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Abstract. The main purpose of this work is, first, a construction of the indirect Hamilton’s variational principle
for the problem of motion of a pendulum with a vibration suspension with friction, oscillating along a straight line
making a small angle with the vertical line. Second, the construction on its basis of the difference scheme. Third,
to carry out its investigation by methods of numerical analysis. Methods. The problem of motion of the indicated
pendulum is considering as a particular case of the given boundary problem for a nonlinear second order differential
equations. For the solution of problem of its variational formulation there is used the criterion of potentiality of
operators — the symmetry of the Gâteaux derivative of nonlinear operator of the given problem. This criterion is
also used for the construction of variational multiplier and the corresponding Hamilton’s variational principle. On
its basis there is constructed and investigated a discrete analog of the given boundary problem and a problem of
motion of the pendulum. Results. It is proved that the operator of the given boundary problem is not potential with
respect to the classical bilinear form. There is found a variational multiplier and constructed the corresponding
indirect Hamilton’s variational principle. On its basis there is obtained a discrete analog of the given boundary
problem and its solution is found. As particular cases one can deduce from that the corresponding results for the
problem of motion of the pendulum. There are performed numerical experiments, establishing the dependence of
solutions of the problem of motion of the pendulum on the change of parameters. Conclusion. There is worked
out a variational approach to the construction of two difference schemes for the problem of a pendulum with a
suspension with friction, oscillating along a straight line making a small angle with the vertical line. There are
presented results of numerical simulation under different parameters of the problem. Numerical results show that
under sufficiently small amplitude and sufficiently big frequency of the oscillations of the point of suspension the
pendulum realizes a periodical motion.
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Introduction

This work goes back to the papers [1–3] and aims to construct and study a discrete model
of the motion of a pendulum with a vibration suspension with friction based on the indirect
Hamilton variational principle. A mathematical model with a continuous time of motion of such
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a pendulum after the works of P. L. Kapitsa, N. N. Bogolyubov became the basic one in nonlinear
mechanics. Its interconnection with some problems of physics is revealed (see the literature review
in [4, 5]).

At the same time, not all properties of the basic nonlinear model have been studied.
Additional opportunities are opened with the use of finite difference methods [6]. In the transition
from a dynamic system with continuous time to a difference scheme, it is important that both
models retain the qualitative characteristics of the same phenomenon.

As noted in [7], it is advisable to use variational principles for the mathematical description
of a number of physical phenomena and processes.

The authors of this article are not aware of works in which a variational approach to the
construction of two different difference schemes for the problem of the motion of a pendulum
with a suspension point making small oscillations along a straight line, which makes a small angle
with a vertical, would be developed.

1. Construction of an indirect variational principle
for one boundary value problem for a second-order differential equation

Consider the following boundary value problem:

𝑁 (𝑢) ≡ �̈�+ 𝑘 (𝑡) �̇�+ 3 (𝑡) sin𝑢+ ψ (𝑡) cos𝑢 = 0, 𝑡 ∈ (0, 𝑙) , (1)

𝐷 (𝑁) =
{︀
𝑢 ∈ 𝑈 = 𝐶2 [0, 𝑙] : 𝑢|𝑡=0 = 𝑎0, 𝑢|𝑡=𝑙 = 𝑎1

}︀
. (2)

Here 𝑢 (𝑡) is an unknown function; 𝑘 ∈ 𝐶2 [0, 𝑙], 3, ψ ∈ 𝐶 [0, 𝑙] are given functions; 𝑎0, 𝑎1 are

given numbers; �̇� =
𝑑𝑢 (𝑡)

𝑑𝑡
, �̈� =

𝑑2𝑢 (𝑡)

𝑑𝑡2
.

