошные кривые), и локального значения тока отраженных электронов, вычисленного вблизи сетки в пролетном промежутке $I_{\text{от}}$ (пунктирные кривые). Первый график соответствует режиму релаксационных колебаний в редитронном режиме. Достаточно коррелированные колебания $I_{\text{нав}}$ сочетаются с колебаниями отраженного тока, что свидетельствует о наличии регулярной модуляции в потоке

Рис. 5

65

отраженных электронов. Второй график представляет турбулентные колебания в триоде с конечной прозрачностью сетки. Для этого режима характерно быстрое спадание корреляций как усредненной характеристики тока I_{нав} и локальной характеристики потока І. Наибольший интерес представляет третий график, на приведены корреляционные функции режима синхронизации котором виртуального катода с высокочастотным полем в триоде с конечной прозрачностью сетки. Быстрое б-образное убывание корреляционной функции отраженного тока показывает на ограниченность представлений линейной теории о существовании системы сгустков, осциллирующих в потенциальной яме катод виртуальный катод и синхронизованных с колебаниями виртуального катода. Отметим, что корреляционная функция символической траектории (13) имеет δ-образную форму для всех представленных режимов.

5. Проведенное исследование динамических и хаотических свойств нелинейных структур, формируемых в потоке с виртуальным катодом позволяет сделать некоторые выводы о механизме их формирования.

Этот механизм определяется общими закономерностями явления самоорганизации в диссипативных системах, далеких от равновесия [22]. Колебательный режим, который устанавливается в результате потери устойчивости стационарного потока, есть результат динамического равновесия между небольшим числом коллективных степеней свободы, составляющих когерентную структуру, и хаотическим фоном коллективных возмущений малой амплитуды, значительно превосходящих числом когерентную часть. Это приводит к тому, что крупномасштабная когерентность в колебаниях виртуального катода с периодом порядка времени пролета зарядом диодного зазора существует одновременно с хаотическими колебаниями и быстрым разрушением корреляций на уровне более мелких пространственно-временных масштабов.

Рассмотренная модельная система демонстрирует возможность взаимной трансформации хаоса и порядка. Для режимов без высокочастотного поля степень когерентности зависит от величины P_b , в связанной системе поток - резонатор когерентность колебаний зависит от величины параметров связи Γ_s . При изменении величины Γ_s наблюдаются переходы хаос - порядок в колебаниях наведенного тока [23].

Рассмотренные в настоящей статье структуры пространственного заряда и их взаимодействие имеют много общего с когерентными и хаотическими колебаниями пространственного заряда, которые наблюдались в экспериментах с магнетронными диодами [24, 25], что указывает на общую природу рассмотренных явлений в потоке пространственного заряда.

Библиографический список

1. Артюх И.Г., Сандалов А.Н., Сулакиши А.С., Фоменко Г.П., Штейн Ю.Г. Релятивистские СВЧ-устройства сверхбольшой мощности // Обзоры по электронной технике. Сер. 1. Электроника СВЧ. Вып. 17. М.: ЦНИИ «Электроника»,1989.

2. Рухадзе А.А., Столбецов С.Д., Тараканов В.П. //РЭ. 1992. Т.37, № 3. С. 385.

3. Sullivan D.J., Walsh J.E., Caustsias E.A. Virtual cathode oscillator theory // High-Power Microwave Sources / Eds. V.L.Granatstein, J.A.Alexeff. Boston; L., 1987.

4. Альтеркоп Б.А., Рухадзе А.А., Сокулин А.Ю., Тараканов В.П. Колебания виртуального катода как источник СВЧ излучения // ЖТФ. 1991.Т. 61, №9. С. 115.

5. Гвоздовер С.Д. Теория электронных приборов сверхвысоких частот. М.: Гостехтеориздат, 1956.

6. Воронин В.С., Зозуля Ю.Т., Лебедев А.Н. Самосогласованные стационарные состояния потока релятивистских электронов в пролетном пространстве // ЖТФ. 1972. Т. 42, №3. С. 546. 7. Lomax R.J. // Proc. IEEE. 1960. Vol. 108, №3. P.119.

8. Holmstrom R., Derfler H. Space-charge waves and stability of electron diodes // IEEE Trans. 1966. Vol.ED-13, №7. P.539.

9. Привезенцев А.П., Филипенко Н.М., Фоменко Г.П. Колебания электронного потока в плоском пролетном промежутке //ЖТФ. 1981. Т.51, №6. С. 1161.

