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Abstract . Aim of this work is to study the possibility of existence of multistability near the boundary of
generalized synchronization in systems with complex attractor topology. Unidirectionally coupled Lorentz systems
have been chosen as an object of study, and a modified auxiliary system method has been used to detect
the presence of the synchronous regime. Result of the work is a proof of the presence of multistability near
the boundary of generalized synchronization in unidirectionally coupled systems with a complex topology of
attractor. For this purpose, the basins of attraction of the synchronous and asynchronous states of interacting
Lorenz systems have been obtained for the value of the coupling parameter corresponding to the realization
of the intermittent generalized synchronization regime in the system under study, and the dependence of the
multistability measure on the value of the coupling parameter has also been calculated. It is shown that in the
regime of intermittent generalized synchronization the measure of multistability turns out to be positive, which
is an additional confirmation of the presence of multistability in this case.
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Multistability is a universal phenomenon being observed in systems of different nature [1].
Multistability means the coexistence of several attractors in the phase space of dynamical system,
the choice of which depends on the initial conditions of this system. For the first time the
term «multistability» was introduced in the paper [2], dedicated to visual perception. Later,
multistability was discovered in almost all fields of science and technology, including electronics,
optics, mechanics and biology.

Currently, the phenomenon of multistability is well studied in relation to the autonomous
and non-autonomous dynamics of the systems under study (see, for example, [3–7] and others.).
However, the analysis of synchronous dynamics of interacting systems and phenomena near the
boundaries of various types of synchronization from the standpoint of multistability has not been
carried out in detail until now. There are works aimed at studying multistability in the destruction

©Moskalenko O. I., Evstifeev E.V., 2022

https://doi.org/10.18500/0869-6632-003013
https://doi.org/10.18500/0869-6632-003013


of synchronous regimes from the point of view of bifurcation analysis in discrete maps, genetic
elements, laser systems and ensembles of coupled oscillators (see, for example, [8–12]).

Among the known types of synchronization, the least studied from the point of view
of multistability is the generalized chaotic synchronization regime [13–15]. This regime means
establishing a connection between the states of interacting systems in the form of a functional and
can be observed both in the case of unidirectional and mutual coupling between these systems. In
both cases, intermittent behavior is observed near the boundary of generalized synchronization,
and the type of intermittency implemented in this case does not depend on the nature of the
coupling between the systems, but is determined by the topology of the attractors of interacting
systems: in systems with a relatively simple topology (with a ribbon-type attractor), there is
an intermittency of the type «on – off» [16, 17], while in oscillators with a complex (sheeted)
structure, there is an intermittency of jumps [18,19]. For systems with a relatively simple attractor
topology, the presence of multistability in the intermittent generalized synchronization regime
has recently been discovered [20, 21], while such studies have not been carried out so far in
systems with a more complex attractor structure near the boundary of this regime.

Therefore, the purpose of this work is to study the possibility of the existence of multistability
near the boundary of generalized synchronization in systems with a complex attractor topology.

Two unidirectionally coupling Lorenz systems were chosen as the object of research [22]:

�̇�1 = σ(𝑦1 − 𝑥1),

�̇�1 = 𝑟1𝑥1 − 𝑦1 − 𝑥1𝑧1,

�̇�1 = −𝑏𝑧1 + 𝑥1𝑦1,

�̇�2 = σ(𝑦2 − 𝑥2) + 𝜀(𝑥1 − 𝑥2),

�̇�2 = 𝑟2𝑥2 − 𝑦2 − 𝑥2𝑧2,

�̇�2 = −𝑏𝑧2 + 𝑥2𝑦2,

(1)

