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The paper is devoted to the study of noise-induced intermittent behavior in multistable
systems. Such task is quite important because despite of a great interest of investigators to
the study of multistability and intermittency, the problem connected with the detailed under-
standing of the processes taking place in the multistable dynamical systems in the presence
of noise and theoretical description of arising at that intermittent behavior is still remain un-
solved. In present paper we analyze the noise-induced intermittency in multistable systems
using the examples of model bistable system being under influence of external noise and two
dissipatively coupled logistic maps subjected to additional noise. We have shown that the
influence of noise on multistable system for certain values of the control parameters results
in the appearance of noise-induced intermittent behavior. At that, for the found type of inter-
mittent behavior the analytical relations for residence time distributions and dependence of the
mean length of the residence times on the criticality parameter have been obtained. During
the numerical simulations carried out we have found statistical characteristics for such type
of intermittency for both systems, i.e. the distributions of the residence times for both coex-
isting stable states as well as the dependence of the mean length of the residence times for
both regimes on the criticality parameter. The results of numerical simulation of intermittent
behavior for systems under study have been compared with the obtained analytical regularities
for noise-induced intermittency in multistable systems. At that, we have shown that numerical
results and theoretical regularities are in a good agreement with each other.
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1. Intermittency as continuous transmission from regular behaviour to chaotic is
common is nature and technique [1]. It can be observed in hydrodynamics, chemical
kinetics, physics of high-energy particles [2], cosmology [3] and other branches of science.
There are different types of intermittent behaviour among which we distinguish three types
(intermittency types I–III [1]), arising during the transition from periodical oscillations to
chaotic ones: on-off intermittency [4, 5], eyelet intermittency [6], ring intermittency [7].

We must separately mark that the noise (internal or external) may also lead to in-
termittent behaviour [8, 9], especially in multistable systems [9, 10], when the influence
of noise causes the transition from one co-existing attractor to another (this type of inter-
mittent behaviour is also known as noise-induced switching between attractors [11, 12]
or noise-induced multistable intermittency [9, 10, 13]). In spite of great interest of the
scientists for the study of this type of dynamics, in our days there are many questions
conduce most of all by complexity of the investigated systems, which highly obstructs
(and in some cases makes impossible) the theoretical description of the process, leaving
us the numerical and experimental investigation only.

2. Wide class of objects for which this type of behaviour is possible (and which in
this matter remained out of sight of researches) are the systems of interacting oscillators.
When the coupling value increases, such systems transit to synchronous regime, which
may be characterized by multistability in the form of coexisting in-phase and non in-phase
regimes [14, 15]. The influence of noise can lead to switching between these regimes and
respectively to noise-induced intermittency.

For the investigation of this behaviour we study two dissipatedly coupled logistic
maps [15]

xn+1 = λ− x2n + ε(x2n − y2n) +Dξ1,

yn+1 = λ− y2n + ε(y2n − x2n) +Dξ2,
(1)

where ξ1 and ξ2 are the Gaussian stochastic processes with with zero mean and unit
variance, D is the noise intensity, λ is the control parameter, ε is the coupling parameter.
In [15] it is shown that when D = 0 (without noise) these logistic maps with certain
parameters’ values (0.75 < λ < 1.25) can be found in antiphase and in-phase state, which
is conduced by initial conditions of the researched system. In the case of external noise
influence the system demonstrates switching between in-phase and antiphase states, which
can be characterized by the parameter

zn = x2n, on condition y2n < yth, (2)

where yth = 0.6 corresponds to some threshold value. In this case the parameter zn is in
fact a noise-induced element of in-phase zsk or antiphase zak cycle of period 2 (zsk < zai ).
Distribution of the parameter zn has two maxima, corresponding to the elements of in-
phase and antiphase cycles. The switching between the coexisting states (in-phase and
antiphase) points that the system is near cusp catastrophe [16]. In this case its behaviour
can be described with the help of non-dimensional potential function with two minima.
After the appropriate normalization [16] this function represented as follows:

U (z) =
z4

4
− z2

2
+ bz, (3)
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where b is the asymmetry parameter. When |b| < 2/(3
√
3) the potential function U(z)

contains two local minima z01,2, divided by the critical point z∗, corresponding to maxi-
mum.

Since the variable zn, which presents the perturbed element of cycle of period 2,
changes a little during one iteration, in this case, as in the case of classical intermittency
of I-type [1, 17], we can pass from discrete description to continuous one

ż +
dU (z)

dz
+Dξ(t) = 0, (4)

where ξ(t) is the Gauss process with zero mean and unit variance, D is the intensity of
noise. Then we can pass to stochastic differential equation (see [8, 18] for example)

dZ =
dU (z)

dz
dt+ dW, (5)

where Z(t) is the random process, W (t) is one-dimensional Wiener process. In its turn
the equation (5) is equivalent to Fokker-Planck equation

∂ρZ (z, t)

∂t
=

∂

∂z

[
dU (z)

dz
ρZ (z, t)

]
+

D

2

∂2ρZ (z, t)

∂z2
, (6)

where ρZ (z, t) is a probability density function of a random process Z(t). To obtain the
statistical characteristics of system behaviour (like the distribution of residence times of
coexisting regimes and dependance of mean residence times from controlling parameters)
it is necessary to analyse the evolution of probability density functions ρ1,2 (z, t) for two
coexisting regimes, namely ρ1 (z, t) in the area I1 = −∞ < z < z∗ and ρ2 (z, t) in
the area I2 = z∗ < z < +∞. Both probability densities ρ1,2 (z, t) have to obey the
Fokker-Planck equation (6) in their own domains I1,2.

