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Аннотация. Задачи рассеяния упругих волн на различных типах неоднородностей относятся к числу наиболее
сложных и актуальных задач динамики деформируемых тел. С прикладной точки зрения это объясняется тем,
что информация о динамическом напряжённо-деформированном состоянии в окрестности этих неоднородностей
представляет большой интерес для различных инженерных и физических приложений. Целью данной работы является
исследование нестационарного рассеяния упругих волн на сферическом включении, расположенном в бесконечном
упругом пространстве. Методы. Для построения решения используются аналитические методы, включая интегральное
преобразование Фурье по времени. Результаты. Установлено, что собственные функции исследуемой задачи нельзя
рассматривать как векторы в гильбертовом пространстве: они не нормируемы из-за экспоненциального роста с
расстоянием, что делает необходимым использование обобщённых функций и специальных методов теории рассеяния.
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Abstract. Problems of elastic wave scattering by various types of inhomogeneities rank among the most complex and relevant
topics in the field of deformable solid dynamics. From an applied perspective, this is due to the fact that information about
the dynamic stress–strain state in the vicinity of such inhomogeneities is of significant interest for various engineering and
physical applications. The purpose of this study is to investigate the nonstationary scattering of elastic waves by a spherical
inclusion embedded in an infinite elastic medium. Methods. The analytical approach to the solution involves the application of
Fourier integral transforms with respect to time. Results. It is established that the eigenfunctions of the considered problem
cannot be treated as vectors in a Hilbert space, since they are not square-integrable due to their exponential growth with
distance. This necessitates the use of generalized functions and specialized methods from scattering theory.

Keywords: spherical shell, wave scattering, wave amplitude, eigenfunctions, eigenfrequencies.

For citation: Usmonov BSh, Mukhitdinov RT, Eliboyev NR, Akhmedov NB. Nonstationary scattering of elastic waves by a
spherical inclusion. Izvestiya VUZ. Applied Nonlinear Dynamics. 2026;34(1):84–97. DOI: 10.18500/0869-6632-003200

This is an open access article distributed under the terms of Creative Commons Attribution License (CC-BY 4.0).

Введение

Рассеивание плоской волны одним сферическим препятствием часто встречается во многих
практических задачах геофизики и сейсмологии [1, 2]. В разведочной геофизике сферические
объекты обеспечивают хорошее приближение для реальных объектов [3,4]. Аналитическая форму-
лировка одной сферы может использоваться для построения более сложных решений. В нефтяной
промышленности, если нефть захвачена в полостях, разумно допустить, что сейсмическая энергия
может быть захвачена резонансом жидкости. Такие резонансы трудно наблюдать из-за контрастов
импеданса между породой и жидкостью [5,6]. Точные решения для задач рассеяния очень актуаль-
ны. Хотя аналитические решения существуют для некоторых типов препятствий (сферы, цилиндра
или эллипсоида), полученное понимание имеет важное значение [7,8]. Задачи дифракции упругих
волн на неоднородностях тесно связаны с рассеянными волнами, являются частью классиче-
ских фундаментальных задач динамики деформируемых тел, и их решение требует сложного
математического аппарата [9–11]. Для воздействия на механические и тепловые характеристики
материалов довольно часто используют добавление наполнителей [12, 13].

Задача о рассеянии волн на сферической неоднородности была поставлена достаточно давно
при решении многочисленных научно-технических проблем, связанных, в частности, с дифрак-
цией электромагнитных [14], звуковых [15] и упругих [16] волн. Данная задача рассматривается
обычно в стационарной постановке, когда падающая волна представляет собой бесконечную
в пространстве и во времени гармоническую волну вида exp [𝑖ω (𝑡− 𝑧/𝑐)].

При этом возникает ряд трудностей, связанных с тем, что собственные функции исследуемой
задачи нельзя рассматривать как векторы в гильбертовом пространстве: они не нормируемы из-за
экспоненциального роста с расстоянием. Этот факт, известный в общей теории рассеяния [17],
вытекает из следующего обстоятельства.
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Рассеянная бегущая волна, уходящая на бесконечность, ведет себя как 𝑢 ∼ 𝑟−1 ×
× exp

[︀
𝑖ω(𝑘) (𝑡− 𝑟/𝑐)] , где ω(𝑘) = ω(𝑘)𝑅 + 𝑖ω(𝑘)𝐼 — комплексные собственные частоты систе-

мы «включение–среда» [18].