The equations studied in the papers [1–3], are special cases (1).
Denote 𝑉 = 𝐶 [0, 𝑙]. Let us set the bilinear form ⟨·, ·⟩ : 𝑉 × 𝑈 → R of the kind

⟨𝑣, 𝑔⟩ =
∫︁ 𝑙

0
𝑣 (𝑡) 𝑔 (𝑡) 𝑑𝑡. (3)

We shall say that problem (1), (2) admits a direct variational formulation with respect to
(3), if there exists a Gateaux differentiable functional 𝐹𝑁 : 𝐷 (𝑁) → R such that its differential

δ𝐹𝑁 [𝑢, ℎ] = ⟨𝑁 (𝑢) , ℎ⟩ , ∀𝑢 ∈ 𝐷 (𝑁) ,∀ℎ ∈ 𝐷
(︀
𝑁 ′

𝑢

)︀
.

Here 𝐷 (𝑁 ′
𝑢) is the domain of definition of the Gateaux derivative 𝑁 ′

𝑢 of the operator 𝑁 at the
point 𝑢 ∈ 𝐷 (𝑁). At the same time, it is also said that operator 𝑁 is potential on 𝐷 (𝑁) with
respect to bilinear form (3).

The criterion of potentiality of 𝑁 on a convex set 𝐷 (𝑁) is a condition of symmetry of the
form [8, c. 18], [9, c. 23]⟨︀

𝑁 ′
𝑢ℎ, 𝑔

⟩︀
=

⟨︀
𝑁 ′

𝑢𝑔, ℎ
⟩︀
, ∀𝑢 ∈ 𝐷 (𝑁) , ∀ℎ, 𝑔 ∈ 𝐷

(︀
𝑁 ′

𝑢

)︀
. (4)

412
Savchin V.M., Trinh P.T.

Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2022;30(4)



When it is satisfied, the functional 𝐹𝑁 — Hamilton action — can be found by the formula

𝐹𝑁 [𝑢] =

∫︁ 1

0

⟨
𝑁
(︁̃︀𝑢+ λ (𝑢− ̃︀𝑢))︁, 𝑢− ̃︀𝑢⟩ 𝑑λ+ const, (5)

where ̃︀𝑢 is an arbitrary fixed element of 𝐷 (𝑁).

Theorem 1. At 𝑘(𝑡) ̸= 0 problem (1), (2) does not allow a direct variational formulation with
respect to bilinear form (3).

Proof. Let us make sure that the given operator of form (1) does not satisfy condition (4). We
have

𝑁 ′
𝑢ℎ = ℎ̈+ 𝑘 (𝑡) ℎ̇+ 3 (𝑡)ℎ cos𝑢− ψ (𝑡)ℎ sin𝑢,⟨︀

𝑁 ′
𝑢ℎ, 𝑔

⟩︀
=

∫︁ 𝑙

0

[︁
ℎ̈+ 𝑘 (𝑡) ℎ̇+ 3 (𝑡)ℎ cos𝑢− ψ (𝑡)ℎ sin𝑢

]︁
𝑔 𝑑𝑡, (6)

∀𝑢 ∈ 𝐷 (𝑁) ,∀𝑔, ℎ ∈ 𝐷
(︀
𝑁 ′

𝑢

)︀
.

Integrating by parts and taking into account that

ℎ|𝑡=0 = 𝑔|𝑡=0 = ℎ|𝑡=𝑙 = 𝑔|𝑡=𝑙 = 0, ∀ℎ, 𝑔 ∈
(︀
𝑁 ′

𝑢

)︀
, (7)

from (6) we get

⟨︀
𝑁 ′

𝑢ℎ, 𝑔
⟩︀
=

∫︁ 𝑙

0
[𝑔 − 𝑘 (𝑡) �̇� + 3 (𝑡) 𝑔 cos𝑢− ψ (𝑡) 𝑔 sin𝑢]ℎ 𝑑𝑡 ̸≡

̸≡
⟨︀
𝑁 ′

𝑢𝑔, ℎ
⟩︀
=

∫︁ 𝑙

0
[𝑔 + 𝑘 (𝑡) �̇� + 3 (𝑡) 𝑔 cos𝑢− ψ (𝑡) 𝑔 sin𝑢]ℎ 𝑑𝑡

with 𝑘 (𝑡) ̸= 0.
The theorem is proved. □
Let us denote ̃︀𝑁 (𝑢) = 𝑀 (𝑡)𝑁 (𝑢), 𝑢 ∈ 𝐷 (𝑁), where 𝑀 (𝑡) ≠ 0 on [0, 𝑙] — the required

variational multiplier determined from the condition that the operator ̃︀𝑁 is potential on 𝐷
(︀ ̃︀𝑁)︀

=

𝐷 (𝑁) with respect to bilinear form (3).