10. Mahaffey R.A., Sprangle P., Kapetanakos S.A., Golden J.//Phys. Rev. Letters. 1977. Vol.39, №13. P.843.

11. Привезенцев А.П., Филипенко Н.М., Фоменко Г.П. Нелинейная теория колебаний электронного потока в системе с виртуальным катодом // РЭ. 1985. Т.30, №4. С.756.

12. Григорьев В.П., Диденко А.Н. К теории возбуждения электромагнитных колебаний в системах с виртуальным катодом // РЭ. 1988. Т. 33, №2. С.353.

13. Brandt H.E.// IEEE Trans. 1985. Vol.PS-13, №6. P.513.

14. Афанасьева В.В., Трубецков Д.И. Динамический хаос в электронных сверхвысокочастотных приборах. Часть 1. Вакуумные нерелятивистские приборы // Обзоры по электронной технике. Сер.1. Электроника СВЧ. М.: ЦНИИ «Электроника», 1991.

15. Гапонов-Грехов А.В., Рабинович М.И. Нелинейная физика. Стохастичность и структуры // Физика XX века: развитие и перспективы. М.: Наука, 1984. С.219.

16. Николис Г., Пригожин И. Познание сложного. Введение. М.:Мир, 1990.

17. Привезенцев А.П. Аналитическое решение уравнений модели плоских листов для потока заряженных частиц // РЭ. 1987. Т.32, №8. С. 1712.

18. Привезенцев А.П., Саблин Н.И., Фоменко Г.П. Гистерезис колебательных режимов виртуального катода в пространстве дрейфа // РЭ. 1989. Т. 33, №3. С. 659.

19. Привезенцев А.П., Фоменко Г.П. Нелинейные когерентные структуры в колебаниях виртуального катода // Лекции по СВЧ-электронике и радиофизике: 9-ая зимняя школа-семинар, Саратов, 1993. Саратов: Изд-во ГосУНЦ «Колледж», 1993. С. 130.

20. Привезенцев А.П., Саблин Н.И., Филипенко Н.М., Фоменко Г.П. Нелинейные колебания виртуального катода в триодной системе // РЭ. 1992. Т. 37, № 7. С.1242.

21. Диденко А.Н., Красик Я.Е., Перелыгин С.Ф., Фоменко Г.П. Генерация мощного СВЧ-излучения релятивистским электронным пучком в триодной системе // Письма ЖТФ. 1979. Т.5, №6. С.321.

22. Рабинович М.И., Трубецков Д.И. Введение в теорию колебаний и волн. М.: Наука, 1984.

23. Привезенцев А.П., Саблин Н.И., Фоменко Г.П. Возбуждение многочастотной резонансной системы электронным потоком с виртуальным катодом // РЭ. 1990. Т. 35, №7. С. 1535.

24. Воскресенский С.В., Левчук С.А., Соминский Г.Г. Исследование пространственно-временных характеристик колебаний объемного заряда в неоднородных скрещенных полях //Лекции по электронике СВЧ и радиофизике: 8-я зимняя школа-семинар инженеров. Кн. 4. Саратов: Изд-во Сарат. ун-та, 1989. С. 24.

25. Смирнов А.В., Усыченко В.Г. Когерентные структуры в турбулентном электронном потоке магнетрона // РЭ. 1991. Т.36, №1. С. 156.

Челябинский государственный университет Томский политехнический университет Поступила в редакцию 19.04.93

67

COMPLEX DYNAMICS OF THE CHARGED-PARTICLE BEAM WITH VIRTUAL CATHODE

A.P.Privezentsev, G.P.Fomenko

This paper presents numerical analysis of nonlinear virtual cathode dynamics in triode systems. It was found that different stationary unstable flow states transform into different oscillation regimes - nonlinear structures for a certain injection current range near the critical value. Further it was found that injected current perturbations cause interactions of the nonlinear structures and high-frequency mode is absorbed by low-frequency one. When the flow interacts with multimode cavity at the certain beam coupling level and at the range of eigenmode frequencies a frequency locking regime is formed where one-mode close to sinusoidal oscillation regime appears in flow-cavity system. Study of correlation characteristics for local flow parameters showed that the dynamics is complex when large-scale coherence for time comparable to the transit time coexists with chaotic behaviour of local flow parameters for short times.

Привезенцев Алексей Павлович окончил физический факультет Томского университета в 1965 году. Доктор физико-математических наук, профессор кафедры радиофизики и электроники Челябинского университета. Научные интересы - физика потоков заряженных частиц.

Фоменко Геннадий Петрович - окончил Томский государственный университет в 1959 году. Кандидат физико-математических наук, ведущий научный сотрудник НИИ ядерной физики при Томском политехническом университете. Область научных интересов - физика интенсивных потоков заряженных частиц, релятивистская СВЧ электроника.