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Abstract. Purpose of the work is to study the dynamics of the asymptotic behavior of trajectories of discrete
Lotka–Volterra dynamical systems with homogeneous tournaments operating in an arbitrary (𝑚− 1)-dimensional
simplex. It is known that a dynamic system is an object or a process for which the concept of a state is uniquely
defined as a set of certain quantities at a given time, and a law describing the evolution of initial state over time
is given. Mainly in questions of population genetics, biology, ecology, epidemiology and economics, systems of
nonlinear differential equations describing the evolution of the process under study often arise. Since the Lotka
–Volterra equations often arise in life phenomena, the main purpose of the work is to study the trajectories of
discrete dynamical Lotka–Volterra systems using elements of graph theory. Methods. In the paper cards of fixed
points are constructed for quadratic Lotka–Volterra mappings, that allow describing the dynamics of the systems
under consideration. Results. Using cards of fixed points of a discrete dynamical system, criteria for the existence
of fixed points with odd nonzero coordinates are given in a particular case, and these results on the location of
fixed points of Lotka–Volterra systems are generalized accordingly in the case of an arbitrary simplex. The main
results are theorems 5–9, which allow us to describe the dynamics of these systems arising in a number of genetic,
epidemiological and ecological models. Conclusion. The results obtained in the paper give a detailed description of
the dynamics of the trajectories of Lotka–Volterra maps with homogeneous tournaments. The map of fixed points
highlights a specific area in the simplex that is most important and interesting for studying the dynamics of these
maps. The results obtained are applicable in environmental problems, for example, to describe and study the cycle
of biogens.
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Introduction

A dynamic system as a mathematical object serves as a model for various kinds of natural
systems. In matters of economics, population genetics, in particular in epidemiology, evolution is
described by systems of nonlinear differential equations. In these sections of natural phenomena,
the Lotka–Volterra equations are often used.
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Consider the mapping 𝑉 : R𝑚 → R𝑚, given by the equalities [1, 2]

𝑥
′
𝑘 = 𝑥𝑘

(︃
1 +

𝑚∑︁
𝑖=1

𝑎𝑘𝑖𝑥𝑖

)︃
, 𝑘 = 1,𝑚,

where 𝑉 𝑥 = (𝑥
′
1, ..., 𝑥

′
𝑚) and 𝐴 = (𝑎𝑘𝑖) — skew-symmetric matrix. This mapping under the

condition |𝑎𝑘𝑖| ⩽ 1 is called the Lotka–Volterra mapping [3, 4].

1. Methodology

Let 𝑌 be a finite nonempty set, and 𝑀 be a set of disordered pairs (𝑥, 𝑦), where 𝑥, 𝑦 ∈ 𝑌 ,
and 𝑥 ̸= 𝑦. Then the pair (𝑌,𝑀) is called a graph.

The elements of 𝑌 are called vertices, but if (𝑥, 𝑦) ∈ 𝑀 , then (𝑥, 𝑦) is called an edge of the
graph (𝑌,𝑀), the vertices 𝑥 and 𝑦 in this case are called adjacent.

Two graphs (𝑌1,𝑀1) and (𝑌2,𝑀2) are called isomorphic if there exists a bijection 𝑌1 on 𝑌2
preserving the adjacency of vertices.

A graph is — complete if any two distinct vertices are adjacent. If each edge is provided
with a direction, then the graph is called oriented. The tournament — is a complete directed
graph.

The works [5, 6] are devoted to the classification of tournaments with a given number of
vertices up to isomorphisms. For example, up to isomorphism, there are only two tournaments
with three vertices (Fig. 1).

a b

Fig. 1. Types of tournaments at 𝑚 = 3: a — cyclic triple, b — transitive triple

Let 𝑥1, 𝑥2 be the vertices of the tournament. The entry 𝑥1 → 𝑥2 means that the edge
connecting 𝑥1 and 𝑥2, directed from 𝑥1 to 𝑥2. The final sequence of vertices is 𝑥1 → 𝑥2 → ... → 𝑥𝑝
is called a route if 𝑥𝑖 ̸= 𝑥𝑗 at 𝑖 ̸= 𝑗. A loop — is a closed route, that is 𝑥𝑝 = 𝑥1.

A tournament is called strong if for any vertices 𝑥, 𝑦 ∈ 𝑌 there is a route with the beginning
of 𝑥 and the end 𝑦.

It is known [7] that a tournament is — strong if and only if there exists a cycle of length
|𝑌 | (|𝑌 | — number of elements 𝑌 ).

A tournament that has no cycles is called transitive. The concept of a sub-tournament is
naturally defined. (In the definitions we follow the terminology adopted in the works [3, 8, 9].)

Definition 1. A tournament is called homogeneous if any of its sub-tournaments is either strong
or transitive.

Obviously, with |𝑌 | ⩽ 3, any tournament is homogeneous.
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a b c d
Fig. 2. This illustration of the tournaments is given in [7]. Here, in all unspecified edges, the directions go from top
to bottom: a — transitive tournament, b — strong tournament. c and d are not strong, not transitive

It is known [9] that for |𝑌 | = 4 there are four pairwise non-isomorphic tournaments, the
form of which is shown in Fig. 2.