Theorem 2. For problem (1), (2) there is a variational multiplier of the form 𝑀 (𝑡) = 𝑒
∫︀
𝑘(𝑡)𝑑𝑡.

Proof. Let us denote

𝑄 (𝑢, ℎ, 𝑔) =
⟨ ̃︀𝑁 ′

𝑢ℎ, 𝑔
⟩
−
⟨ ̃︀𝑁 ′

𝑢𝑔, ℎ
⟩
, ∀𝑢 ∈ 𝐷 (𝑁) ,∀𝑔, ℎ ∈ 𝐷

(︀
𝑁 ′

𝑢

)︀
.

We have ̃︀𝑁 ′
𝑢ℎ = 𝑀 (𝑡)𝑁 ′

𝑢ℎ,⟨ ̃︀𝑁 ′
𝑢ℎ, 𝑔

⟩
=

∫︁ 𝑙

0
𝑀 (𝑡)𝑁 ′

𝑢ℎ · 𝑔 𝑑𝑡 =
∫︁ 𝑙

0
𝑀 (𝑡)

[︁
ℎ̈𝑔 + 𝑘 (𝑡) ℎ̇𝑔 + 3 (𝑡)ℎ𝑔 cos𝑢− ψ (𝑡)ℎ𝑔 sin𝑢

]︁
𝑑𝑡,

⟨ ̃︀𝑁 ′
𝑢𝑔, ℎ

⟩
=

∫︁ 𝑙

0
𝑀 (𝑡) [𝑔ℎ+ 𝑘 (𝑡) �̇�ℎ+ 3 (𝑡)ℎ𝑔 cos𝑢− ψ (𝑡)ℎ𝑔 sin𝑢] 𝑑𝑡.

With this in mind, we get

𝑄 (𝑢, ℎ, 𝑔) =

∫︁ 𝑙

0

[︁
𝑀 (𝑡) ℎ̈𝑔 +𝑀 (𝑡) 𝑘 (𝑡) ℎ̇𝑔 −𝑀 (𝑡) 𝑔ℎ−𝑀 (𝑡) 𝑘 (𝑡) �̇�ℎ

]︁
𝑑𝑡.
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Integrating by parts and taking into account conditions (7), from here we find

𝑄 (𝑢, ℎ, 𝑔) =

∫︁ 𝑙

0

{︂
2

[︂
𝑑𝑀

𝑑𝑡
−𝑀𝑘

]︂
𝑑𝑔

𝑑𝑡
+

[︂
𝑑2𝑀

𝑑𝑡2
− 𝑑 (𝑀𝑘)

𝑑𝑡

]︂
𝑔

}︂
ℎ 𝑑𝑡, (8)

∀𝑢 ∈ 𝐷 (𝑁) ,∀ℎ, 𝑔 ∈ 𝐷
(︀
𝑁 ′

𝑢

)︀
.

To fulfill the condition

𝑄 (𝑢, ℎ, 𝑔) = 0, ∀𝑢 ∈ 𝐷 (𝑁) , ∀𝑔, ℎ ∈ 𝐷
(︀
𝑁 ′

𝑢

)︀
it is necessary and sufficient that

𝑑𝑀

𝑑𝑡
−𝑀𝑘 = 0, ∀𝑡 ∈ [0, 𝑙] , (9)

𝑑2𝑀

𝑑𝑡2
− 𝑑 (𝑀𝑘)

𝑑𝑡
= 0, ∀𝑡 ∈ [0, 𝑙] . (10)

Condition (10) is a consequence of (9). Thus, the variational multiplier 𝑀 (𝑡) is a solution
of equation (9) and has the form

𝑀 (𝑡) = 𝑒
∫︀
𝑘(𝑡)𝑑𝑡. (11)