Таким образом, 𝑢 ∼ 𝑟−1 exp
[︁
−ω(𝑘)𝐼 (𝑡− 𝑟/𝑐)

]︁
exp

[︁
𝑖ω(𝑘)𝑅 (𝑡− 𝑟/𝑐)

]︁
, и амплитуда рассеянной

волны в фиксированной точке уменьшается с течением времени из-за радиальных потерь. Про-
странственное же распределение амплитуд в каждый данный момент времени экспоненциально
увеличивается с ростом 𝑟, так как бесконечно удалённые части волны были возбуждены в бо-
лее ранние промежутки времени, когда амплитуда колебаний неоднородности была бесконечно
большой.

Естественно, факт бесконечного возрастания собственных функций не имеет реального
физического смысла, так как, согласно принципу причинности, при 𝑟 > 𝑐𝑡 в точке 𝑟 никакого
сигнала быть не может. Поскольку мы пытаемся реальную ситуацию подменить некоторой
другой, связанной с введением в бесконечном пространстве стационарного процесса, приходится
неизбежно сталкиваться с «экспоненциальной катастрофой».

Для её устранения необходимо учесть, что колебания не могут существовать на протяжении
бесконечно большого промежутка времени, и, следовательно, мы приходим к необходимости
постановки и решения задачи о дифракции импульса той или иной формы с выраженным
передним фронтом.

1. Методика

1.1. Постановка задачи и методики решения. Пусть на центр рассеяния радиуса 𝑅,
помещённый в начало сферической системы координат (𝑟, θ,3), совмещённой обычным образом
с декартовой системой координат (𝑥, 𝑦, 𝑧), падает плоская волна смещения. Уравнения движения
сферического тела (𝑘 = 2) и окружающей его среды (𝑘 = 1) имеют следующий вид:

µ𝑘 rot rot 𝑈⃗ − (λ𝑘 + 2µ𝑘) grad div 𝑈⃗ + ρ𝑘
𝜕2𝑈⃗

𝜕𝑡2
= 0. (1)

Здесь λ𝑘, µ𝑘 — коэффициенты Ламе для окружающей среды (𝑘 = 1) и сферических тел (𝑘 = 2) ,
ρ𝑘 — плотности материалов, 𝑈⃗𝑘(𝑢𝑟𝑘, 𝑢θ𝑘, 𝑢𝑧𝑘) — вектор перемещений.

На контакте двух тел при 𝑟 = 𝑅 выполняется равенство смещений и напряжений (условие
жёсткого контакта):

𝑢𝑟1 = 𝑢𝑟2, 𝑢θ1 = 𝑢θ2, 𝑢31 = 𝑢32, σ𝑟𝑟1 = σ𝑟𝑟2, σ𝑟θ1 = σ𝑟θ2, σ𝑟31 = σ𝑟32. (2)

На бесконечности возмущения должны затухать:

𝑈⃗1 → 0 при
√︀
𝑥2 + 𝑦2 + 𝑧2 → ∞.

А также заданы начальные условия:

𝑈𝑘

⃒⃒
𝑡=0

= 0,
𝜕𝑈𝑘

𝜕𝑡

⃒⃒⃒⃒
𝑡=0

= 0. (3)

Обозначим через 𝑐𝑝𝑘 и 𝑐𝑠𝑘 (для 𝑘 = 1, 2) скорости продольных и поперечных волн соответственно.
Предположим для определённости, что волна движется в положительном направлении оси 0𝑧.
Тогда вектор смещения

𝑈⃗
(𝑝)
1 = 𝑒⃗1 𝑈0

(︁
τ𝑞 −

𝑧

𝑅
− 1

)︁
𝐻

(︁
τ𝑞 −

𝑧

𝑅
− 1

)︁
, (4)
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где 𝑒⃗1 — единичный вектор, задающий поляризацию волны, τ1 = 𝑐1𝑒/𝑅 — безразмерное время,
𝐻(𝑥) — ступенчатая функция Хэвисайда.

Для решения поставленной задачи воспользуемся интегральным преобразованием Фурье
по времени, которое определим следующими формулами:

𝑓𝑘(𝑥𝑞) =

∫︁ ∞

−∞
𝐹𝑘(τ1) exp(−𝑖𝑥𝑞τ1) 𝑑τ1, 𝐹𝑘(τ1) =

1

2π

∫︁ ∞

−∞
𝑓𝑘(𝑥𝑞) exp(𝑖𝑥𝑞τ1) 𝑑𝑥𝑞, (5)

где 𝑥𝑞 — параметр преобразования, имеющий смысл безразмерной частоты:

𝑥𝑞 =
ω𝑅
𝑐𝑝1

= 𝑘𝑞1𝑅.