Therefore, any tournament containing an isomorphic sub-tournament (either c or d) cannot
be homogeneous.

Theorem 1. Let |𝑌 | ⩾ 4. Any tournament with vertices 𝑌, containing no sub-tournaments
isomorphic to c or d, is homogeneous.

Proof. If the tournament is not strong, then there is a sub-tournament in it that is neither
strong nor transitive. In this case [6] the vertices of the sub-tournament can be divided into two
disjoint and non-empty classes so that all arrows (edges) are directed from one class to another,
and at least one of the classes forms a strong sub-tournament. A strong sub-tournament always
contains a cyclic triple. Then this cyclic triple, together with any vertex from another class, forms
a four-vertex sub-tournament isomorphic to either c, or d. □

Let 𝐼 = {1, 2, ...,𝑚} and α ⊂ 𝐼 be a nonempty subset 𝐼.

Definition 2. Two tournament sub-tournaments with vertices from α ⊂ 𝐼 and β ⊂ 𝐼 are called
adjacent if |α| = |β|, and the intersection of these sub-tournaments has the number of vertices
equal to |α| − 1.

Let 𝑒𝑘 = (δ1𝑘, δ2𝑘, ..., δ𝑚𝑘), 𝑘 = 1, ...,𝑚, where δ𝑖𝑗 is the Kronecker symbol, there is a
standard basis in R𝑚. Then

𝑆𝑚−1 = 𝑐𝑜{𝑒1, ..., 𝑒𝑚} = {𝑥 = (𝑥1, ..., 𝑥𝑚) :

𝑚∑︁
𝑖=1

𝑥𝑖 = 1, 𝑥𝑖 ⩾ 0}

it is called a simplex. It is clear that 𝑆𝑚−1 is a convex compact of dimension 𝑚− 1.
For any non-empty α ⊂ 𝐼, put

Γα = 𝑐𝑜{𝑒𝑖 : 𝑖 ∈ α}.

Γα is called (|α| − 1) is the dimensional face of the simplex 𝑆𝑚−1. Obviously, any face of 𝑆𝑚−1 is
also a simplex.

The concept of adjacency for the faces of 𝑆𝑚−1 is defined in the same way as for the
tournament sub-tournaments. Two faces having equal dimensions are considered adjacent if their
intersection has a dimension 1 less than the original ones. For example, two edges are adjacent
only if they have a common vertex.
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Let 𝐴 = (𝑎𝑖𝑗), 𝑖, 𝑗 = 1, ...,𝑚 be a real skew-symmetric matrix acting in R𝑚. Then 𝐴𝑥 and 𝑥

are orthogonal, that is, (𝐴𝑥, 𝑥) = 0 for all 𝑥 ∈ R𝑚. It is easy to prove that the converse statement
is also true. If (𝐴𝑥, 𝑥) = 0 for all 𝑥 ∈ R𝑚, then the matrix 𝐴 is skew-symmetric.

For α ⊂ 𝐼, we put 𝐴α = (𝑎𝑖𝑗), where 𝑖, 𝑗 ∈ α. In this case, 𝐴α is called the main submatrix
of the matrix. It is clear that 𝐴α is also skew-symmetric. Let |𝐴α| be the determinant of the
matrix 𝐴. Obviously, |𝐴α| = 0 if |α| — is odd, and |𝐴α| ⩾ 0 if |α| — is even.

If 𝑥 = (𝑥1, ..., 𝑥𝑚) and 𝑦 = (𝑦1, ..., 𝑦𝑚) — points from R𝑚, then 𝑥 ⩾ 𝑦 means that 𝑥𝑖 ⩾ 𝑦𝑖
for all 𝑖 = 1,𝑚.

Theorem 2. If 𝐴 is a skew-symmetric matrix, then

𝑃 = {𝑥 ∈ 𝑆𝑚−1 : 𝐴𝑥 ⩾ 0}

— a nonempty convex polyhedron.

Proof. We reduce the proof to Sperner’s lemma [8], which states that if the closed sets 𝐹1, ..., 𝐹𝑚

are such that
Γα ⊂

⋃︁
𝑖∈α

𝐹𝑖

for all α ⊂ 𝐼, then
𝑚⋂︀
𝑖=1

𝐹𝑖 ̸= ∅.

Let 𝐹𝑘 = {𝑥 ∈ 𝑆𝑚−1 :
𝑚∑︀
𝑖=1

𝑎𝑘𝑖𝑥𝑖 ⩾ 0}, 𝑘 = 1, ...,𝑚 and 𝑓𝑘(𝑥) =
𝑚∑︀
𝑖=1

𝑎𝑘𝑖𝑥𝑖.

It is clear that 𝐹𝑘 — closed convex sets. Since 𝐴 is skew-symmetric, then

𝑓𝑘(𝑒𝑘) = 𝑎𝑘𝑘 = 0.

Therefore, 𝑒𝑘 ∈ 𝐹𝑘 when 𝑘 = 1, ...,𝑚.