The theorem is proved. □

Theorem 3. The equation

̃︀𝑁 (𝑢) ≡ 𝑒
∫︀
𝑘(𝑡)𝑑𝑡𝑁 (𝑢) = 0, 𝑢 ∈ 𝐷 (𝑁), (12)

where 𝑁 has form (1), can be represented in the form of Hamilton’s equations

�̇� = −𝑒−
∫︀
𝑘(𝑡)𝑑𝑡𝑝,

�̇� = 𝑒
∫︀
𝑘(𝑡)𝑑𝑡 (3 sin𝑢+ ψ cos𝑢) .

(13)

Proof. Using formula (5), we find the Hamilton’s action for (12) in the form

𝐹 ̃︀𝑁 [𝑢] =

∫︁ 𝑙

0
𝑀

(︂
−1

2
�̇�2 − 3 cos𝑢+ ψ sin𝑢+ 3

)︂
𝑑𝑡. (14)

Thus, Lagrangian of the equation (12) is equal to

ℒ = 𝑒
∫︀
𝑘(𝑡)𝑑𝑡

(︂
−1

2
�̇�2 − 3 cos𝑢+ ψ sin𝑢+ 3

)︂
. (15)

By introducing a generalized impulse

𝑝 =
𝜕ℒ
𝜕�̇�

= −𝑀�̇�,

we obtain that the Lagrangian (15) corresponds to the Hamiltonian

𝐻 (𝑡, 𝑝, 𝑢) = − 𝑝2

2𝑀
+𝑀3 cos𝑢−𝑀ψ sin𝑢−𝑀3.
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From here we find

𝜕𝐻

𝜕𝑝
= − 𝑝

𝑀
,

𝜕𝐻

𝜕𝑢
= −𝑀3 sin𝑢−𝑀ψ cos𝑢

and, therefore, we obtain Hamilton’s equations (13).
The theorem is proved. □
Equations (13) can be derived from Hamilton’s variational principle with the action

𝐽 [𝑝, 𝑢] =

∫︁ 𝑙

0
[𝑝�̇�−𝐻 (𝑡, 𝑝, 𝑢)] 𝑑𝑡. (16)

2. Construction and investigation of a discrete analog of problem (1), (2)
based on functional (14)

We divide the segment [0, 𝑙] into 𝑚 equal parts by nodes 𝑡𝑖 = 𝑖τ (𝑖 = 0,𝑚), where τ = 𝑚−1𝑙.
Let us introduce the narrowing operator

𝑇𝑟𝑢 (𝑡) = 𝑢𝑟 = (𝑢 (𝑡0) , 𝑢 (𝑡1) , 𝑢 (𝑡2) , . . . , 𝑢 (𝑡𝑚−1) , 𝑢 (𝑡𝑚))𝑇

(column height 𝑟 = 𝑚 + 1). Such columns form a linear space, which we will denote 𝑈 𝑟. For
convenience, we shall write 𝑢𝑖 = 𝑢 (𝑡𝑖).

Denote 𝑁𝐹 the operator of the discrete analog of problem (1), (2) based on functional
(14).

Suppose 𝐷(𝑁𝐹 ) =
{︀
𝑢𝑟 ∈ 𝑈 𝑟 : 𝑢0 = 𝑎0, 𝑢𝑚 = 𝑎1

}︀
и 𝐷(𝑁

′
𝐹 ) =

{︀
ℎ𝑟 ∈ 𝑈 𝑟 : ℎ0 = ℎ𝑚 = 0

}︀
.

Let us write (14) as

𝐹 ̃︀𝑁 [𝑢] =
𝑚−1∑︁
𝑖=0

∫︁ 𝑡𝑖+1

𝑡𝑖

𝑀

(︂
−1

2
�̇�2 − 3 cos𝑢+ ψ sin𝑢+ 3

)︂
𝑑𝑡.