𝑘11 = ω/𝑐𝑝1; ω — частота; 𝑐𝑝1 =
√︁
λ1+2µ1
ρ1

— скорость распространения продольных волн в среде.

Уравнение Ламе (1) после применения преобразования (5) принимает следующий вид:

µ𝑘 rot rot 𝑢⃗𝑘 − (λ𝑘 + 2µ𝑘) grad div 𝑢⃗𝑘 − ρ𝑘ω2𝑢⃗𝑘 = 0. (6)

Применяя преобразование Фурье к падающему импульсу, получим

𝑢
(𝑝)
1 = 𝑒⃗1 exp(−𝑖𝑘𝑞1𝑧) η(𝑥𝑞). (7)

Здесь

η(𝑥𝑞) = exp(−𝑖𝑥𝑞) 𝑔(𝑥𝑞), 𝑔(𝑥𝑞) =

∫︁
𝑈0(𝑇𝑞) exp(−𝑖𝑥𝑞𝑇𝑞) 𝑑𝑇𝑞, 𝑇𝑞 = τ𝑞 −

𝑧

𝑅
− 1. (8)

Решение уравнений (4) ищется, как известно [7], в виде

𝑢⃗𝑘 =
1

𝑘𝑝𝑘
gradψ0𝑘 +

1

𝑘𝑠𝑘
rot rot (𝑟⃗ψ1𝑘) + rot (𝑟⃗ψ2𝑘), (9)

причем потенциалы ψ𝑗 удовлетворяют скалярному уравнению Гельмгольца, и решение выражается
следующим образом:

(ψ0𝑘,ψ1𝑘,ψ2𝑘) =
∞∑︁
𝑛=0

𝑛∑︁
𝑚=−𝑛

(𝐴𝑚𝑛𝑘, 𝐵𝑚𝑛𝑘, 𝐶𝑚𝑛𝑘) 𝑏𝑛(𝑙𝑟)Φ
𝑚
𝑛 (0,3), 𝑘 =

{︃
𝑘𝑝, 𝑗 = 0,

𝑘𝑠, 𝑗 = 1, 2.
(10)

Здесь Φ(𝑚)
𝑛 (θ,3) = 𝑃𝑚

𝑛 (cos θ) exp(𝑖𝑚3), а 𝑏𝑛(ξ) — сферическая функция Бесселя. Для внешней

задачи в качестве 𝑏𝑛(ξ) необходимо брать функцию Ханкеля второго рода: 𝑏𝑛(ξ) = ℎ
(2)
𝑛 (ξ) ≡

≡ ℎ𝑛(ξ), выделяющую на бесконечности расходящиеся волны. Для внутренней задачи 𝑏𝑛(ξ) =
= 𝑗𝑛(ξ), которая удовлетворяет условию ограниченности в нуле. Падающую плоскую волну можно
разложить по регулярным векторным собственным функциям 𝐿⃗1

σ𝑚𝑛, 𝑀⃗1
σ𝑚𝑛, 𝑁⃗1

σ𝑚𝑛 векторного
уравнения Гельмгольца [19]:

𝑒⃗𝑥 exp(−𝑖𝑘𝑧) =

∞∑︁
𝑛=1

2𝑛+ 1

𝑛(𝑛+ 1)
(−𝑖)𝑛

[︀
𝑀1

𝑐1𝑛 + 𝑖𝑁1
𝑐1𝑛

]︀
,

𝑒⃗𝑦 exp(−𝑖𝑘𝑧) =

∞∑︁
𝑛=1

2𝑛+ 1

𝑛(𝑛+ 1)
(−𝑖)𝑛

[︀
𝑀1

𝑐1𝑛 − 𝑖𝑁1
𝑠1𝑛

]︀
,

𝑒⃗𝑧 exp(−𝑖𝑘𝑧) =

∞∑︁
𝑛=0

(2𝑛+ 1)(−𝑖)𝑛 𝐿1
𝑐0𝑛,

(11)

где 𝑠 и 𝑐 обозначают sin3 и cos3 в выражениях для собственных векторов.
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Сами векторы 𝐿⃗, 𝑀⃗ , 𝐶⃗ определяются из условий непрерывности вектора смещений:

𝑢⃗ = 𝑢𝑟𝑒⃗𝑟 + 𝑢θ𝑒⃗θ + 𝑢3𝑒⃗3,

а также вектора напряжений:

σ⃗𝑛 = σ𝑟𝑟𝑒⃗𝑟 + τ𝑟θ𝑒⃗θ + τ𝑟3𝑒⃗3

на границе неоднородности и вмещающей среды.
При 𝑟 = 𝑅 должны выполняться следующие соотношения:

𝑢⃗
(𝑝)
1 + 𝑢⃗1 = 𝑢⃗2, σ⃗(𝑝)1 + σ⃗1 = σ⃗2. (12)

Рассчитав смещения и напряжения из потенциалов ψ𝑗 и подставив полученные выражения в
граничные условия (12), а также воспользовавшись ортогональностью сферических волновых
функций на поверхности сферы, приходим к системе алгебраических уравнений для определения
неизвестных коэффициентов. Отметим, что в случае рассеяния импульса продольной волны,
как следует из (11), наблюдается вырождение по параметру 𝑚 (при 𝑚 = 0), и, следовательно,
зависимость от азимутальной координаты 3 в общем решении отсутствует. В случае рассеяния
поперечной волны будем для определённости считать, что она поляризована в направлении 𝑒⃗𝑧 .
Рассеянное поле смещений во вмещающей среде выражается следующими формулами (поскольку
нас интересует только внешнее поле, индекс 2 здесь и в дальнейшем будем опускать):

𝑢𝑟1 = η(𝑥𝑞) cos(𝑚3)
∞∑︁

𝑛=𝑚

Ω𝑞

[︂
𝑑1(𝑘𝑝𝑟)

𝐴𝑚𝑛

𝑘𝑝𝑟
+ 𝑛(𝑛+ 1)ℎ𝑛(𝑘𝑠𝑟)

𝐵𝑚𝑛

𝑘𝑠𝑟

]︂
𝑃𝑚
𝑛 (cos θ),

𝑢θ1 = η(𝑥𝑞) cos(𝑚3)
∞∑︁

𝑛=𝑚

Ω𝑞

{︂[︂
ℎ𝑛(𝑘𝑝𝑟)

𝐴𝑚𝑛

𝑘𝑝𝑟
+ 𝑑2(𝑘𝑠𝑟)

𝐵𝑚𝑛

𝑘𝑠𝑟

]︂
τ𝑛(θ) + 𝑖ℎ𝑛(𝑘𝑠𝑟)π𝑛(θ)𝐶𝑚𝑛

}︂
,

𝑢31 = −η(𝑥𝑞) sin(𝑚3)
∞∑︁

𝑛=𝑚

Ω𝑞

{︂[︂
ℎ𝑛(𝑘𝑝𝑟)

𝐴𝑚𝑛

𝑘𝑝𝑟
+ 𝑑2(𝑘𝑠𝑟)

𝐵𝑚𝑛

𝑘𝑠𝑟

]︂
τ𝑛(θ) + 𝑖ℎ𝑛(𝑘𝑠𝑟)π𝑛(θ)𝐶𝑚𝑛

}︂
.

(13)
Причём в случае падения продольной волны (𝑞 = 𝑝, 𝑚 = 0):

Ω𝑝 = (−𝑖)𝑛+1(2𝑛+ 1), 𝐶0𝑛 = 0,

а в случае падения поперечной волны (𝑞 = 𝑠, 𝑚 = 1):

Ω𝑝 = (−𝑖)𝑛+1 2𝑛+ 1

𝑛(𝑛+ 1)
.

В уравнении (13) введены сокращённые обозначения:

𝑑1(𝑘𝑝𝑟) = 𝑛ℎ𝑛(𝑘𝑝𝑟)− (𝑘𝑝𝑟)ℎ𝑛+1(𝑘𝑝𝑟),

𝑑2(𝑘𝑠𝑟) = (𝑛+ 1)ℎ𝑛(𝑘𝑠𝑟)− (𝑘𝑠𝑟)ℎ𝑛+1(𝑘𝑠𝑟),

τ𝑛(θ) =
𝑑𝑃𝑚

𝑛 (cos θ)
𝑑θ

, π𝑛(θ) =
𝑃𝑚
𝑛 (cos θ)
sin θ

.
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Формулы для коэффициентов рассеяния, характеризующих внешнее дифрагированное поле,
можно представить в виде

𝑎𝑛 =
∆α𝑛(ω)
∆𝑛(ω)

· γ 𝑗𝑛(𝑥𝑠)
ℎ𝑛(𝑥𝑠)

, 𝑏𝑛 =
∆𝑏𝑛(ω)
∆𝑛(ω)

· 𝑗𝑛(𝑥𝑠)
ℎ𝑛(𝑥𝑠)

,

𝑐𝑛 =
∆𝑐𝑛(ω)
δ𝑛(ω)

· 𝑗𝑛(𝑥𝑠)
ℎ𝑛(𝑥𝑠)

, 𝐴𝑛 =
∆𝐴𝑛 (ω)
∆𝑛(ω)

· 𝑗𝑛(𝑥𝑝)
ℎ𝑛(𝑥𝑝)

,

𝐵𝑛 =
∆𝐸𝑛 (ω)
∆𝑛(ω)

· 𝑗𝑛(𝑥𝑝)

γℎ𝑛(𝑥𝑠)
, 𝐶𝑛 = 0.