Let α = {1, 2, ..., 𝑡} and 𝑥 ∈ Γα be represented as 𝑥 =
𝑡∑︀

𝑖=1
λ𝑖𝑒𝑖, where λ𝑖 ⩾ 0 and

𝑡∑︀
𝑖=1
λ𝑖 = 1.

Then ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑓1(𝑥) = λ2𝑎12 + λ3𝑎13 + ...+ λ𝑡𝑎1𝑡,

𝑓2(𝑥) = λ1𝑎21 + λ3𝑎23 + ...+ λ𝑡𝑎2𝑡,

..................................................,

𝑓𝑡(𝑥) = λ1𝑎𝑡1 + λ2𝑎𝑡2 + ...+ λ𝑡−1𝑎𝑡𝑡−1,

(1)

as 𝑎𝑘𝑘 = 0.
Multiplying in the system (1) the first equality by λ1, the second by λ2, etc., then summing

up the resulting equalities, due to the skew symmetry of 𝐴α, we get

𝑡∑︁
𝑖=1

λ𝑖𝑓𝑖(𝑥) = 0. (2)

Since λ𝑖 ⩾ 0 and at least one λ𝑖 is positive, it follows from (2) that at least one of the
numbers 𝑓1(𝑥), ..., 𝑓𝑡(𝑥) is non-negative. Therefore,

Γα ⊂
𝑡⋃︁

𝑖=1

𝐹𝑖.
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Thus, 𝑃 =
𝑚⋂︀
𝑖=1

𝐹𝑖— a nonempty set.

The fact that 𝑃 is a convex polyhedron obviously follows from the fact that 𝐹𝑘 is a closed
part of a half-space, and 𝑆𝑚−1 is a convex polyhedron. □

Corollary 1. 𝑄 = {𝑥 ∈ 𝑆𝑚−1 : 𝐴𝑥 ⩽ 0} — a nonempty convex polyhedron.

Indeed, in Theorem 2 it is enough to replace the matrix 𝐴 with −𝐴.

Example 1. If 𝐴 =

(︂
0 1

−1 0

)︂
, then 𝑄 = (1, 0) and 𝑃 = (0, 1).

Example 2. If 𝐴 =

⎛⎝ 0 1 −1

−1 0 1

1 −1 0

⎞⎠, then 𝑃 = 𝑄 =

(︂
1

3
,
1

3
,
1

3

)︂
.

Example 3. If 𝐴 =

⎛⎝ 0 1 1

−1 0 0

−1 0 0

⎞⎠, then 𝑃 = (0, λ, 1−λ), where 0 ⩽ λ ⩽ 1 and 𝑄 = (1, 0, 0).

Example 4. Let 𝐴 =

⎛⎜⎜⎝
0 1 −1 1

−1 0 0.5 −1

1 −0.5 0 0.5

−1 1 −0.5 0

⎞⎟⎟⎠,

then 𝑃 = 𝑄 = (0.2λ; 0.15λ+ 0.25; 0.5− 0.1λ; 0.25− 0.25λ), where 0 ⩽ λ ⩽ 1.

Definition 3. 𝐴 = (𝑎𝑘𝑖) is called a skew-symmetric matrix of general position if |𝐴α| > 0 for
all α ⊂ 𝐼 such that |α| — an even number.

It is easy to notice that in the examples 3 and 4, the matrix 𝐴 is not a matrix of general position.

Theorem 3. The set of all skew-symmetric matrices of general position is open and everywhere
dense in the set of all skew-symmetric matrices.

Proof. The theorem is proved in the work [1]. □

In particular, if |α| = 2, α = {𝑘, 𝑖}, then 𝐴α =

(︂
0 𝑎𝑘𝑖

−𝑎𝑘𝑖 0

)︂
. Therefore, |𝐴α| > 0 means

that 𝑎𝑘𝑖 ̸= 0 for all 𝑘 ̸= 𝑖, which allows you to build a tournament corresponding to the matrix 𝐴.
We can introduce the concept of a tournament along with a skew-symmetric matrix

corresponding to the mapping Lotka–Volterra [1,4]. We mark the elements of the set 𝐼 = {1, ...,𝑚}
as points and connect the point 𝑘 with the point 𝑖 with an arrow directed from 𝑘 to 𝑖 if 𝑎𝑘𝑖 < 0,
and vice versa if 𝑎𝑘𝑖 > 0. The resulting oriented graph is called a tournament [3, 8, 9].

For example, the skew-symmetric matrix 𝐴 =

⎛⎝ 0 1 1

−1 0 1

−1 −1 0

⎞⎠ corresponds to the

tournament
It is clear that in this example 𝐴 is a general position matrix, and the tournament is a

transitive triple.