Next , we approximate the integrals∫︁ 𝑡𝑖+1

𝑡𝑖

𝑀

(︂
−1

2
�̇�2 − 3 cos𝑢+ ψ sin𝑢+ 3

)︂
𝑑𝑡 ≈

≈ 𝑙

𝑚
𝑀 𝑖

[︃
−1

2

(︂
𝑢𝑖+1 − 𝑢𝑖
τ

)︂2

− 3𝑖 cos𝑢𝑖 + ψ𝑖 sin𝑢𝑖 + 3𝑖
]︃
,

where 𝑀 𝑖 = 𝑀 (𝑡𝑖), 3𝑖 = 3 (𝑡𝑖) и ψ𝑖 = ψ (𝑡𝑖).
Functional (14) is replaced by the Hamilton’s difference action

𝐹 [𝑢𝑟] =
𝑙

𝑚

𝑚−1∑︁
𝑖=0

𝑀 𝑖

[︃
−1

2

(︂
𝑢𝑖+1 − 𝑢𝑖
τ

)︂2

− 3𝑖 cos𝑢𝑖 + ψ𝑖 sin𝑢𝑖 + 3𝑖
]︃
.

Equating partial derivatives to zero
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𝜕𝐹 [𝑢𝑟]

𝜕𝑢𝑖
=

𝑙

𝑚

(︂
𝑀 𝑖𝑢𝑖+1 − 𝑢𝑖

τ2
−𝑀 𝑖−1𝑢𝑖 − 𝑢𝑖−1

τ2
+𝑀 𝑖3𝑖 sin𝑢𝑖 +𝑀 𝑖ψ𝑖 cos𝑢𝑖

)︂
,

𝑖 = 1,𝑚− 1,

we obtain the system of difference equations

𝑁
𝑖
𝐹 (𝑢𝑟) ≡ 𝑀 𝑖𝑢𝑖+1 − 𝑢𝑖

τ2
−𝑀 𝑖−1𝑢𝑖 − 𝑢𝑖−1

τ2
+

+𝑀 𝑖3𝑖 sin𝑢𝑖 +𝑀 𝑖ψ𝑖 cos𝑢𝑖 = 0, 𝑖 = 1,𝑚− 1. (17)

From here we find the solution to this system

𝑢𝑖+1 = 𝑢𝑖 +
𝑀 𝑖−1

𝑀 𝑖
(𝑢𝑖 − 𝑢𝑖−1)− τ23𝑖 sin𝑢𝑖 − τ2ψ𝑖 cos𝑢𝑖, 𝑖 = 1,𝑚− 1,

𝑢0 = 𝑎0, 𝑢𝑚 = 𝑎1.

Let us pass to the next special case of equation (1). Consider the equation of motion of a
pendulum, the suspension point of which oscillates according to a sinusoidal law along a straight
line inclined to the vertical axis 𝑂𝑌 at an angle α [10]

𝑁1(𝑢) ≡ �̈�+ σ�̇�+
𝑔 −𝐴ω2 sin (ω𝑡) cosα

𝑑
sin𝑢− 𝐴ω2 sin (ω𝑡) sinα

𝑑
cos𝑢 = 0, 𝑡 ∈ (0, 𝑙) , (18)

𝑢0 = 𝑎0, 𝑢𝑚 = 𝑎1, (19)

where 𝑢 is the angle of deviation of the pendulum from the lower vertical equilibrium position,
σ an attenuation coefficient, 𝑑 is the length of the pendulum, 𝑔 is an acceleration of gravity,
ω is a frequency of point oscillations suspension, 𝐴 is the amplitude of the suspension point
oscillations.

By virtue of theorems 1, 2 for σ ̸= 0 operator 𝑁1 (18) is non-potential with respect to
bilinear form (3) and for problem (18),(19) there is a variational multiplier of the form 𝑒σ𝑡. Denotẽ︀𝑁1 (𝑢) ≡ 𝑒σ𝑡𝑁1 (𝑢) = 0. (20)

According to formula (14), we have the Hamilton’s action for (20):

