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Аннотация. Цель настоящего исследования — изучение устойчивости энергосети из произвольного числа син-
хронных генераторов, работающих на общую пассивную линейную нагрузку, к их отключению и подключению.
Методы. В данной работе применяется численное моделирование работы энергосети и второй метод Ляпунова.
Результаты. Получены условия безопасного отключения и подключения генераторов, при которых в измененной энер-
госети устанавливается синхронный режим. Заключение. Рассмотрена энергосеть из произвольного числа синхронных
генераторов, работающих на общую пассивную линейную нагрузку. С помощью подхода, базирующегося на втором
методе Ляпунова, найдены условия на параметры, обеспечивающие безопасное отключение генераторов, включающих,
если таковой имеется, и генератор, входящий в «неоднородный» путь питания нагрузки, который отличается от
остальных током и передаваемой мощностью. Полученные оценки подтверждены численно для энергосетей различ-
ного размера. Также численно прослежена эволюция области, отвечающей безопасному подключению генератора
к энергосети из пяти генераторов.
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Abstract. The purpose of this work is studying the stability of the power grid, consisting of an arbitrary number of synchronous
generators supplying a common passive linear load, to disconnection and connection of generators. Methods. In this paper,
numerical modeling of the power grid operation and the second Lyapunov method are used. Results. Conditions for safe
disconnection and connection of generators have been revealed, under which a synchronous mode is established in the disturbed
power grid. Conclusion. The power grid consisting of an arbitrary number of synchronous generators supplying a common
passive linear load is considered. Using the approach based on the second Lyapunov method, conditions on parameters are
found that ensure safe disconnection of generators, including, if any, a generator involving in the «inhomogeneous» load
supply path, that differs from the others in current and transmitted power. The obtained estimates are confirmed numerically
for power grids of various sizes. The evolution of the area corresponding to the safe connection of a generator to the power
grid of five generators is also numerically traced.

Keywords: power grids, synchronous machines, synchronous modes, stability, multistability, disconnection and connection
of generators.
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Введение

В настоящее время наблюдается непрерывный рост энергосетей, который сопровождается
созданием крупных энергообъединений, состоящих из большого числа генераторов, узлов на-
грузки — потребителей, внутрисистемных и межсистемных связей — линий (электро)передачи.
Эксплуатация таких систем — очень тяжелая комплексная задача, для решения которой применя-
ются различные по своей сложности и полноте описания подходы и методы [1–9].

При своей работе энергосети постоянно подвергаются воздействию различных возмущений,
таких как колебания генерируемой и потребляемой мощности, короткие замыкания, срабатывания
устройств релейной защиты и отключения линий передачи и генераторов и т. д. Возникающие при
этом переходные процессы могут сопровождаться значительными колебаниями токов и напряже-
ний. Последние из-за дальнейшего срабатывания устройств релейной защиты способны приводить
как к единичным и кратковременным сбоям в энергоснабжении, затрагивающим относительно
небольшие части системы, так и к каскадным сбоям [10, 11] с серьезными и масштабными
отключениями энергоснабжения [12–16]. Таким образом, исследование устойчивости энергосе-
тей к различным видам возмущений является одной из важных задач как с фундаментальной,
так и с прикладной точки зрения.

Ранее изучались эффекты, возникающие при коммутации линий электропередачи [17–19],
генераторов и потребителей [20], а также при однократных скачкообразных (импульсных) [21–28]
и длительных шумовых [28–33] возмущениях генерируемой и потребляемой мощностей.

В наших предыдущих работах [28, 34] была рассмотрена энергосеть из синхронных ге-
нераторов, работающих на общую пассивную линейную нагрузку. Мы показали, что в случае,
когда один из генераторов находится «ближе» к нагрузке (из-за более короткой линии передачи
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и/или продольной компенсации индуктивного сопротивления), для описания динамики такой
энергосети может быть использована модель редуцированной эффективной сети в виде ансамбля
с хаб-топологией (топологией «звезда»). Обнаружено, что в сети могут устанавливаться два раз-
ных типа синхронных режимов: однородный и неоднородный. Первый характеризуется равными
мощностями и токами, текущими через все пути питания нагрузки, кроме одного. Второй имеет
еще один дополнительный путь, отличающийся от остальных током и передаваемой мощностью.
Причем токи, текущие по одному и тому же пути, но в разных режимах, различаются. Показа-
на возможность сосуществования однородного и неоднородных синхронных режимов, а также
квазисинхронных и асинхронных режимов, выделены соответствующие области в пространстве
параметров энергосети.

В настоящей статье мы продолжим исследование данной энергосети и рассмотрим ее устой-
чивость к отключению и подключению генераторов. С применением численного моделирования
и подхода, базирующегося на втором методе Ляпунова, будут установлены условия безопасного
отключения и подключения генераторов, при которых в измененной энергосети устанавливается
синхронный режим. Заметим, что отключение генераторов, например, может быть связано со сра-
батыванием релейных (токовых) защит линий передачи из-за возникновения коротких замыканий
или же с плановой остановкой генераторов на ремонт. В свою очередь, подключение генераторов
может происходить, например, при резком увеличении нагрузки. В этом случае посредством
устройств АВР (автоматического ввода резерва) задействуются генераторы, реализующие так
называемый резерв мощности [35].

В разделе 1 приводится архитектура энергосети и применяемая для ее описания динамиче-
ская модель. В разделе 2 обсуждаются общие вопросы устойчивости энергосети к изменению
числа входящих в нее генераторов. В разделе 3 анализируется устойчивость энергосети к отклю-
чению генераторов, а в разделе 4 — к их подключению. В Заключении представлено краткое
обсуждение результатов.