Theorem 4. If 𝐴 is a skew-symmetric matrix of general position, then the sets 𝑃 and 𝑄 consist
of a single point.
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1

3 2

Proof. Let 𝑃 have more than one point, hence 𝑃 is an infinite set. Since the number of faces
𝑆𝑚−1 is of course some face Γα has at least two points from 𝑃 , and these points are internal to
Γα.

a) Let these points belong to the interior of 𝑆𝑚−1, that is, all their coordinates are positive.
Since

𝐴𝑥 ⩾ 0 and (𝐴𝑥, 𝑥) = 0,

then 𝐴𝑥 = 0, since all 𝑥𝑖 > 0, 𝑖 = 1,𝑚.
Similarly, 𝐴𝑦 = 0, where 𝑦 ∈ 𝑃 , and all coordinates of 𝑦 are positive. It is clear that two

different points from the simplex are linearly independent. Therefore, dimKer𝐴 ⩾ 2. Since 𝐴 is a
general position matrix, then dimKer𝐴 ⩽ 1. We get a contradiction.

b) If 𝑃 is contained in some face of Γα, then instead of 𝐴 consider 𝐴α. It is clear that 𝐴α is
also a skew-symmetric matrix of general position of dimension |α| × |α|. If 𝑥 ∈ Γα, then 𝑥α the
same point 𝑥, but only with coordinates from α. Then 𝐴𝑥 ⩾ 0 follows 𝐴α𝑥α ⩾ 0 provided that
𝑥 ∈ Γα. Hence, the case of b) reduces to the case а). □

2. Results

Let 𝐴 = (𝑎𝑖𝑗) be an arbitrary skew-symmetric matrix with the condition 𝑎𝑖𝑗 ̸= 0 for 𝑖 ̸= 𝑗.
Consider the mapping 𝑉 : R𝑚 → R𝑚, given by equalities

𝑥
′
𝑘 = 𝑥𝑘

(︃
1 +

𝑚∑︁
𝑖=1

𝑎𝑘𝑖𝑥𝑖

)︃
, 𝑘 = 1,𝑚, (3)

where 𝑉 𝑥 = (𝑥
′
1, ..., 𝑥

′
𝑚).

It is known [1] that for 𝑉 : 𝑆𝑚−1 → 𝑆𝑚−1 it is necessary and sufficient that |𝑎𝑘𝑖| ⩽ 1 for all
𝑘, 𝑖 = 1, ...,𝑚, and 𝑉 is a homeomorphism of 𝑆𝑚−1 on itself. Since 𝑥𝑘 = 0 implies that 𝑥

′
𝑘 = 0,

then any face Γα of the simplex 𝑆𝑚−1 is invariant, that is, 𝑉 (Γα) = Γα, in particular, all vertices
𝑆𝑚−1 — fixed points.

Mapping (3) at |𝑎𝑘𝑖| ⩽ 1 is called mapping Lotka–Volterra. Next, we consider 𝑉 : 𝑆𝑚−1 →
𝑆𝑚−1 only as a mapping that translates the probability distribution of the system from 𝑚 types
also into the probability distribution. Since 𝑎𝑖𝑗 ̸= 0 for 𝑖 ̸= 𝑗, we construct a tournament 𝑇

corresponding to the matrix 𝐴.

Theorem 5. If the face Γα of the simplex 𝑆𝑚−1 has an internal (relative to the face) fixed point,
then the tournament sub-tournament 𝑇 with vertices from α is strong.

Proof. Since all faces of 𝑆𝑚−1 are invariant with respect to 𝑉 , we can assume that Γα = 𝑆𝑚−1,
that is, α = 𝐼 = {1, ...,𝑚}. Let’s say that 𝑇 — is not a strong tournament. Then [1,3] the set 𝐼

can be divided into two non-empty classes so that an edge connecting two vertices from different
classes is always directed from the first class to the second.

Let 𝐼1 = {1, 2, ..., 𝑡} and 𝐼2 = {𝑡+ 1, 𝑡+ 2, ...,𝑚}, then 𝑎𝑖𝑗 < 0 for all 𝑖 ∈ 𝐼1 and 𝑗 ∈ 𝐼2.

Eshmamatova D.B., Tadzhieva M.A., Ganikhodzhaev R.N.
Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2022;30(6) 707



According to (3), we write out the first 𝑡 coordinates:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥
′
1 = 𝑥1

(︃
1 +

𝑡∑︁
𝑖=1

𝑎1𝑖𝑥𝑖 +

𝑚∑︁
𝑖=𝑡+1

𝑎1𝑖𝑥𝑖

)︃
,

𝑥
′
2 = 𝑥2

(︃
1 +

𝑡∑︁
𝑖=1

𝑎2𝑖𝑥𝑖 +

𝑚∑︁
𝑖=𝑡+1

𝑎2𝑖𝑥𝑖

)︃
,

....................................................,

𝑥
′
𝑡 = 𝑥1

(︃
1 +

𝑡∑︁
𝑖=1

𝑎𝑡𝑖𝑥𝑖 +
𝑚∑︁

𝑖=𝑡+1

𝑎𝑡𝑖𝑥𝑖

)︃
.