(14)

Здесь γ = 𝑐𝑠2/𝑐𝑝2, 𝑎𝑛 = 𝐴1𝑛, 𝑏𝑛 = 𝐵1𝑛, 𝑐𝑛 = 𝐶1𝑛 — коэффициенты рассеяния поперечной
волны, 𝐴𝑛 = 𝐴0𝑛, 𝐵𝑛 = 𝐵0𝑛, 𝐶𝑛 = 𝐶0𝑛 — коэффициенты рассеяния продольной волны,
∆𝑎,𝑏𝑐,𝐴,𝐵
𝑛 (ω), ∆𝑛(ω), δ𝑛(ω) — некоторые определители, элементы которых зависят от отношений

𝑗𝑛+1/𝑗𝑛 (функции Бесселя) или ℎ𝑛+1/ℎ𝑛 (функции Ханкеля). Можно отметить, что уравнения

∆𝑛(ω) = 0, δ𝑛(ω) = 0 (15)

определяют соответственно собственные комплексные частоты сфероидальных и крутильных
колебаний сферической неоднородности в бесконечной упругой среде [20].

Решение во временной области находится посредством обратного преобразования Фурье:

𝑈(τ) =
1

2π

∫︁ ∞

−∞
𝑢(𝑥) exp(𝑖𝑥τ) 𝑑𝑥, (16)

где 𝑢(𝑥) определяется формулами (13).
Выпишем (16) в явном виде в приближении волновой зоны (𝑟 ≫ 1). Пренебрегая членами

порядка 𝑟−2 и воспользовавшись асимптотическим представлением функции Ханкеля:

ℎ𝑛(ξ) ≡ ℎ(2)𝑛 (ξ) ∼ 1

ξ
𝑖𝑛+1𝑒−𝑖ξ,

будем иметь

𝑈𝑟 =
cos𝑚3
2π𝑖

𝑅

𝑟

∫︁ ∞

−∞
𝑔(𝑥𝑞)

𝑆1(0, 𝑥𝑞)

𝑥𝑝
exp

(︀
𝑖τ′𝑞𝑥𝑞

)︀
𝑑𝑥𝑞,

𝑈θ =
cos𝑚3
2π𝑖

𝑅

𝑟

∫︁ ∞

−∞
𝑔(𝑥𝑞)

𝑆2(0, 𝑥𝑞)

𝑥𝑠
exp

(︀
𝑖τ′′𝑞𝑥𝑞

)︀
𝑑𝑥𝑞,

𝑈3 =
sin𝑚3
2π𝑖

𝑅

𝑟

∫︁ ∞

−∞
𝑔(𝑥𝑞)

𝑆3(0, 𝑥𝑞)

𝑥𝑠
exp

(︀
𝑖τ′′𝑞𝑥𝑞

)︀
𝑑𝑥𝑞,

(17)

где амплитудные функции 𝑆𝑗(0, 𝑥𝑞) записываются в виде

𝑆1(0, 𝑥𝑞) =
∞∑︁

𝑛=𝑚

𝑖𝑛+1Ω𝑞 𝑃
𝑚
𝑛 (cos θ)𝐴𝑛𝑚,

𝑆2(0, 𝑥𝑞) =
∞∑︁

𝑛=𝑚

𝑖𝑛+1Ω𝑞 [τ𝑛(θ)𝐵𝑚𝑛 + π𝑛(θ)𝐶𝑚𝑛] ,

𝑆3(0, 𝑥𝑞) =

∞∑︁
𝑛=𝑚

𝑖𝑛+1Ω𝑞 [π𝑛(θ)𝐵𝑚𝑛 + τ𝑛(θ)𝐶𝑚𝑛] .

(18)
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В случае рассеяния продольного импульса

𝑞 = 𝑝, 𝑚 = 0, 𝐶0𝑛 = 0, τ′𝑝 = τ𝑝 −
𝑟

𝑅
− 1, τ′′𝑝 = τ𝑝 −

𝑟

γ𝑅
− 1.