𝐹 ̃︀𝑁1
[𝑢] =

∫︁ 𝑙

0
𝑒σ𝑡

(︂
− 1

2
�̇�2 − 𝑔 −𝐴ω2 sin (ω𝑡) cosα

𝑑
cos𝑢− 𝐴ω2 sin (ω𝑡) sinα

𝑑
sin𝑢+

+
𝑔 −𝐴ω2 sin (ω𝑡) cosα

𝑑

)︂
𝑑𝑡,

(21)

and the corresponding finite-difference functional has the form

𝐹 ̃︀𝑁1
[𝑢𝑟] =

𝑙

𝑚

𝑚−1∑︁
𝑖=0

𝑒σ𝑡𝑖

[︃
− 1

2

(︂
𝑢𝑖+1 − 𝑢𝑖
τ

)︂2

− 𝑔 −𝐴ω2 sin (ω𝑡𝑖) cosα
𝑑

cos𝑢𝑖+

+

(︂
−𝐴ω2 sin (ω𝑡𝑖) sinα

𝑑

)︂
sin𝑢𝑖 +

𝑔 −𝐴ω2 sin (ω𝑡𝑖) cosα
𝑑

]︃
.
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Using (17), we write a discrete analog of problem (18),(19) based on functional (21)

𝑁
𝑖
1,𝐹 (𝑢𝑟) ≡ 𝑒σ𝑡𝑖

𝑢𝑖+1 − 𝑢𝑖
τ2

− 𝑒σ𝑡𝑖−1
𝑢𝑖 − 𝑢𝑖−1

τ2
+ 𝑒σ𝑡𝑖

𝑔 −𝐴ω2 sin (ω𝑡𝑖) cosα
𝑑

sin𝑢𝑖+

+ 𝑒σ𝑡𝑖
(︂
−𝐴ω2 sin (ω𝑡𝑖) sinα

𝑑

)︂
cos𝑢𝑖 = 0, 𝑖 = 1,𝑚− 1,

𝑢(0) = 𝑎0, 𝑢(𝑙) = 𝑎1.

The solution of this system is given by the formulas

𝑢𝑖+1 = 𝑢𝑖 + 𝑒−στ (𝑢𝑖 − 𝑢𝑖−1)− τ2
𝑔 −𝐴ω2 sin (ω𝑡𝑖) cosα

𝑑
sin𝑢𝑖+

+ τ2
𝐴ω2 sin (ω𝑡𝑖) sinα

𝑑
cos𝑢𝑖, 𝑖 = 1,𝑚− 1,

𝑢0 = 𝑎0, 𝑢𝑚 = 𝑎1.

(22)

To conduct numerical experiments , we assume:
• attenuation coefficient σ = −0.01 с−1,
• gravity acceleration 𝑔 = 9.8 м/с2,

u(t )
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0

-0.05

-0.10

-0.15

-0.20
0 1 2 3 4 5 6 t

u
uRK4

� = 0.3

u(t) × 10-3

0

-5

-10

-15
0 1 2 3 4 5 6

= 0.1�

u
uRK4

t

Fig. 1. 𝑢 is a solution (22), 𝑢RK4 is a solution by the Runge–Kutta
method
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Fig. 2. Portrait of the system on the plane 𝑂𝑋𝑌 for a pendulum with large amplitude of forcing oscillations. The
parameters of the pendulum are given in the text

• length 𝑑 = 1 м,
• small parameter γ (γ = 0.3, 0.1 ),
• oscillation amplitude of the suspension point 𝐴 = γ𝐴0, 𝐴0 = 1 м,
• angle α = γ2α0, α0 = π/6,
• vibration frequency of the suspension point ω = ω0/γ, ω0 = 5 Гц,
• 𝑙 = 5𝑇 , 𝑇 = 2π/ω0 with the number of nodes 𝑚 = 400, the function values at the endpoints

𝑢0 = 𝑢𝑚 = 0.
In Fig. 1 the solutions of (22) are shown at various specified values γ.
It should be noted that since (1), (2) is a boundary value problem, the well known shooting

method is additionally used to construct the graphs given in the work. It allows us to take into
account the value of the solution at the right end of the segment. In this regard, the Runge–
Kutta method was chosen because of its simplicity and effectiveness for verifying the correctness
of the found solution (22).