(where x1,2 = (𝑥1,2, 𝑦1,2, 𝑧1,2) are vectors of states of interacting master and slave systems,
σ = 10, 𝑏 = 2, 𝑟1 = 40 и 𝑟2 = 35 are control parameters, 𝜀 is coupling parameter) located near
the boundary of generalized synchronization. In this case, the method of the auxiliary system is
traditionally used to diagnose generalized synchronization [23], the essence of which boils down to
the introduction of an additional, so-called auxiliary system x3 = (𝑥3, 𝑦3, 𝑧3), identical in control
parameters to the drive system, but starting from other initial conditions belonging to the basin
of attraction of the same attractor. The Lorenz auxiliary system has the following form:

�̇�3 = σ(𝑦3 − 𝑥3) + 𝜀(𝑥1 − 𝑥3),

�̇�3 = 𝑟3𝑥3 − 𝑦3 − 𝑥3𝑧3,

�̇�3 = −𝑏𝑧3 + 𝑥3𝑦3,

(2)

and is considered exclusively in conjunction with the equation (1). If there is no generalized
synchronization between the master x1 and the slave x2 oscillators, then the slave x2 and the
auxiliary x3 systems will evolve on the same attractor, but at the same time in the fixed time,
their behavior will be completely different (x2 ̸= x3). In generalized synchronization regime due
to the establishment of a functional relationship between the states of the drive x1 and the drive
x2 systems, as well as the drive x1 and auxiliary x3 systems, the states of the drive and auxiliary
systems, they should become identical after the transition process is completed (that is, x2 = x3

at any given time).
As the calculations have shown, the generalized synchronization regime in the system

(1) occurs when 𝜀 = 11.5. Below the boundary of this regime, as noted above, intermittent
behavior is observed. In this case, the functional relationship between the states of interacting
systems is not always established, but only at certain time intervals, called laminar phases or
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phases of synchronous behavior of systems. At the remaining moments of time, called turbulent
bursts, the generalized synchronization regime is not observed. Thus, in the regime of intermittent
generalized synchronization, there is an alternation of phases of synchronous and asynchronous
behavior of interacting systems, and it is also possible to use the auxiliary system method to
diagnose this regime. To do this, it is necessary to analyze the differences between the states
of the slave and auxiliary systems and determine the duration of the characteristic phases of
behavior.

At the same time, as the studies show, with fixed initial conditions of the master and
auxiliary systems and different initial conditions of the slave system in the system (1)–(2) at the
same moment, both the same and different phases of behavior (synchronous or asynchronous)
can be observed. This indicates the presence of multistability near the boundary of generalized
synchronization. To illustrate arguments mentioned, Fig. 1 shows the basin of attraction of
the slave Lorenz system (1), received at various points in time with the value of the coupling
parameter 𝜀 = 8.8, which corresponds to the intermittent generalized synchronization regime.
Initial conditions for the drive (1) and auxiliary (2) systems, as noted above, have always been
selected fixed. For the slave system, the coordinate 𝑦2 was fixed, and the coordinates 𝑥2, 𝑧2 varied,
as shown in the figure. In Fig. 1 dark color corresponds to phases of synchronous behavior (in
the sense of generalized synchronization), light — asynchronous. The white color corresponds to
the jump of the image point to infinity. It can be seen from the figures that at all the considered
moments of time near the boundary of generalized synchronization, multistability takes place in
the system under study.

To quantify the degree of multistability and diagnose generalized synchronization, taking
into account this feature, it is necessary to consider an ensemble of drive Lorentz oscillators under
the influence of the same master system:

�̇�1 = σ(𝑦1 − 𝑥1),

�̇�1 = 𝑟1𝑥1 − 𝑦1 − 𝑥1𝑧1,

�̇�1 = −𝑏𝑧1 + 𝑥1𝑦1,

�̇�𝑖2 = σ(𝑦
𝑖
2 − 𝑥𝑖2) + 𝜀(𝑥1 − 𝑥𝑖2),

�̇�𝑖2 = 𝑟2𝑥
𝑖
2 − 𝑦𝑖2 − 𝑥𝑖2𝑧

𝑖
2,

�̇�𝑖2 = −𝑏𝑧𝑖2 + 𝑥𝑖2𝑦
𝑖
2,

(3)

with the same values of control parameters as for the system (1)–(2), and differing values of the

a b c
Fig. 1. Basins of attraction of synchronous and asynchronous states of the response Lorenz system (1) being
un the intermittent generalized synchronization regime with the drive system for the coupling parameter value
𝜀 = 8.8 on the plane of initial conditions (𝑥2, 𝑧2) (𝑦2 = 1.1) obtained in different moments of time: 𝑡 = 20000 (a),
40000 (b), 70000 (c). Dark color corresponds to the realization the generalized synchronization regime in system
(1) for a fixed moment of time, light color refers to the asynchronous regime. White color corresponds to the going
the representation point to infinity
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Fig. 2. Dependence of the multistability measure P on the coupling parameter 𝜀 obtained by means of the modified
auxiliary system method for the system (3)

initial conditions of the drive systems, uniformly distributed over the attractors of these systems.
Here 𝑖 = 1 . . . 𝑁 , 𝑁 = 4000 is the number of elements in the ensemble, x1 = (𝑥1, 𝑦1, 𝑧1) and
x𝑖
2 = (𝑥𝑖2, 𝑦

𝑖
2, 𝑧

𝑖
2) are vectors of states of interacting master and slave systems, respectively. In this

case, it is advisable to carry out diagnostics of generalized synchronization using the modified
method of the auxiliary system proposed in the work [21], according to which it is necessary to
compare the states of the slave systems with each other (in fact, to compare the states of the slave
and auxiliary systems under different initial conditions) and calculate the so-called multistability
measure depending on the magnitude of the coupling parameter. As a measure of multistability
by analogy with work [21] the probability of observing asynchronous regime, calculated as

𝑃𝑎 = 1−
𝑁∑︁
𝑖=1

𝑛(x𝑖
2)

𝑁(𝑁 − 1)
, (4)

where 𝑛(x𝑖
2) is the number of systems whose states at a given time coincide with the state of

the 𝑖 th oscillator. The coincidence of the states of the two slave systems with each other, as
noted above, according to the classical method of the auxiliary system [23], means that they are
in generalized synchronization regime with the master system. Then it is clear that if all the
slave systems are in generalized synchronization regime with the master system, then 𝑃𝑎 = 0.
Similarly, if asynchronous behavior is observed for all systems at a given time, then 𝑃𝑎 = 1. An
intermediate variant is of interest, when only a part of the systems demonstrates synchronous
behavior, and the rest is in asynchronous regime. In this case, 𝑃𝑎 ∈ (0, 1), and near the boundary
of generalized synchronization, multistability takes place.

Fig. 2 shows the dependence of the time-averaged probability of observing asynchronous
regime

P =

∫︁ 𝑇

0
𝑃𝑎(𝑡)𝑑𝑡, (5)

received for the system (3), from the coupling parameter 𝜀. It can be seen that as the coupling
parameter increases, the measure of multistability monotonically decreases from 1 to 0, reflecting
the transition from the asynchronous state to the generalized synchronization regime. Near the
boundary of the occurrence of synchronous regime, this measure is different from zero, which
is an additional confirmation of the presence of multistability near the boundary of generalized
synchronization in the system under study.

Thus, in this paper, using the example of unidirectionally coupled Lorentz systems, it is
shown that multistability takes place at the boundary of generalized synchronization in systems
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with a complex attractor topology. The conclusions are confirmed by constructing maps of the
attraction basins of synchronous and asynchronous states of interacting systems, as well as by
calculating the measure of multistability depending on the magnitude of the coupling parameter.
It is established that, by analogy with systems with a relatively simple attractor topology in the
regime of intermittent generalized synchronization of systems with a relatively complex structure,
the measure of multistability turns out to be positive, which proves the presence of multistability
in this case.
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