Для поперечного импульса

𝑞 = 𝑠, 𝑚 = 1, 𝐶0𝑛 = 0, τ′𝑝 = τ𝑠 −
γ𝑟
𝑅

− 1, τ′′𝑠 = τ𝑠 −
𝑟

γ𝑅
− 1.

Чтобы иметь возможность вычислить интеграл (17) в конечном виде, необходимо конкретизиро-
вать вид падающего импульса (4). В качестве зондирующего сигнала выбираем импульс Берлоге,
который с достаточной точностью аппроксимирует записи реальных сейсмических возбуждений:

𝑈0(𝑇𝑠) = 𝑇𝑠𝑒
−𝑎𝑇𝑠 sin(𝑏𝑇𝑠),

где 𝑎 и 𝑏 — параметры, определяющие импульс. С помощью (8) получим для спектра сигнала:

𝑔(𝑥𝑠) =
2𝑏(𝑎+ 𝑖𝑥𝑠)

[(𝑎+ 𝑖𝑥𝑠)2 + 𝑏2]2
.

В принципе интегралы (16) и (17) можно вычислять приближённо с помощью компьютера
путём непосредственного численного интегрирования. Для получения выражения перемещений и
напряжений в оригиналах применяется теория вычетов. Этот метод физически хорошо описывает
рассматриваемый процесс. Заменяя интегрирование по 𝑥𝑞 интегрированием по замкнутому
контуру, состоящему из действительной оси и полуокружности в комплексной полуплоскости,
интегралы сводятся к сумме вычетов по полюсам подынтегральной функции. Часть этих полюсов
является корнями уравнений (15). Это означает, что разложение идёт по функциям, аргументы
которых включают комплексные собственные частоты, т.е. по собственным функциям сферической
упругой неоднородности. Выпишем (17) в следующем виде:

𝑈𝑛 = 𝑓(𝑛, 𝑟, θ,3)
∫︁ ∞

−∞
𝑔(𝑥𝑝)

∆𝐴𝑛 (𝑥𝑝)𝑗𝑛(𝑥𝑝)
𝑥𝑝 ∆𝑛(𝑥𝑝)ℎ𝑛(𝑥𝑝)

exp
(︁
𝑖𝑥𝑝

(︁
τ𝑝 −

𝑟

𝑅
− 1

)︁)︁
𝑑𝑥𝑝. (19)

Выбираем падающий импульс таким образом, что его спектр 𝑔(𝑧) → 0 при |𝑧| → ∞. Следова-
тельно, выражение в скобках равномерно стремится к нулю.

При этом при условии τ𝑝 − 𝑟/𝑅 − 1 > 0 условия леммы Жордана [21] выполняются,
и интегрированием по бесконечной полуокружности можно пренебречь.

Отметим, что последнее неравенство отражает принцип причинности: сигнал не может
прийти в точку 𝑟+𝑅 раньше момента времени 𝑡 = (𝑟 +𝑅)/𝑐𝑝. Таким образом, используя теорию
вычетов для вычисления интеграла (19), получаем:

𝑈𝑛 = 2π𝑖 𝑓(𝑛, 𝑟, θ,3)
∑︁
𝑘,𝑚

res

{︂
𝑔(𝑧)∆𝐴𝑛 (𝑧) 𝑗𝑛(𝑧)
𝑧 ∆𝑛(𝑧)ℎ𝑛(𝑧)

}︂
(𝑘)𝑧=𝑧1

𝑧=𝑧2

exp(𝑖𝑧τ′𝑝)𝐻(τ′𝑝), (20)

где 𝑧
(𝑘)
1 — полюсы функций ∆𝑛(𝑧)ℎ𝑛(𝑧), а полюсы функции 𝑔(𝑧).
Если сферическая неоднородность мало отличается от окружающей среды, тогда мнимая

часть 𝑧
(𝑘)
1 мала, и полюсы лежат близко к действительной оси.

В геофизических приложениях часто встречается ситуация, когда рассматриваемое вклю-
чение достаточно велико по своим размерам 𝑥 = ω𝑅/𝑐 = 2π𝑅/λ ⩾ 1 и не слишком сильно
отличается своими упруго-плотностными свойствами от вмещающей среды (на 20–30% по скоро-
стям и на 3–5% по плотности).
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В этом случае амплитудные функции 𝑆𝑗 можно получить простыми приближенными
формулами.