It is easy to see that when 𝐴0ω0 >
√
2𝑔𝑑 и γ are sufficiently small (γ = 0.1), the graphs of

solution (22) have a 𝑇 -periodic form. This property in the case of continuous time is noted in the
articles [10,11].

If we increase the value of the oscillation amplitude of the pendulum suspension point
𝐴 = 𝑑/2, then we come to the solution shown in Fig. 2, b (with the parameters of the pendulum:
γ = 0.1 and 𝑚 = 4000). With a further increase in the amplitude 𝐴 = 𝑑, the trajectory of the
pendulum motion fills all the empty space inside. This is clearly seen in Fig. 2, c. When the
amplitude increases, the patterns do not change.

3. Construction and investigation of the difference scheme of equation (13)
based on functional (16)

Similarly to section 2, we write (16) as a sum

𝐽 [𝑝, 𝑢] =

𝑚−1∑︁
𝑖=0

∫︁ 𝑡𝑖+1

𝑡𝑖

[𝑝�̇�−𝐻 (𝑡, 𝑝, 𝑢)] 𝑑𝑡.

Approximating, we get∫︁ 𝑡𝑖+1

𝑡𝑖

[𝑝�̇�−𝐻 (𝑡, 𝑝, 𝑢)] 𝑑𝑡 ≈ 𝑙

𝑚

[︂
𝑝𝑖

(︂
𝑢𝑖+1 − 𝑢𝑖
τ

)︂
−𝐻 𝑖

]︂
,

where 𝑝𝑖 = 𝑝 (𝑡𝑖) and 𝐻 𝑖 = 𝐻 (𝑡𝑖, 𝑝𝑖, 𝑢𝑖).
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Thus, we have the difference Hamilton’s action

𝐽 [𝑝𝑟, 𝑢𝑟] =
𝑙

𝑚

𝑚−1∑︁
𝑖=0

[︂
𝑝𝑖

(︂
𝑢𝑖+1 − 𝑢𝑖
τ

)︂
−𝐻 𝑖

]︂
.

We find partial derivatives

𝜕𝐽 [𝑝𝑟, 𝑢𝑟]

𝜕𝑝𝑖
=

𝑙

𝑚

(︂
𝑢𝑖+1 − 𝑢𝑖
τ

− 𝜕𝐻 𝑖

𝜕𝑝𝑖

)︂
, 𝑖 = 0,𝑚− 1,

𝜕𝐽 [𝑝𝑟, 𝑢𝑟]

𝜕𝑢𝑖
=

𝑙

𝑚

(︂
−𝑝𝑖 − 𝑝𝑖−1

τ
− 𝜕𝐻 𝑖

𝜕𝑢𝑖

)︂
, 𝑖 = 1,𝑚.

Equating them to zero, we obtain the system of difference equations

𝑁
1,𝑖
𝐽 ≡ 𝑢𝑖+1 − 𝑢𝑖

τ
− 𝜕𝐻 𝑖

𝜕𝑝𝑖
=

𝑢𝑖+1 − 𝑢𝑖
τ

− 𝑝𝑖
𝑀 𝑖

= 0, 𝑖 = 0,𝑚− 1,

𝑁
2,𝑖
𝐽 ≡ −𝑝𝑖+1 − 𝑝𝑖

τ
− 𝜕𝐻 𝑖+1

𝜕𝑢𝑖+1
=

= −𝑝𝑖+1 − 𝑝𝑖
τ

−𝑀 𝑖+13𝑖+1 sin𝑢𝑖+1 −𝑀 𝑖+1ψ𝑖+1 cos𝑢𝑖+1 = 0, 𝑖 = 0,𝑚− 1.

From here we find the solution of this system by the formulas

𝑢𝑖+1 = 𝑢𝑖 + τ
𝑝𝑖
𝑀 𝑖

, 𝑖 = 0,𝑚− 1,

𝑝𝑖+1 = 𝑝𝑖 − τ𝑀 𝑖+13𝑖+1 sin𝑢𝑖+1 − τ𝑀 𝑖+1ψ𝑖+1 cos𝑢𝑖+1, 𝑖 = 0,𝑚− 1,

𝑢0 = 𝑎0, 𝑢𝑚 = 𝑎1.