1. Архитектура энергосети и ее модель

Рассмотрим многомашинную энергосеть, принципиальная схема которой показана
на рис. 1, a, а схема замещения типичного ее участка — на рис. 1, b. В этой сети группа синхронных
генераторов 𝐺𝑖 (𝑖 = 1, 𝑛, 𝑛 ⩾ 3) посредством передающих систем, включающих входные транс-
форматоры 𝑇 in

𝑖 (замещаются импедансами 𝑍 in
𝑖,𝑇 ), выходные трансформаторы 𝑇 out

𝑖 (замещаются
импедансами 𝑍out

𝑖,𝑇 ) и линии передачи (замещаются стандартной T-образной схемой с импедан-

сами 𝑍 line
𝑖 и проводимостями 𝑌 sh

𝑖 ), питает одну общую пассивную линейную нагрузку (𝑙𝑜𝑎𝑑),

a

b

b

Рис. 1. Архитектура энергосети: a — принципиальная схема энергосети; b — схема замещения 𝑖-го участка сети,
содержащего 𝑖-й генератор и нагрузку

Fig. 1. Architecture of power grid: a — schematic diagram; b — equivalent circuit of the 𝑖-th grid‘s part, containing the 𝑖-th
generator and a load
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характеризуемую импедансом 𝑍load. Каждый генератор характеризуется амплитудой |𝐸𝑖| и уг-
лом (фазой) δ𝑖 создаваемой им электродвижущей силы (ЭДС) 𝐸𝑖 = |𝐸𝑖| exp(iδ𝑖); внутренним
импедансом 𝑍 int

𝑖 = 𝑟int𝑖 + i𝑥int𝑖 , 𝑥int𝑖 > 0; постоянной инерции 𝐶𝑖 своей вращающейся части
(турбина и ротор); демпферным коэффициентом 𝐷𝑖, суммирующим влияние как механических
(трение), так и электрических (появление асинхронной мощности) факторов демпфирования;
а также механической мощностью турбины 𝑃𝑇,𝑖.

Предположим, что первый генератор 𝐺1 находится значительно ближе к нагрузке, чем
остальные генераторы 𝐺2, 𝐺3, . . . , 𝐺𝑛, и/или на линии передачи этого генератора выполне-
на продольная компенсация индуктивности. Для определенности будем считать, что постоян-
ные инерции и демпферные коэффициенты у всех генераторов одинаковы, то есть 𝐶𝑖 ≡ 𝐶,
𝐷𝑖 ≡ 𝐷 (𝑖 = 1, 𝑛), и все генераторы, кроме первого, а также их передающие системы имеют
одинаковые параметры, то есть

𝑃𝑇,𝑘 = 𝑃𝑇,2, |𝐸𝑘| = |𝐸2|, 𝑍 in
𝑘 = 𝑍 in

2 , 𝑍out
𝑘 = 𝑍out

2 , 𝑌 sh
𝑘 = 𝑌 sh

2 (𝑘 = 2, 𝑛).

Это фактически означает, что генераторы имеют одинаковую конструкцию и одинаково связаны с
нагрузкой, за исключением передающей системы 1-го генератора. В работе [34] было показано, что
динамика такой энергосети может быть описана в рамках модели редуцированной эффективной
сети следующими уравнениями:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

3̇𝑖 = 𝑦𝑖,

𝑦̇𝑖 = ∆− µ𝑦𝑖 − sin(3𝑖 + α)−
𝑁∑︁
𝑗=1

sin(3𝑗 − α),

𝑖 = 1, 𝑁, 𝑁 = 𝑛− 1.

(1)

В безразмерной системе (1), определенной в цилиндрическом фазовом пространстве 𝐺 = S𝑁×R𝑁 ,
переменные 3𝑖 = δ1 − δ𝑖+1 определяют относительные углы ЭДС (роторов) генераторов, перемен-
ные 𝑦𝑖 = δ̇1 − δ̇𝑖+1 — мгновенные частоты изменения относительных углов, точкой обозначено
дифференцирование по времени τ =

√︀
𝐾/𝐶 𝑡. Параметр ∆ пропорционален разности мощностей

турбин первого и (𝑖+1)-го генераторов; параметр µ представляет собой нормированный демпфер-
ный коэффициент, а параметр α характеризует пассивную часть схемы замещения. Эти параметры
выражаются через величины, характеризующие схему замещения, следующим образом:

∆ =
𝐴1 −𝐴2

𝐾
, µ =

𝐷√
𝐶𝐾

, α = π/2− arg(𝑌 −1
1,2 ),

где
𝐾 = |𝐸1𝐸2𝑌1,2|, 𝐴𝑘 = 𝑃𝑇,𝑘 − |𝐸𝑘|2|𝑌𝑘,𝑘| sin(α𝑘,𝑘), α𝑘,𝑘 = π/2− arg(𝑌 −1

𝑘,𝑘 ),

и

𝑌1,1 =
1

𝑍 in
1

[︂
1− 𝑍out

1

𝑅1

(︂
1 +

𝑍 in
1

𝐶𝑅𝑅1𝑍out
1

)︂]︂
,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑌𝑖,𝑖 =
1

𝑍 in
2

[︂
1− 𝑍out

2

𝑅2

(︂
1 +

𝑍 in
2

𝐶𝑅𝑅2𝑍out
2

)︂]︂
, 𝑌1,𝑗 =

1

𝐶𝑅𝑅1𝑅2
,

𝑌𝑖,𝑗 =
1

𝐶𝑅𝑅2
2

, 𝑗 ̸= 𝑖,

𝑖, 𝑗 = 2, 𝑛,

𝐶𝑅 =
1

𝑍load
+

1

𝑅1
(1 + 𝑌 sh

1 𝑍 in
1 ) +

𝑛− 1

𝑅2
(1 + 𝑌 sh

2 𝑍 in
2 ),

𝑅𝑘 = 𝑍 in
𝑘 + 𝑍out

𝑘 + 𝑌 sh
𝑘 𝑍 in

𝑘 𝑍out
𝑘 , 𝑍 in

𝑘 = 𝑍 line
𝑘 /2 + 𝑍 in

𝑘,𝑇 + 𝑍 int
𝑘 ,

𝑍out
𝑘 = 𝑍 line

𝑘 /2 + 𝑍out
𝑘,𝑇 , 𝑘 = 1, 2.