Далее показано в работе [21], что слабо контрастная неоднородность характеризуется
следующими равенствами:

𝑆1(θ, 𝑥𝑝) ≈ 𝑆2(θ, 𝑥𝑠) ≈ 𝑆3(θ, 𝑥𝑠) ≈ 𝑆(θ, 𝑥𝑞),

и получено выражение для 𝑆(θ, 𝑥𝑞) в виде суммы двух слагаемых:

𝑆(θ, 𝑥𝑞) = 𝑆𝑑(θ, 𝑥𝑞) + 𝑆τ(θ, 𝑥𝑞).

Первое слагаемое даёт известную картину дифракции Фраунгофера, а второе обусловлено
лучами, прошедшими сквозь включение.

Физически это вполне оправданно, поскольку в силу слабой контрастности неоднородности
лучами, претерпевающими отражения внутри сферы, можно пренебречь.

Отметим, однако, что если дифракционное слагаемое

𝑆𝑑(θ, 𝑥𝑞) = 𝑥2𝑞

√︂
θ

sin θ
𝐼1(θ𝑥𝑞)
θ𝑥𝑞

(21)

вполне удовлетворяет требованиям геофизической точности [22], то второе слагаемое

𝑆τ(θ, 𝑥𝑞) = −2𝑖𝑥𝑞

√︂
θ

sin θ
α𝑞 − 1

4(α𝑞 − 1)2 + θ2
exp

[︂
−𝑖𝑥𝑞

√︁
4(α𝑞 − 1)2 + θ2

]︂
, (22)

где α𝑞 = 𝑐𝑞2/𝑐𝑞1, справедливо, вообще говоря, только в малоугловом приближении (θ ≈ 0) и
имеет весьма приближённый характер.

Используя слабоконтрастное приближение, коэффициенты рассеяния можно представить в
следующем виде:

𝐴𝑛 ≈ 𝑏𝑛 ≈ 𝑐𝑛 ≈ 1

2

(︁
1− 𝑒−

2
𝜀α

)︁
, (23)

где
𝜀𝑞 = 𝑥 [(α sin 𝑑1 − sin 𝑑) + (𝑑− 𝑑1) cos 𝑑] ,

cos 𝑑 =
γ
𝑥
, cos 𝑑1 =

γ
α𝑥

,

(︂
γ = 𝑛+

1

2
⩽ 𝑥

)︂
.

Подставляя (23) в (22) и заменяя функции Лежандра их асимптотическими представлениями,
получим [23]:

𝑆(θ, 𝑥) ≈
√︂

2

π sin θ

∑︁√
γ cos

(︁
γθ− π

4

)︁
[1− exp(−2𝑖𝜀α)] . (24)

Первое слагаемое в квадратных скобках, выражаемое единицей, дает дифракционную
картину Фраунгофера. Для того чтобы оценить второе слагаемое, заменим сумму интегралом,
который представим в следующем виде:

𝑆τ(θ, 𝑥) ≈
√︂

2

π sin θ
1

2

[︂∫︁ 𝑥

0

√
γ 𝑒𝑖3�(γ) 𝑑γ+

∫︁ 𝑥

0

√
γ 𝑒𝑖3−(γ) 𝑑γ

]︂
, (25)

где
3� = 2𝑥 [sin 𝑑− α sin 𝑑1 + (𝑑1 − 𝑑) cos 𝑑] +

(︁
γθ− π

4

)︁
,

3− = 2𝑥 [sin 𝑑− α sin 𝑑1 + (𝑑1 − 𝑑) cos 𝑑]−
(︁
γθ− π

4

)︁
.
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Вычислим интегралы асимптотически по формулам метода стационарной фазы [24]:∫︁ √
γ 𝑒𝑖3(γ) 𝑑γ ≈

√︃
2πγ0

|3′′(γ0)|
exp

{︁
𝑖
[︁
3(γ0) +

π
4
sign3′′(γ0)

]︁}︁
. (26)

Найдя сначала точку γ0, в окрестности которой фаза стационарна, имеем для неё условие
3′±(γ0) = 0, то есть 2(𝑑1 − 𝑑)± θ = 0. Для получения приближенного рассеяния поля используем
методику, разработанную Дубровским В. А. и Марочником В. С. [25].

Тогда выражение для рассеянного поля смещений поперечного импульса выражается через
вычисленные интегралы следующим образом:

𝑈𝑟 ≈ 0,

𝑈θ =
𝑅

𝑟
cos3

[︃√︂
θ

sin θ
𝐼𝑠1 − 𝐼𝑠2

]︃
,

𝑈3 = −𝑅

𝑟
sin3

[︃√︂
θ

sin θ
𝐼𝑠1 − 𝐼𝑠2

]︃
.