(4)

Summing up these equalities, we get

𝑡∑︁
𝑗=1

𝑥
′
𝑗 =

𝑡∑︁
𝑗=1

𝑥𝑗 +
𝑡∑︁

𝑗=1

𝑡∑︁
𝑖=1

𝑎𝑗𝑖𝑥𝑗𝑥𝑖 +
𝑚∑︁

𝑗=𝑡+1

𝑎𝑗𝑖𝑥𝑖𝑥𝑗 , (5)

where the second term in the right part is zero, since the submatrix of the matrix 𝐴 corresponding
to 𝐼1 is skew-symmetric. For all interior points 𝑥𝑖 > 0, so

𝑚∑︁
𝑗=𝑡+1

𝑎𝑗𝑖𝑥𝑖𝑥𝑗 < 0.

Hence, from (5) we get
𝑡∑︁

𝑗=1

𝑥
′
𝑗 <

𝑡∑︁
𝑗=1

𝑥𝑗 (6)

for all internal points of the simplex 𝑆𝑚−1. Then 𝑉 : 𝑆𝑚−1 → 𝑆𝑚−1 cannot have internal fixed
points. We get a contradiction. □

Corollary 2. If the 𝑇α sub-tournament corresponding to the Γα face is transitive, then 𝑉 on Γα
has no fixed points except the vertices of this face.

Theorem 6. For the existence of a fixed point 𝑉 with three positive coordinates, say 𝑥𝑖, 𝑥𝑗 , 𝑥𝑘,
it is necessary and sufficient that the sub-tournament 𝑇 with vertices 𝑖, 𝑗 and 𝑘 is isomorphic to
a cyclic triple.

Proof. Necessity follows from Theorem 5. To prove sufficiency, we take the narrowing of 𝑉 to
the edge Γα

𝑥
′
𝑖 = 𝑥𝑖(1− 𝑎𝑖𝑗𝑥𝑗 + 𝑎𝑖𝑘𝑥𝑘),

𝑥
′
𝑗 = 𝑥𝑗(1 + 𝑎𝑖𝑗𝑥𝑗 − 𝑎𝑗𝑘𝑥𝑘),

𝑥
′
𝑘 = 𝑥𝑘(1− 𝑎𝑖𝑘𝑥𝑖 + 𝑎𝑗𝑘𝑥𝑗),

where α = {𝑖, 𝑗, 𝑘}, and 𝑎𝑖𝑗 , 𝑎𝑖𝑘, 𝑎𝑗𝑘 are positive.
Then the mapping 𝑉 to Γα has a single internal fixed point with coordinates

(︂
𝑎𝑗𝑘

𝑎𝑖𝑗 + 𝑎𝑖𝑘 + 𝑎𝑗𝑘
,

𝑎𝑖𝑘
𝑎𝑖𝑗 + 𝑎𝑖𝑘 + 𝑎𝑗𝑘

,
𝑎𝑖𝑗

𝑎𝑖𝑗 + 𝑎𝑖𝑘 + 𝑎𝑗𝑘

)︂
.
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𝑖

𝑘 𝑗

□
Let |𝑌 | = 5, then the dynamic system looks like this:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑥
′
1 = 𝑥1(1− 𝑎12𝑥2 − 𝑎13𝑥3 − 𝑎14𝑥4 + 𝑎15𝑥5),

𝑥
′
2 = 𝑥2(1 + 𝑎12𝑥1 − 𝑎23𝑥3 − 𝑎24𝑥4 − 𝑎25𝑥5),

𝑥
′
3 = 𝑥3(1 + 𝑎13𝑥1 + 𝑎23𝑥2 − 𝑎34𝑥4 − 𝑎35𝑥5),

𝑥
′
4 = 𝑥4(1 + 𝑎14𝑥1 + 𝑎24𝑥2 + 𝑎34𝑥3 − 𝑎45𝑥5),

𝑥
′
5 = 𝑥5(1− 𝑎15𝑥1 + 𝑎25𝑥2 + 𝑎35𝑥3 + 𝑎45𝑥4).

The corresponding tournament has the form:1

2
3
4
5

There are three strong sub-tournaments with three vertices — these are 125, 135 and 145.
All these sub-tournaments are — strong and adjacent, since the intersection of any of the two is—
a one-dimensional edge.

Consider for the faces α = {1, 2, 5} and β = {1, 3, 5}, γ = α ∪ β = {1, 2, 3, 5} matrix
narrowing 𝐴:

𝐴γ =

⎛⎜⎜⎜⎝
0 −𝑎12 −𝑎13 𝑎15
𝑎12 0 −𝑎23 −𝑎25
𝑎13 𝑎23 0 −𝑎35
−𝑎15 𝑎25 𝑎35 0

⎞⎟⎟⎟⎠.

Calculating the determinant of the matrix, we get |𝐴γ| = (𝑎13𝑎25 − 𝑎12𝑎35 + 𝑎15𝑎23)
2,

expressions in parentheses are denoted by ∆1 = 𝑎13𝑎25 − 𝑎12𝑎35 + 𝑎15𝑎23.
The mapping corresponding to the above matrix 𝐴γ has the form (narrowing the mapping

to a face Γγ): ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥

′
1 = 𝑥1(1− 𝑎12𝑥2 − 𝑎13𝑥3 + 𝑎15𝑥5),

𝑥
′
2 = 𝑥2(1 + 𝑎12𝑥1 − 𝑎23𝑥3 − 𝑎25𝑥5),

𝑥
′
3 = 𝑥3(1 + 𝑎13𝑥1 + 𝑎23𝑥2 − 𝑎35𝑥5),

𝑥
′
5 = 𝑥5(1− 𝑎15𝑥1 + 𝑎25𝑥2 + 𝑎35𝑥3).