(2)
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Здесь 𝑌𝑖,𝑖 и 𝑌𝑖,𝑗 — это так называемые собственные и взаимные комплексные проводимости ветвей
генераторов. Более подробные сведения о выражениях, связывающих параметры системы (1)
с параметрами схемы замещения, можно найти в [34].

Система (1) имеет поглощающую область

𝐺+ =
{︀
φ𝑖 ∈ 𝑆1, 𝑦𝑖 ∈

[︀
𝑦−, 𝑦+

]︀
, 𝑖 = 1, 𝑁

}︀
, (3)

где 𝑦± =
1

µ

[︀
∆± (2| cos(α)|+𝑁 − 1)

]︀
, которая притягивает все траектории с начальными услови-

ями вне этой области и содержит все аттракторы системы.
Система (1) симметрична относительно перестановки любой пары элементов. При этом

получаемые всевозможными такими перестановками решения будут иметь один и тот же тип,
то есть если одно решение устойчиво, то и все остальные решения также будут устойчивыми.

Исследование системы (1) показало, что при параметрах из области

𝑆ℎ𝑜𝑚,𝑠𝑡
𝑁 =

{︁
α,∆, µ

⃒⃒⃒
0 ⩽ α ⩽ π/2, −𝑓(𝑁,α) < ∆ < 𝑓1(𝑁,α), µ > 0

}︁
(4)

существует устойчивое однородное состояние равновесия

𝑂hom
1 (3𝑖 = 3hom; 𝑦𝑖 = 0), (5)

где

𝑓(𝑁,α) =
√︀
𝑁2 + 2𝑁 cos(2α) + 1, 𝑓1(𝑁,α) = 1 +𝑁 cos(2α),

3hom = βhom + arcsin

(︃
∆

𝑓(𝑁,α)

)︃
, sin βhom =

(𝑁 − 1) sinα
𝑓(𝑁,α)

, cos βhom =
(𝑁 + 1) cosα

𝑓(𝑁,α)
,

(6)

которому соответствует однородный синхронный режим энергосети, характеризующийся равными
мощностями и токами, текущими через все пути питания нагрузки, кроме первого.

В свою очередь, при параметрах из области

𝑆𝑖𝑛ℎ,𝑠𝑡
𝑁 =

{︁
α,∆, µ| α1 ⩽ α ⩽ α2, −𝑔(𝑁, 1,α) < ∆ < 𝑔1(𝑁,α, µ), µ > 0

}︁
(7)

существуют 𝑁 устойчивых неоднородных состояний равновесия

𝑂𝑖𝑛ℎ,1
𝑗 (3𝑗 = −α+ π−Φ(1)

1 , 3𝑖 ̸=𝑗 = −α+Φ(1)
1 ; 𝑦𝑖 = 0), 𝑗 = 1, 𝑁, (8)

где

𝑔(𝑁, 1,α) =
√︀

(1 +𝑁 cos 2α)2 + (𝑁 − 2)2 sin2 2α, 𝑔1(𝑁,α, µ) =
{︂
∆ :

√
45𝑐−52𝑏
−5𝑏µ2

= 1

}︂
,

5𝑏 = 𝑎′ + 𝑑′ + (𝑁 − 2)𝑐′, 5𝑐 = 𝑎′𝑑′ + (𝑁 − 2)𝑐′𝑑′ − (𝑁 − 1)𝑐′𝑏′,

𝑎′ = −2 cos(α) cos(Φ(1)
1 − α), 𝑏′ = cos(Φ(1)

1 + 2α), 𝑐′ = − cos(Φ(1)
1 − 2α),

𝑑′ = 2 cos(α) cos(Φ(1)
1 + α), Φ(1)

1 = π−Ω𝑖𝑛ℎ
1 + β𝑖𝑛ℎ1 , Ω𝑖𝑛ℎ

1 = arcsin
(︁

∆
𝑔(𝑁,1,α)

)︁
,

sin β𝑖𝑛ℎ1 =
(𝑁 − 2) sin 2α
𝑔(𝑁, 1,α)

, cos β𝑖𝑛ℎ1 =
𝑁 cos 2α+ 1

𝑔(𝑁, 1,α)
,

(9)

каждому из которых соответствует неоднородный синхронный режим энергосети, в котором,
помимо первого, есть еще один «неоднородный» (𝑗 + 1)-й путь питания нагрузки, отличающийся
от остальных током и передаваемой мощностью.

Храменков В. А., Дмитричев А. С., Некоркин В. И.
Известия вузов. ПНД, 2026, т. 34, № 1 53



Кроме того, показана возможность сосуществования однородного и неоднородных синхрон-
ных режимов, а также квазисинхронных и асинхронных режимов.

Далее исследуем поведение энергосети, изначально работающей в одном из синхронных
режимов, при отключении и подключении генераторов.

2. О безопасном отключении и подключении генераторов

Будем считать, что отключение (подключение) генераторов происходит быстро по сравне-
нию с характерными временами эволюции измененной энергосети. В этом случае ее начальное
состояние будет полностью (при отключении) или частично (при подключении) определяться
синхронным режимом исходной энергосети, то есть координатами соответствующего состояния
равновесия системы (1). Предположим также, что возможно отключение любых генераторов,
кроме первого, а параметры подключаемых генераторов и их передающих систем такие же, как и
у большинства генераторов исходной энергосети. В этом случае динамика измененной энергосети
по-прежнему будет описываться системой вида (1) с учетом ее нового размера и соответствующим
образом переопределенных параметров α,∆ и µ (см. выражение для 𝐶𝑅 в (2)). Найдем условия,
при которых можно пренебречь изменением параметров α,∆ и µ при переходе от исходной
к измененной энергосети. Для этого рассмотрим упрощенную схему замещения линии передачи,
состоящую из последовательно соединенных активного и реактивного сопротивлений. Тогда
передающая система 𝑖-го генератора может быть замещена импедансом 𝑍𝑖 = 𝑟𝑖 + i𝑥𝑖, поэтому
формулы для 𝑌𝑖,𝑖 и 𝑌𝑖,𝑗 (см. (2)) примут вид