As in intermittent regime the phase point stays in local minimum vicinity for a long
time, we can suppose that the solution for probability density functions ρ1,2(z, t) must be
sought in a form of metastable distribution, slowly decreasing with time (see [18]), i.e.

ρ1,2 (z, t) = A1,2 (t) r (z) , (7)

where

r(z) =
g(z)∫∞

−∞ g(ξ)dξ
, g(ξ) = exp

(
−2U(ξ)

D

)
. (8)

Here g(ξ) is the stationary probability density obtained from equation (4) for the station-
ary case [19]; A1,2(t) are coefficients slowly changing with time. The explicit form of
functions A1,2(t) may be obtained from solution of differential equation

dA1,2

dt
= − k

P1,2
A1,2(t)r(x

∗), (9)

where k is the proportional coefficient, P1 =
∫ x∗

−∞ r(ξ)dξ, P2 =
∫ +∞
x∗ r(ξ)dξ are the

probabilities of appearing of the depicting point near the first and the second local min-
ima, accordingly. It’s evident that the decreasing of A1,2(t) with time is described by
exponential law

A1,2(t) = A1,2(0) exp

(
−kr(x∗)

P1,2
t

)
, (10)
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and the exponent indexes are different for the two local minima. Distributions of residence
times of coexisting regimes [18] can be found from the following expressions

p1(t) = −
x∗∫

−∞

∂ρ1(x, t)
∂t

dx, p2(t) = −
∞∫

x∗

∂ρ2(x, t)
∂t

dx. (11)

Taking into consideration the normalization conditions
∫ x∗

−∞ ρ1(ξ, 0)dξ = 1,∫ +∞
x∗ ρ2(ξ, 0)dξ = 1 they are written as follows:

p1,2 (t) =
1

T1,2
exp

(
− t

T1,2

)
. (12)

Here T1,2 =
∫ +∞
0 tp1,2(t)dt are the mean lengths of residence times of coexisting regimes

defined as

T1,2 =
P1,2

kr (x∗)
= K exp (±αb)

[
2

D

(
b4

4
+

b2

2

)]
, (13)

K and α are some constants. We must mark that the search of distribution of regimes
duration is closely related with the problem of reaching the border, which for the first time
was considered in [20].

3. Within the framework of verification of the obtained theoretical estimation (5)–
(13) first of all we have made the numerical study of noise-induced intermittency in
the model bistable system (3)–(4) and obtained statistical characteristics for this type
of behaviour. In Fig. 1, a one can see the distributions of the times during which the
investigated system (4) stays near one stable equilibrium state. The values of control
parameters are fixed. Besides, we have obtained the relation between the mean duration

Fig. 1. a – distributions of the residence times for the system (4) in the vicinity of the first stable state and
analytical regularity (12) corresponding to such distribution. Theoretical curves are shown by solid lines,
numericaly obtained data are indicated by points. Ordibate axis is shown in logariphmic scale: 1 – b = 0.05,
D = 0.1; 2 – b = 0, D = 0.1; 3 – b = −0.05, D = 0.1. b – dependence of the mean length of the residence
times for the system (4) in the vicinity of the first stable state on the control parameter b and analytical
regularity (13), corresponding to such dependence for D = 0.1. Theoretical curve is shown by solid line,
numericaly obtained data are indicated by points. Parameters of approximation are the following: K = 867,
α = 18.85. Ordibate axis is shown in logariphmic scale
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Fig. 2. a – distributions of the residence times for the system (1) in in-phase and antiphase states for
fixed values of the control parameters λ1 = 1.05, λ2 = 1.05, D = 0.06 and analytical regularity (12),
corresponding to such distributions. Theoretical curves are shown by solid lines, numerically obtained data
are indicated by points. Ordibate axis is shown in logariphmic scale: 1 – in-phase case for ε = 0.002;
2 – antiphase case for ε = 0.002; 3 – in-pahse case for ε = 0.012; 4 – antiphase case for ε = 0.012.
b – dependencies of the mean length of the residence times for the system (1) in in-pahse and antiphase
states on the parameter ε and analytical regularity (13), corresponding to such dependence for λ1 = 1.05,
λ2 = 1.05, D = 0.06. Theoretical curve is shown by solid line, numerically obtained data are indicated
by points. Ordibate axis is shown in logariphmic scale: 1 – in-pase case; 2 – antiphase case. Parameters of
approximation are the following: K = 2350.0, α = ±40.0

of staying near the same equilibrium state and the parameter b (see Fig. 1, b. From Fig. 1
it is clear that the theory describing the noise-induced intermittency in multistable system,
and the numerical results are in good agreement.

4. The next stage of our work is the study of intermittent behaviour of the original
system of two dissipatedly coupled logistic maps (1). The corresponding distributions
of times, during which the system stays in the in-phase and antiphase states with fixed
parameters, are presented in Fig. 2, a. Also we have obtained the numerical dependance
of average duration of staying is these states from the value of coupling parameter ε. This
parameter allows to change the probability of staying in the in-phase and antiphase states
and thus, plays the role of asymmetry parameter. The dependance is shown in Fig. 2, b,
good agreement between the theoretical and computational results is well seen.

Conclusion. In our work we have studied the noise-induced intermittency in
multistable systems using the example (4) of model bistable system under influence of
external noise and the system of two dissipatedly coupled logistic maps (1). We mark
that this investigation for system (1) is true for certain diapason of control parameters
values (when the studied system demonstrates two coexisting regimes, synchronous and
asynchronous). When the control parameters change and the period of regimes increase,
the model system (4) becomes inapplicable for the analysis of this system and requires
further clarification.

The work is supported by RFBR (project № 16-32-60078).
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