On this face Γγ there are fixed points with coordinates

𝑥α =

(︂
𝑎25

𝑎12 + 𝑎25 + 𝑎15
;

𝑎15
𝑎12 + 𝑎25 + 𝑎15

; 0;
𝑎12

𝑎12 + 𝑎25 + 𝑎15

)︂
,

𝑥β =

(︂
𝑎35

𝑎13 + 𝑎35 + 𝑎15
; 0;

𝑎15
𝑎13 + 𝑎35 + 𝑎15

;
𝑎13

𝑎13 + 𝑎35 + 𝑎15

)︂
.
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In order to find the sets 𝑃 and 𝑄, we find 𝐴γ𝑥α and 𝐴γ𝑥β:

𝐴γ𝑥α =
1

𝑎12 + 𝑎25 + 𝑎15

⎛⎜⎜⎜⎝
0 −𝑎12 −𝑎13 𝑎15
𝑎12 0 −𝑎23 −𝑎25
𝑎13 𝑎23 0 −𝑎35
−𝑎15 𝑎25 𝑎35 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

𝑎25
𝑎15
0
𝑎12

⎞⎟⎟⎠ =
1

𝑎12 + 𝑎15 + 𝑎25
(0; 0;∆1; 0) ,

𝐴γ𝑥β =
1

𝑎13 + 𝑎15 + 𝑎35
(0;−∆1; 0; 0) .

Here 𝐴γ is a general position matrix, since ∆1 ̸= 0.

If ∆1 > 0 then 𝐴γ𝑥α ⩾ 0 and 𝐴γ𝑥β ⩽ 0, means fixed points 𝑥α and 𝑥β make up a pair of
(𝑃,𝑄) on the face of Γγ. This means that the direction is set from the point 𝑃 = 𝑥α to the point
𝑄 = 𝑥β. If ∆1 < 0, then we get the opposite.

Now let’s move on to other adjacent faces. Let α = {1, 2, 5} and β = {1, 4, 5}, then
γ = α ∪ β = {1, 2, 4, 5}. Here, the narrowing of the matrix 𝐴 by Γγ has the form:

𝐴γ =

⎛⎜⎜⎜⎜⎝
0 −𝑎12 −𝑎14 𝑎15

𝑎12 0 −𝑎24 −𝑎25

𝑎14 𝑎24 0 −𝑎45

−𝑎15 𝑎25 𝑎45 0

⎞⎟⎟⎟⎟⎠.

We also calculate |𝐴γ| = (𝑎14𝑎25 − 𝑎12𝑎45 + 𝑎15𝑎24)
2 and ∆2 = 𝑎14𝑎25 − 𝑎12𝑎45 + 𝑎15𝑎24.

The narrowing of the mapping on this face Γγ = Γ1245 has two fixed points 𝑥α = 𝑥125 and
𝑥β = 𝑥145.

For each of these points, we determine their character, for this we find

𝐴γ𝑥α =
1

𝑎12 + 𝑎15 + 𝑎25
(0; 0; ∆2; 0) ,

𝐴γ𝑥β =
1

𝑎14 + 𝑎15 + 𝑎45
(0;−∆2; 0; 0) .

If ∆2 > 0, then 𝑃 = 𝑥α and 𝑄 = 𝑥β, and, inversely, if ∆2 < 0, then 𝑃 = 𝑥β and 𝑄 = 𝑥α. Let’s
move on to the last one, let α = {1, 3, 5}, β = {1, 4, 5}, then γ = α ∪ β = {1, 3, 4, 5}. Having done
the same calculations, we get

𝐴γ𝑥α =
1

𝑎13 + 𝑎15 + 𝑎35
(0; 0;∆3; 0) ,

𝐴γ𝑥β =
1

𝑎14 + 𝑎15 + 𝑎45
(0;−∆3; 0; 0) .

Here ∆3 = 𝑎14𝑎35 − 𝑎13𝑎45 + 𝑎15𝑎34 — determinant of matrix narrowing 𝐴γ. If ∆3 > 0, then
𝑃 = 𝑥α, 𝑄 = 𝑥β and inversely, if ∆3 < 0, then 𝑃 = 𝑥β, 𝑄 = 𝑥α.

As a result, for a complete study of the picture of the trajectories of the internal points of
the simplex, we obtained a sub-tournament, which we will call the map of fixed points. Here the
map of fixed points has the form,
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125

145 135

Fig. 3. All types of cards at 𝑚 = 3

in which the directions on the edges are defined by signs ∆𝑖, 𝑖 = 1, 2, 3.
Here we get only 23 = 8 cases of fixed point maps (Fig. 3), among which there are

isomorphic [6].
From the figure we see that the first 6 cases are isomorphic; these triples are called transitive.