𝑌1,1 =
[︀
1− 𝑍2𝑌

*]︀/𝑍1,⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑌𝑖,𝑖 =

[︀
1− 𝑍1𝑌

*]︀/𝑍2, 𝑌1,𝑗 = 𝑌 *,

𝑌𝑖,𝑗 =
[︀
𝑌 *𝑍1

]︀
/𝑍2, 𝑗 ̸= 𝑖,

𝑖, 𝑗 = 2, 𝑛,

где 𝑌 * = 𝑍load/
[︀
𝑍1𝑍2+𝑍load𝑍2+𝑁𝑍load𝑍1

]︀
. Заметим, что 𝑌𝑖,𝑖 и 𝑌𝑖,𝑗 зависят от числа генераторов

только посредством 𝑌 *. Следовательно, все различия между параметрами α,∆ и µ исходной и
измененной энергосетей обусловлены именно 𝑌 *. Предположим, что линия передачи первого
генератора имеет лишь активное сопротивление, то есть 𝑍1 = 𝑟1, что характерно, например, для
кабельной линии [3]. Тогда

𝑍* = (𝑌 *)−1 = 𝑟2

(︂
1 +

𝑟1
𝑟load

)︂
+𝑁𝑟1 + i𝑥2

(︂
1 +

𝑟1
𝑟load

)︂
.

Нетрудно видеть, что при изменении 𝑁 меняется только реальная часть 𝑍*. Таким образом,
при отключении (𝑍* → 𝑍*

−; 𝑁 → 𝑁 − 𝑚; 𝑁 − 𝑚 > 1) или подключении (𝑍* → 𝑍*
+; 𝑁 →

𝑁 +𝑚; 𝑁 > 1) генераторов имеем

Re (𝑍*
∓) = 𝑟2

(︂
1 +

𝑟1
𝑟load

)︂
+𝑁𝑟1 ∓𝑚𝑟1 > (𝑟2 +𝑁𝑟1)∓𝑚𝑟1,

где 𝑚 — число отключаемых (подключаемых) генераторов. Отсюда видно, что при

𝑚𝑟1/
[︀
𝑟2 +𝑁𝑟1

]︀
≪ 1, (10)

Re (𝑍*
∓) ≈ Re (𝑍*).
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Условие (10) выполняется, когда число отключаемых (подключаемых) генераторов относительно
мало по сравнению с числом исходных генераторов (𝑚 ≪ 𝑁 ), а также если 𝑟1 ≪ 𝑟2. Последнее
имеет место при выполнении условий перехода к редуцированной эффективной сети, то есть
в рассматриваемом нами здесь случае. Тогда при отключении или подключении генераторов
величины 𝑍* и 𝑌 * остаются почти неизменными и, следовательно, параметры α,∆ и µ тоже
не претерпевают значительных изменений.

Заметим, что подключение и отключение генераторов может быть безопасным только в том
случае, если в измененной энергосети, как и в исходной, существует устойчивый синхронный
режим. Поэтому, прежде всего, необходимо наличие непустой области пересечения областей
существования устойчивых состояний равновесия систем (1), отвечающих исходной и измененной
энергосетям. Нетрудно показать, что такая область (обозначим ее через 𝑎) существует при любых
соотношениях размеров исходной и измененной энергосетей, параметры которых удовлетворяют
условию (10). В общем случае область 𝑎 состоит из трех подобластей 𝑎𝑖, 𝑖 = 1, 2, 3, отвечающих
различным сочетаниям устойчивых состояний равновесия исходной и измененной систем (1).
Возможные сочетания приведены в Таблице, где через 𝑁− и 𝑁+ обозначены соответственно
размеры наименьшей и наибольшей из энергосетей, то есть при отключении (подключении)
размер исходной энергосети равен 𝑁+ (𝑁−), а измененной — 𝑁− = 𝑁+ −𝑚 (𝑁+ = 𝑁− +𝑚).

Таблица. Сочетания устойчивых состояний равновесия исходной и измененной
систем (1)

Table. Combinations of stable steady states of the initial and changed systems (1)

HHH
HH𝑎𝑖

𝑁
𝑁− > 1 𝑁+ > 2

𝑎1 𝑂hom
1 𝑂hom

1

𝑎2 𝑂hom
1 𝑂hom

1 и 𝑂inh,1
𝑗 , 𝑗 = 1, 2, ..., 𝑁+

𝑎3 𝑂hom
1 и 𝑂inh,1

𝑗 , 𝑗 = 1, 2, ..., 𝑁− 𝑂hom
1

Если параметры исходной и измененной энергосетей принадлежат области 𝑎1, то в них
существуют лишь однородные синхронные режимы, отвечающие состояниям равновесия 𝑂hom

1

(см. (5)) соответствующих систем (1). Если же параметры принадлежат области 𝑎2, то в исход-
ной энергосети в случае отключения генераторов (𝑁 = 𝑁+) имеется как однородный, так и
неоднородные синхронные режимы, отвечающие состояниям равновесия 𝑂hom

1 и 𝑂inh,1
𝑗 (см. (8))

соответствующей системы (1), а в случае подключения генераторов (𝑁 = 𝑁−) имеется лишь
однородный синхронный режим, отвечающий состоянию равновесия 𝑂hom

1 . У измененной энерго-
сети в случае отключения генераторов (𝑁 = 𝑁−) имеется лишь однородный синхронный режим,
а в случае подключения генераторов (𝑁 = 𝑁+) имеются как однородный, так и неоднородные
синхронные режимы. Наконец, в области 𝑎3 сочетание синхронных режимов исходной и из-
мененной энергосетей полностью противоположно 𝑎2. Таким образом, безопасное отключение
генераторов всегда ассоциировано с установлением однородного синхронного режима в изменен-
ной энергосети, в то время как безопасное подключение генераторов может быть ассоциировано
с установлением в ней как однородного, так и неоднородного синхронного режима.