(27)

Здесь

𝐼𝑠1 =
1

2π𝑖

∫︁ ∞

−∞
𝑥𝑠 𝑔(𝑥𝑠)

𝐽1(θ𝑥𝑠)
θ𝑥𝑠

exp
(︀
𝑖τ′′𝑠𝑥𝑠

)︀
𝑑𝑥𝑠. (28)

В случае τ′′𝑠 ⩾ 0 его можно вычислить с помощью теории вычетов, так как условия леммы
Жордана выполнены. В итоге получим

𝐼𝑠1 = Re

{︂
𝑒𝑖τ

′′
𝑠 ν

[︂
𝑖𝐽0(θν)−

𝐽1(θν)
θν

(︀
τ′′𝑠ν+ 𝑖

)︀]︂}︂
(τ′′𝑠 ⩾ 0), ν = 𝑏+ 𝑖𝑎.

Если τ′′𝑠 < 0, то воспользуемся интегральным представлением [24]:

𝐽1(θ𝑥)
θ𝑥

=
1

π

∫︁ 1

−1
exp(𝑖θ𝑥𝑤)

√︀
1− 𝑤2 𝑑𝑤.

Подставив последнюю формулу в (26) и поменяв порядок интегрирования, вычислим внутренний
интеграл по теории вычетов:

𝐼𝑠1 =
1

π

∫︁ 1

−1
exp(−α𝑦)

√︀
1− 𝑤2 [(𝑎𝑦 − 1) sin(𝑏𝑦)− 𝑏𝑦 cos(𝑏𝑦)]𝐻(𝑦) 𝑑𝑤,

где 𝑦 = τ′′𝑠 + θ𝑤. В случае рассеяния продольного импульса имеем

𝑈θ ≈ 0,

𝑈𝑟 ≈
𝑅

𝑟

[︃
− 𝑖

2π

√︂
θ

sin θ

∫︁ ∞

−∞
𝑔(𝑧𝑠) 𝑧𝑠

𝑗1(θ𝑧𝑠)
θ𝑧𝑠

𝑒 𝑖τ′′𝑠 𝑧𝑠 𝑑𝑧𝑠 −𝐷𝑠

(︀
τ′′𝑠 − 2δ𝑠

)︀
𝑒−2δ𝑠

]︃
,

(29)

где интегралы вычисляются численно методом Ромберга.
Численные результаты получены на основе комплексного программного обеспечения

MATLAB. Корни (полюсы) трансцендентного уравнения находятся с помощью метода
Мюллера.
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2. Результаты и анализ

При вычислениях приняты следующие значения параметров:

α𝑝 =
𝑐𝑝1
𝑐𝑝2

= 0.91, α𝑠 =
𝑐𝑠1
𝑐𝑠2

= 0.75, γ =
𝑐𝑝1
𝑐𝑠2

= 0.72, η =
ρ1
ρ2

= 0.94.

На рис. 1 показаны результаты расчётов рассеянной радиальной компоненты смещения
𝑢𝑟 по разработанным методикам для случая рассеяния импульса продольной волны. Результаты
сравнения при θ = 10∘ с точными данными [25] совпадают с разницами до 9%.
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Рис. 1. Зависимость рассеяния радиальной компоненты смещения от времени при падении продольного импульса

Fig. 1. Time dependence of the scattering of the shear component under the incidence of a longitudinal pulse

В соответствии с заданным параметром α𝑝 определено, что приближенными формулами
можно пользоваться в диапазоне углов рассеяния

0 ⩽ θ ⩽ 68∘.

Следует, кроме того, указать, что при θ = 0∘ момент вступления рассеянной волны оказыва-
ется несколько «размытым». Это происходит вследствие эффекта Гиббса и для его устранения
необходимо, вообще говоря, сглаживать передний фронт падающего импульса.

Проведённые численные расчёты показали, что для решения задачи нестационарного
рассеяния волн на слабоконтрастной неоднородности вполне можно использовать сравнительно
простые приближённые формулы.

Заключение

Разработана методика расчёта рассеяния волн в сферическом теле при падении продольных
или поперечных волн. Также разработана методика и алгоритм для вычисления специальных
функций Бесселя и Ханкеля с комплексным аргументом. Полученные результаты по разработанной
методике сравниваются с известными методиками.

Установлено, что предложенными приближенными формулами (Дубровского В. А. и Мароч-
ника В. С.) можно пользоваться в диапазоне углов рассеяния 0 ⩽ θ ⩽ 68∘.
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