For these six cases , we will focus on the following form:
125

145 135

Lemma 1. If ∆𝑖 (𝑖 = 1, 2, 3) have different signs, then a transitive triple is formed in the map
of fixed points, and the simplex 𝑆4 has no internal fixed points.

Let’s move on to the last two cases from Fig. 3. These two cases are isomorphic, so we will
focus on any of them, for example,

125

145 135

Lemma 2. If the signs of all ∆𝑖 (𝑖 = 1, 2, 3) coincide, then a Hamiltonian cycle (strong triple)
is formed in the map, and in the simplex 𝑆4 there is an internal fixed point.

Let’s generalize what was obtained in the previous section to |𝑌 | = 𝑚. The corresponding
tournament, according to [7], has the form
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1
2

m

4
3

Further, in the skew-symmetric matrix 𝐴 of the general position, we write only positive
𝑎𝑖𝑗(𝑖 ̸= 𝑗), and we will place the signs in front of them in accordance with the tournament 𝑇𝑚.

For example, the studied tournament 𝑇𝑚 corresponds to the matrix

𝐴 =

⎛⎜⎜⎜⎜⎜⎝
0 −𝑎12 −𝑎13 ... −𝑎1𝑚−1 𝑎1𝑚

𝑎12 0 −𝑎23 ... −𝑎2𝑚−1 −𝑎2𝑚

𝑎13 𝑎23 0 ... −𝑎3𝑚−1 −𝑎3𝑚

... ... ... ... ... ...
−𝑎1𝑚 𝑎2𝑚 𝑎3𝑚 ... 𝑎𝑚−1𝑚 0

⎞⎟⎟⎟⎟⎟⎠.

So, the mapping 𝑉, constructed by 𝑇𝑚, has 𝑚 fixed points with one and (𝑚 − 2) fixed points
with three nonzero coordinates for any 𝑎𝑖𝑗 . The existence of fixed points with 5, 7, 9, etc.,etc.
nonzero coordinates belonging to 𝑆𝑚−1 depends on some inequalities from the coefficients of the
skew-symmetric matrix.

To clarify, consider two strong sub-tournaments 𝑇𝑚 with three vertices, for example,
α = {1, 2,𝑚} and β = {1, 3,𝑚}. As noted above, they are adjacent.

Let γ = α ∪ β = {1, 2, 3,𝑚}, then the narrowing of 𝑉γ by Γγ has the form⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑥
′
1 = 𝑥1(1− 𝑎12𝑥2 − 𝑎13𝑥3 + 𝑎1𝑚𝑥𝑚),

𝑥
′
2 = 𝑥2(1 + 𝑎12𝑥1 − 𝑎23𝑥3 − 𝑎2𝑚𝑥𝑚),

𝑥
′
3 = 𝑥3(1 + 𝑎13𝑥1 + 𝑎23𝑥2 − 𝑎3𝑚𝑥𝑚),

𝑥
′
𝑚 = 𝑥𝑚(1− 𝑎1𝑚𝑥1 + 𝑎2𝑚𝑥2 + 𝑎3𝑚𝑥3).

Then on Γγ we have two fixed points:

𝑥α =

(︂
𝑎2𝑚

𝑎12 + 𝑎2𝑚 + 𝑎1𝑚
,

𝑎1𝑚
𝑎12 + 𝑎2𝑚 + 𝑎1𝑚

, 0,
𝑎12

𝑎12 + 𝑎2𝑚 + 𝑎1𝑚

)︂
,

𝑥β =

(︂
𝑎3𝑚

𝑎13 + 𝑎3𝑚 + 𝑎1𝑚
, 0,

𝑎1𝑚
𝑎13 + 𝑎3𝑚 + 𝑎1𝑚

,
𝑎13

𝑎13 + 𝑎3𝑚 + 𝑎1𝑚

)︂
with carriers α and β, respectively.

For 𝐴γ𝑥α and 𝐴γ𝑥β we have

𝐴γ𝑥α =
1

𝑎12 + 𝑎2𝑚 + 𝑎1𝑚

⎛⎜⎜⎜⎝
0 −𝑎12 −𝑎13 𝑎1𝑚

𝑎12 0 −𝑎23 −𝑎2𝑚

𝑎13 𝑎23 0 −𝑎3𝑚

−𝑎1𝑚 𝑎2𝑚 𝑎3𝑚 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

𝑎2𝑚

𝑎1𝑚

0

𝑎12

⎞⎟⎟⎟⎠ =

=
1

𝑎12 + 𝑎2𝑚 + 𝑎1𝑚
(0, 0, 𝑎13𝑎2𝑚 + 𝑎23𝑎1𝑚 − 𝑎12𝑎3𝑚, 0) ,
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𝐴γ𝑥β =
1

𝑎13 + 𝑎1𝑚 + 𝑎3𝑚
(0, 𝑎12𝑎3𝑚 − 𝑎23𝑎1𝑚 − 𝑎2𝑚𝑎13, 0, 0) .