На рис. 2 приведено разбиение плоскости параметров (α,∆) на подобласти 𝑎𝑖 для случая
отключения генератора от системы из 6 генераторов (или, соответственно, подключения генератора
к системе из 5 генераторов). Отметим, что из-за специфики кривых 𝑔 и 𝑔1 области 𝑎2 и 𝑎3
с уменьшением параметра µ сокращаются и при некоторых значениях этого параметра исчезают.
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Рис. 2. Разбиение плоскости параметров (α,∆) — a и ее увеличенный фрагмент — b на подобласти 𝑎𝑖 ∈ 𝑎, отвечающие
различным сочетаниям устойчивых состояний равновесия исходной и измененной систем (1), описывающих энергосети
до и после отключения/подключения генераторов. Значения параметров 𝑁− = 4, 𝑁+ = 5, µ = 3 (цвет онлайн)

Fig. 2. Partition of the (α,∆)-parameter plane — a and its enlarged fragment — b into the subregions 𝑎𝑖 ∈ 𝑎, corresponding to
various combinations of stable steady states of the initial and changed systems (1), describing the power grids before and after
disconnecting/connecting generators. The parameter values: 𝑁− = 4, 𝑁+ = 5, µ = 3 (color online)

Также каждая из областей 𝑎𝑖, 𝑖 = 1, 2, 3, сокращается при увеличении числа одновременно
отключаемых/подключаемых генераторов. При этом существуют пороговые значения числа таких
генераторов, зависящие от параметра µ, при которых области 𝑎2 и 𝑎3 полностью исчезают.

3. Условия безопасного отключения генераторов

Рассмотрим теперь более детально отключение генераторов от энергосети. В общем случае
возможно три различных сценария отключения. Во-первых, исходная энергосеть перед отклю-
чением может работать в однородном синхронном режиме (области 𝑎1 − 𝑎3 при 𝑁 = 𝑁+),
отвечающем состоянию равновесия 𝑂hom

1 (𝑁+). Тогда измененная энергосеть (𝑁 = 𝑁−) сразу
после отключения будет находиться в следующем однородном состоянии:

𝑣⃗1 =
{︁
3𝑖 = 3hom(𝑁+), 𝑦𝑖 = 0, 𝑖 = 1, 𝑁−

}︁
. (11)

Во-вторых, энергосеть изначально может работать в одном из неоднородных синхронных ре-
жимов (область 𝑎2 при 𝑁 = 𝑁+). Допустим, что перед отключением энергосеть находилась
в синхронном режиме, отвечающем состоянию равновесия 𝑂inh,1

𝑗 (𝑁+). Как отмечалось в разде-
ле 1, в данном режиме энергосети есть еще один «неоднородный» (𝑗+1)-й путь питания нагрузки,
включающий (𝑗 + 1)-й генератор, который так же, как и первый, отличается от остальных током
и передаваемой мощностью. Поэтому состояние энергосети после отключения будет зависеть
от набора отключаемых генераторов. Если отключается в том числе (𝑗+1)-й генератор, входящий
в дополнительный «неоднородный» путь питания нагрузки, то после отключения энергосеть
будет находиться в следующем однородном состоянии:

𝑣⃗2 =
{︁
3𝑖 = −α+Φ(1)

1 (𝑁+), 𝑦𝑖 = 0, 𝑖 = 1, 𝑁−

}︁
. (12)
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Если же (𝑗 + 1)-й генератор не входит в число отключаемых, то после отключения энергосеть
будет находиться в одном из следующих неоднородных состояний:

𝑣⃗3𝑘 =
{︁
3𝑘 = −α+ π−Φ(1)

1 (𝑁+), 𝑦𝑘 = 0,

3𝑖 = −α+Φ(1)
1 (𝑁+), 𝑦𝑖 = 0, 𝑖 = 1, 𝑁−, 𝑖 ̸= 𝑘

}︁
,

𝑘 = 1, 𝑁− − 1.

(13)

Заметим, однако, что в силу перестановочной симметрии системы (1) режимы, устанавливаемые
в измененной энергосети с любого из этих состояний, будут иметь идентичные характеристики
устойчивости. Поэтому достаточно проанализировать поведение энергосети, используя только
одно из состояний 𝑣⃗3𝑘 в качестве начального.

Найдем последовательно условия на параметры, при которых с каждого из начальных
состояний 𝑣⃗1 − 𝑣⃗3 в измененной энергосети устанавливается синхронный режим, то есть условия
безопасного отключения генераторов в соответствующей исходной энергосети.

Заметим, что в случае однородных начальных состояний 𝑣⃗1 и 𝑣⃗2 можно получить ана-
литическую оценку области установления синхронного режима. Действительно, из-за наличия
у системы (1) перестановочной симметрии любое ее решение для однородных начальных условий
должно иметь вид

3𝑖(𝑡) = 3(𝑡), 𝑦𝑖(𝑡) = 𝑦(𝑡), 𝑖 = 1, 𝑁−, (14)

где функции 3(𝑡) и 𝑦(𝑡) подчиняются следующей системе:⎧⎨⎩3̇ = 𝑦,

𝑦̇ = ∆− µ𝑦 − 𝑓(𝑁−,α) sin
(︀
3− βhom(𝑁−,α)

)︀
.

(15)

После преобразований

τnew = 𝑓1/2τ, 3new = 3− βhom(𝑁−,α), 𝑦new = 𝑦/𝑓1/2, γ = ∆/𝑓
2
1/2, λ = µ/𝑓1/2,

где 𝑓1/2 =
√︀
𝑓(𝑁−,α), получим систему на цилиндре

(︀
𝐺 = S1 × R1

)︀
вида⎧⎨⎩3̇new = 𝑦new,

𝑦̇new = γ− λ𝑦new − sin3new,
(16)

где точкой обозначена производная по τnew. Система (16) описывает, в частности, динамику
маятника в вязкой среде (λ), находящегося под действием постоянного внешнего момента (γ),
и динамику точечного сверхпроводящего джозефсоновского контакта. Динамика системы (16)
подробно изучена и широко представлена в литературе (см., например, [36–38]).

Из определения области 𝑎 = {𝑎1, 𝑎2, 𝑎3} следует, что |∆| < 𝑓(𝑁−,α), поэтому рассмотрим
систему (16) при |γ| < 1. Известно, что система в этом случае имеет два состояния равновесия:

𝑂1(3new = 31, 𝑦new = 0) и 𝑂2(3new = 32, 𝑦new = 0),

где 31 = arcsin γ, 32 = π− arcsin γ. Состояние равновесия 𝑂1 является устойчивым узлом (или
фокусом) и отвечает однородному синхронному режиму измененной энергосети, а 𝑂2 — седлом.

Если при этом
λ > λ* ≈ 1.22

[︂
то есть µ > λ*

√︀
𝑓(𝑁−,α)

]︂
(17)

или

λ ⩽ λ* и |γ| < γ𝑇 (λ)
[︂
то есть µ ⩽ λ*

√︀
𝑓(𝑁−,α) и |∆| < 𝑓

(︀
𝑁−,α

)︀
γ𝑇
(︁
µ/
√︀
𝑓(𝑁−,α)

)︁]︂
, (18)
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где γ𝑇 (λ) — кривая Трикоми, то состояние равновесия 𝑂1 является глобально асимптотически
устойчивым и устанавливается в системе (16) с любых начальных условий, в том числе отве-
чающих состояниям 𝑣⃗1 и 𝑣⃗2. Следовательно, отключение генераторов в этом случае является
безопасным вне зависимости от синхронного режима изначально установленного в исходной
энергосети.

Если же ни одно из условий (17) и (18) не выполняется, то на фазовом цилиндре си-
стемы (16), наряду с состоянием равновесия 𝑂1, существует вращательный предельный цикл,
отвечающий асинхронному режиму измененной энергосети. В этом случае состояние равно-
весия 𝑂1 устанавливается в системе лишь с части начальных условий, и поэтому отключение
генераторов может быть небезопасным. Известно, что функция

𝑉 (3new, 𝑦new) =
𝑦2new
2

+

∫︁ 3new
31

(︁
sin ξ− γ

)︁
𝑑ξ (19)

является для системы (16) функцией Ляпунова [39]. Известно, что вдоль траекторий системы
(16), то есть при увеличении времени τnew, линии уровня 𝑉 (3new, 𝑦new) = 𝐶 = const убывают.
Воспользуемся этим фактом и оценим область притяжения 𝑂1. На рис. 3, a представлены
некоторые линии уровня 𝑉 (3new, 𝑦new), а стрелками показана ориентация векторного поля (16)
на них. Можно видеть, что на фазовой плоскости системы (16) существует область Ω+, которая
содержит состояние равновесия 𝑂1 и внутри которой все линии уровня являются замкнутыми.
Следовательно, все траектории системы (16) с начальными условиями из области Ω+ стремятся
в состояние равновесия 𝑂1. Заметим, что граница области Ω+ определяется частью заключенной
между точками 30 и 32 линии уровня 𝑉 (3new, 𝑦new) = 𝑉 (3*2, 0), проходящей через седло 𝑂2

(см. рис. 3, a), а именно

ΓΩ+ =
{︁
3new, 𝑦new

⃒⃒
φ0 ⩽ 3new ⩽ φ2,

𝑦2new
2

− cosφnew − γφnew = − cosφ2 − γφ2
}︁
,

где 30 — наименьший корень уравнения cos3 + γ3 = cos32 + γ32. Таким образом, для того
чтобы в энергосети, находящейся после отключения генераторов в состоянии 𝑣⃗1

(︀
3𝑣 = 3hom(𝑁+),

см. рис. 3, a
)︀

или 𝑣⃗2
(︀
3𝑣 = −α + Φ(1)

1 (𝑁+)
)︀
, устанавливался синхронный режим, необходимо,

соответственно, выполнение условий

30(𝑁−) < 3hom(𝑁+) < 32(𝑁−) (20)

и
30(𝑁−) < −α+Φ(1)

1 (𝑁+) < 32(𝑁−). (21)

На рис. 3, b, c приведены полученные из условий (20) и (21) оценки областей (𝑎estsyn) безопасного
отключения одного генератора от энергосети из 4 генераторов (𝑁+ = 4, 𝑁− = 3), находящейся
изначально соответственно в однородном и неоднородном синхронных режимах. Заметим, что
условия (20) и (21) не зависят от параметра µ. Следовательно, в приведенных областях отключение
генератора будет безопасным при любых µ > 0.

Области безопасного отключения одного генератора, сопряженного с установлением в
измененной энергосети однородных начальных состояний 𝑣⃗1 и 𝑣⃗2, были также найдены численно
при различных значениях параметра µ для исходных энергосетей из 𝑁+ = 43, 54 и 65 генераторов.
Для этого при фиксированных значениях параметров и начальном состоянии интегрировалась
соответствующая система (1) при 𝑁 = 𝑁− = 𝑁+ − 1 и определялось, стремится ли ее траектория
к состоянию равновесия, отвечающему синхронному режиму, или же к какому-либо аттрактору,
отвечающему асинхронному режиму. Установлено, что при µ ⩾ 1.5 во всех рассмотренных
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Рис. 3. Отключение генераторов, сопряженное с установлением в измененной энергосети однородных состояний:
a — качественный вид функции Ляпунова для измененной энергосети; b и c — аналитические оценки обла-
стей установления синхронных режимов (𝑎est

syn, выделены зеленым цветом) из состояний 𝑣⃗1 и 𝑣⃗2 соответственно;
d — численно найденные области, отвечающие установлению синхронного (𝑎syn, выделена зеленым цветом) и асин-
хронного режимов (𝑎𝑎syn, выделена красным цветом) из состояния 𝑣⃗1 при µ = 0.5. Для соотнесения подобластей 𝑎est

syn

и 𝑎2 последняя на (c) построена при µ = 3.0. Значения параметров 𝑁+ = 4, 𝑁− = 3 (цвет онлайн)