Calculating |𝐴γ|, we find that

|𝐴γ| = (𝑎13𝑎2𝑚 + 𝑎23𝑎1𝑚 − 𝑎12𝑎3𝑚)2. (7)

Since 𝐴 is a general position matrix, then

𝑎13𝑎2𝑚 + 𝑎23𝑎1𝑚 − 𝑎12𝑎3𝑚 ̸= 0.

So if 𝑎13𝑎2𝑚 + 𝑎23𝑎1𝑚 − 𝑎12𝑎3𝑚 > 0, then 𝐴γ𝑥α ⩾ 0 and 𝐴γ𝑥β ⩽ 0. Therefore, 𝑥α is a 𝑃 point,
and 𝑥β —𝑄 is a point on the face Γγ.

If 𝑎13𝑎2𝑚+𝑎23𝑎1𝑚−𝑎12𝑎3𝑚 < 0, then 𝑥α and 𝑥β are swapped. We formulate these arguments
in the form of a theorem.

Theorem 7. Any two cyclic triples in 𝑇𝑚 are adjacent, and of the fixed points defined, one is a
– 𝑃 point, and the other is a– 𝑄 point for the face containing them.

Proof. The theorem can be proved based on the above reasoning. □

Based on Theorem 7, we represent all cyclic triples 𝑇𝑚 as points and connect 1𝑖𝑚 with
1𝑗𝑚 with an arrow going from 𝑃 point to 𝑄 point. Thus, we get a new tournament of (𝑚− 1)
points, which we denote by 𝐺𝑚−1 and call the map of fixed points.

As we have shown above, there are only 23 = 8 possible cases of fixed point maps, among
which we have considered two non-isomorphic [3], and the arrows are placed in accordance with
theorem 7.

Theorem 8. If 𝐺𝑚−1 is a transitive tournament, then the mapping 𝑉 does not have fixed points
with five or more nonzero coordinates in the simplex 𝑆𝑚−1.

Proof. If 𝑆𝑚−1 has an internal fixed point ((𝑚− 1)— odd) of the mapping 𝑉, say, 𝑥, then by all
means 𝐴𝑥 = 0, that is, 𝑥 is both 𝑃, and at the same time 𝑄 with a dot. Let 𝑥 be a fixed point
with five nonzero coordinates and belong to the face Γγ, where |γ| = 5. It corresponds to a strong
sub-tournament 𝑇γ (Theorem 5). A strong 𝑇𝑚 sub-tournament with five vertices has only vertices
1, 𝑖, 𝑗, 𝑘,𝑚, that is, γ = {1, 𝑖, 𝑗, 𝑘,𝑚} where 1 < 𝑖, 𝑗, 𝑘 < 𝑚 and 𝑖, 𝑗, 𝑘 — are different.

Therefore, it has three sub-tournaments 1𝑖𝑚, 1𝑗𝑚 and 1𝑘𝑚. Since 𝐺𝑚−1 is transitive, it is
one of them that is the 𝑃 point for the face Γγ. Since 𝑃 is the only point for each face, since 𝐴 is
a matrix of general position, the latter contradicts the fact that a fixed point with five non-zero
coordinates is a 𝑃 point for Γγ. □

Theorem 9. If there is a cyclic triple in 𝐺𝑚−1, then there is a fixed point with five non-zero
coordinates.

Proof. Let 1𝑖𝑚, 1𝑗𝑚 and 1𝑘𝑚 form a cyclic triple in 𝐺𝑚−1

and γ = {1, 𝑖, 𝑗, 𝑘,𝑚}. Then the fixed points defined by 1𝑖𝑚, 1𝑗𝑚 and 1𝑘𝑚 cannot be 𝑃
points for Γγ. Therefore, the face Γγ must have an internal fixed point. □

Corollary 3. The number of fixed display points 𝑉 with five non-zero coordinates is equal to
the number of cyclic triples in the map 𝐺𝑚−1.
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Conclusion

It is known that dynamical systems originate in mechanics from the works of Henri Poincare,
in which it is stated that some systems after some finite time will return to a state very close to
the original [10]. In 1988 A.Lyapunov developed methods to determine the stability of ordinary
differential equations. In many branches of science, for example, natural sciences and engineering
disciplines, the rule of evolution of dynamical systems is described either by a differential or
difference equation.

In these systems, given the location of the starting point, it is possible to determine the
state in the future — this is a set of points known as a trajectory or orbit, which is why we are
interested in finding the equilibrium states of the system.

Quadratic maps of the simplex can be applied to problems of population genetics, epidemiology,
ecology, economics. In this paper, the asymptotic behavior of the trajectories of quadratic maps
was investigated Lotka–Volterra, operating in a (𝑚− 1)-dimensional simplex with homogeneous
tournaments. These systems with homogeneous tournaments describe the process of ecological
circulation, in particular, the model under consideration allows us to more adequately describe
the process of the cycle of biogens [11]. Along with discrete dynamical systems, the elements of
graph theory were considered in the work, that is, these systems were associated with concepts
such as tournaments. The concept of a map of fixed points is introduced. According to the state
of the nature of the maps of fixed points, the criteria for the existence of such fixed points are
determined, with the help of which the flow of trajectories that allow describing the evolution of
the biosphere is described [11].
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