Fig. 3. Disconnecting of generators associated with the establishment of homogeneous states in the changed power grid:
a — qualitative form of the Lyapunov function for the changed power grid; b and c — analytical estimates of the regions
of establishment of synchronous modes (𝑎est

syn, highlighted in green) from states 𝑣⃗1 and 𝑣⃗2, respectively; d — numerically
found regions corresponding to the establishment of synchronous (𝑎syn, highlighted in green) and asynchronous modes (𝑎𝑎syn,
highlighted in red) from state 𝑣⃗1 for µ = 0.5. To compare the subregions 𝑎est

syn and 𝑎2, the latter in (c) is depicted for µ = 3.0.
The parameter values: 𝑁+ = 4, 𝑁− = 3 (color online)

энергосетях отключение генератора является безопасным при любых значениях параметров α
и ∆) из соответствующий областей 𝑎 и 𝑎2, то есть областей одновременного существования
синхронных режимов в исходной и измененной энергосетях. При уменьшении параметра µ
появляются подобласти, в которых в измененной энергосети устанавливается асинхронный режим,
то есть отключение генератора становится небезопасным. На рис. 3, d приведено разбиение
плоскости параметров (α,∆) при µ = 0.5 на области, отвечающие установлению синхронного
(𝑎syn, выделена зеленым цветом) и асинхронного режимов (𝑎𝑎syn, выделена красным цветом),
для 𝑁+ = 4, 𝑁− = 3 и изначального состояния 𝑣⃗1. Аналогичное разбиение для изначального
состояния 𝑣⃗2 не приведено ввиду малости соответствующей подобласти асинхронного поведения
(опасного отключения). При дальнейшем уменьшении µ подобласти небезопасного отключения
увеличиваются, сокращая области безопасного отключения до аналитически оцененных областей
𝑎estsyn (см. рис. 3, b, c).
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Рис. 4. Отключение генераторов, сопряженное с установлением в измененной энергосети одного из неоднородных
состояний 𝑣⃗3𝑘, 𝑘 = 1, 𝑁− − 1: a–c — численно найденные области, соответствующие установлению синхронного
(𝑎syn, выделена зеленым цветом) и асинхронного режимов (𝑎𝑎syn, выделена красным цветом) для 𝑁+ = 4, 𝑁− = 3,
𝑁+ = 5, 𝑁− = 4 и 𝑁+ = 6, 𝑁− = 5 соответственно. Значения параметров µ = 1.5 (цвет онлайн)

Fig. 4. Disconnecting of generators associated with the establishment of one of the inhhomogeneous states 𝑣⃗3𝑘, 𝑘 = 1, 𝑁− − 1,
in the changed power grid: a–c — numerically found regions corresponding to the establishment of synchronous (𝑎syn,
highlighted in green) and asynchronous modes (𝑎𝑎syn, highlighted in red) for 𝑁+ = 4, 𝑁− = 3, 𝑁+ = 5, 𝑁− = 4,
and 𝑁+ = 6, 𝑁− = 5, respectively. The parameter values: µ = 1.5 (color online)

Случай неоднородных начальных состояний 𝑣⃗3 измененной энергосети был проанали-
зирован численно. Установлено, что для каждого фиксированного значения µ существует два
критических значения размера исходной энергосети. Если энергосеть меньше минимального
критического размера, то при любых значениях параметров α и ∆ из соответствующих областей
𝑎3 в измененной энергосети устанавливается синхронный режим, то есть отключение генераторов
в ней всегда будет безопасным. Напротив, если размер энергосети больше максимального крити-
ческого, то при любых значениях параметров из 𝑎3 в измененной энергосети устанавливается
асинхронный режим, то есть отключение генераторов в ней всегда будет опасным. Если же энер-
госеть имеет некоторый промежуточный размер, то соответствующая ей область 𝑎3 разбивается
на две подобласти, отвечающие соответственно безопасному и опасному отключению генерато-
ров. На рис. 4, a–c приведено разбиение плоскости параметров (α,∆) при µ = 1.5 на области,
отвечающие безопасному и опасному отключению одного генератора в энергосети из 𝑁+ = 4, 5
и 6 генераторов.
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4. Условия безопасного подключения генераторов

Рассмотрим теперь подключение генераторов к энергосети. Будем предполагать, что роторы
подключаемых генераторов предварительно разогнаны до частоты вращения, близкой к опорной
частоте энергосети. В общем случае возможно два различных сценария подключения. Во-первых,
исходная энергосеть перед подключением может работать в однородном синхронном режиме
(области 𝑎1 − 𝑎3 при 𝑁 = 𝑁−), отвечающем состоянию равновесия 𝑂hom

1 (𝑁−). Тогда измененная
энергосеть (𝑁 = 𝑁+) сразу после подключения будет находиться в состоянии вида

𝑣⃗4 =
{︁
3𝑖 = 3hom(𝑁−), 𝑦𝑖 = 0, 𝑖 = 1, 𝑁−;3𝑘 = 30𝑘, 𝑦𝑘 = 𝑦0𝑘, 𝑘 = 𝑁− + 1, 𝑁+

}︁
, (22)

где координаты 30𝑘 = δ1(0)− δ0𝑘 и 𝑦0𝑘 = δ̇1(0)− δ̇0𝑘 определяются состояниями как подключаемых
генераторов, так и исходного первого генератора. Так как ротор подключаемых генераторов был
предварительно разогнан, будем считать, что эти координаты имеют случайные значения из
интервалов 30𝑘 ∈ [−π,π] и 𝑦0𝑘 = [𝑦−, 𝑦+], где 𝑦± вычислены по формуле (3) для 𝑁 = 𝑁+.

Если же исходная энергосеть работает в одном из неоднородных синхронных режимов
(область 𝑎3 при 𝑁 = 𝑁−), то в силу симметрии системы (1) при составлении вектора начального
состояния можно использовать координаты любого из них, например, отвечающего состоянию
равновесия 𝑂𝑖𝑛ℎ,1

𝑗 (𝑁−). В этом случае измененная энергосеть (𝑁 = 𝑁+) сразу после подключения
будет находиться в состоянии вида

𝑣⃗ 5 =
{︁
3𝑗 = −α+ π−Φ(1)

1 (𝑁−), 𝑦𝑗 = 0,

3𝑖 = −α+Φ(1)
1 (𝑁−), 𝑦𝑖 = 0, 𝑖 = 1, 𝑁− − 1, 𝑖 ̸= 𝑗,

3𝑘 = 30𝑘, 𝑦𝑘 = 𝑦0𝑘, 𝑘 = 𝑁− + 1, 𝑁+

}︁
.

(23)

Для нахождения областей безопасного подключения мы использовали следующую проце-
дуру. При фиксированных значениях параметров на основе (22) и (23) посредством случайного
выбора значений координат 30𝑘 и 𝑦0𝑘 создавались соответствующие наборы начальных состояний
измененной энергосети. Элементы наборов использовались в качестве начальных условий при
интегрировании системы (1) для 𝑁 = 𝑁+ и нахождения соответствующего поведения изменен-
ной энергосети. Далее подсчитывалась доля траекторий, стремящихся в устойчивые состояния
равновесия, то есть оценивалась вероятность установления в измененной энергосети синхронного
режима (обозначим ее 𝑃syn). В зависимости от значения 𝑃syn можно выделить два характерных
типа подобластей параметров. К первому типу относятся подобласти, в которых 𝑃syn = 1, ко-
торые обозначим 𝑎syn. При параметрах из этих подобластей подключение генератора является
безопасным, так как в измененной энергосети гарантируется установление синхронного режима.
Ко второму типу относятся подобласти, где 0 < 𝑃syn < 1, которые обозначим 𝑎prob. Для пара-
метров из этих подобластей установление синхронного режима носит вероятностный характер,
поэтому подключение генератора является небезопасным.

На рис. 5 приведены результаты для случая, когда к энергосети, содержащей пять генера-
торов (𝑁− = 4), подключается еще один (𝑁+ = 5). Установлено, что для начальных состояний
𝑣⃗4 и значений параметра µ > 2.00 подобласть 𝑎syn полностью совпадает с 𝑎, что гарантирует
безопасное подключение генератора к исходной энергосети. В противном же случае существуют
оба типа подобластей 𝑎syn и 𝑎prob. Взаимное расположение этих подобластей при µ = 1.50, 1.25 и
1.00 приведено на рис. 5, a–c. При уменьшении параметра µ размер подобласти 𝑎syn уменьшается.
Суммарный размер подобластей 𝑎prob при этом растет, и уменьшаются максимальные вероятности
𝑃syn в данных подобластях. В свою очередь, для начальных состояний 𝑣⃗5 и значений параметра
µ ⩾ 1.25 подобласть 𝑎syn полностью совпадает с 𝑎3, что гарантирует безопасное подключение
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Рис. 5. Подключение генераторов: a–c — вероятность 𝑃syn установления синхронного режима в измененной энергосети
с однородного состояния исходной энергосети при µ = 1.50, µ = 1.25 и µ = 1.00 соответственно; d — вероятность
установления синхронного режима с неоднородного состояния исходной энергосети при µ = 1.00. Значения параметров
𝑁− = 4, 𝑁+ = 5 (цвет онлайн)

Fig. 5. Connecting of generators: a–c — probability 𝑃syn of establishing a synchronous mode in the changed power grid
from a homogeneous state of the initial power grid for µ = 1.50, µ = 1.25 and µ = 1.00, respectively; d — probability of
establishing a synchronous mode from an inhomogeneous state of the initial power grid for µ = 1.00. The parameter values:
𝑁− = 4, 𝑁+ = 5 (color online)

генератора к исходной энергосети. Если µ < 1.25 (см. рис. 5, d), то наряду с подобластью 𝑎syn
существует подобласть 𝑎prob, то есть подключение генератора становится небезопасным. При этом
обнаружено, что для параметров из подобластей 𝑎syn в измененной энергосети всегда устанавли-
вается однородный синхронный режим. В частях подобластей 𝑎prob, где в измененной энергосети
возможно установление неоднородных режимов, вероятность их установления не превышает 0.13.

Заключение

В данной работе рассмотрена энергосеть из произвольного числа генераторов, работаю-
щих на общую пассивную линейную нагрузку, в случае, когда один из генераторов находится
«электрически» ближе к нагрузке (из-за более короткой линии передачи и/или продольной компен-
сации индуктивного сопротивления). Для описания динамики данной сети применяется модель
редуцированной эффективной сети в виде ансамбля с хаб-топологией (топологией «звезда»).
Изучена задача об устойчивости энергосети, изначально находящейся в одном из синхронных
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режимов, к отключению и подключению генераторов. С помощью подхода, базирующегося на
втором методе Ляпунова, найдены условия на параметры, обеспечивающие безопасное отключе-
ние генераторов, включающих, если таковой имеется, и генератор, входящий в «неоднородный»
путь питания нагрузки, который отличается от остальных током и передаваемой мощностью.
Полученные оценки подтверждены численным нахождением соответствующих областей для
энергосетей различного размера. Также численно прослежена эволюция области, отвечающей
безопасному подключению генератора к энергосети из пяти генераторов.
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