Let us pass to problem (18),(19). By virtue of theorem 3, equation (20) can be represented
in the form of Hamilton’s equations

�̇� = −𝑒−σ𝑡𝑝,

�̇� = 𝑒σ𝑡
(︂
𝑔 −𝐴ω2 sin (ω𝑡) cosα

𝑑
sin𝑢− 𝐴ω2 sin (ω𝑡) sinα

𝑑
cos𝑢

)︂
.

The Hamilton’s action has the form

𝐽 ̃︀𝑁1
[𝑡, 𝑝, 𝑢] =

∫︁ 𝑙

0
[𝑝�̇�−𝐻1 (𝑡, 𝑝, 𝑢)] 𝑑𝑡,

where

𝐻1 (𝑡, 𝑝, 𝑢) = − 𝑝2

2𝑒σ𝑡
+ 𝑒σ𝑡

𝑔 −𝐴ω2 sin (ω𝑡) cosα
𝑑

cos𝑢+ 𝑒σ𝑡
𝐴ω2 sin (ω𝑡) sinα

𝑑
sin𝑢−

− 𝑒σ𝑡
𝑔 −𝐴ω2 sin (ω𝑡) cosα

𝑑
.

The corresponding difference functional is equal to

𝐽 ̃︀𝑁1
[𝑝𝑟, 𝑢𝑟] =

𝑙

𝑚

𝑚−1∑︁
𝑖=0

[︂
𝑝𝑖

(︂
𝑢𝑖+1 − 𝑢𝑖
τ

)︂
−𝐻 𝑖

1

]︂
,
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where 𝐻 𝑖
1 = 𝐻1 (𝑡𝑖, 𝑝𝑖, 𝑢𝑖). Based on it, we obtain the following system of difference equations:

𝑁
1,𝑖
1,𝐽 ≡ 𝑢𝑖+1 − 𝑢𝑖

τ
− 𝑝𝑖

𝑒σ𝑡𝑖
= 0, 𝑖 = 0,𝑚− 1,

𝑁
2,𝑖
1,𝐽 ≡ −𝑝𝑖+1 − 𝑝𝑖

τ
− 𝑒σ𝑡𝑖+1

𝑔 −𝐴ω2 sin (ω𝑡𝑖+1) cosα
𝑑

sin𝑢𝑖+1+

+ 𝑒σ𝑡𝑖+1
𝐴ω2 sin (ω𝑡𝑖+1) sinα

𝑑
cos𝑢𝑖+1 = 0, 𝑖 = 0,𝑚− 1.

From here we find

𝑢𝑖+1 = 𝑢𝑖 + τ
𝑝𝑖
𝑒σ𝑡𝑖

, 𝑖 = 0,𝑚− 1,

𝑝𝑖+1 = 𝑝𝑖 − τ𝑒σ𝑡𝑖+1
𝑔 −𝐴ω2 sin (ω𝑡𝑖+1) cosα

𝑑
sin𝑢𝑖+1−

− τ𝑒σ𝑡𝑖+1
𝐴ω2 sin (ω𝑡𝑖+1) sinα

𝑑
cos𝑢𝑖+1, 𝑖 = 0,𝑚− 1,

𝑢0 = 𝑎0, 𝑢𝑚 = 𝑎1.

(23)
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Fig. 3. ̂︀𝑢 is a solution (22), (𝑢, 𝑝) is a solution (23), 𝑝RK4 is a solution by the Runge–Kutta
method

To conduct numerical experiments, we assume:
• small parameter γ = 0.1,
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• oscillation amplitude of the suspension point 𝐴 = γ𝐴0, 𝐴0 = 1 м,
• other parameters σ, 𝑔, 𝑑, α0, ω0, 𝑙, 𝑇 , 𝑚, 𝑢0 и 𝑢𝑚 do not change as in section 2.

Conclusion

A variational approach to the construction of two difference schemes for the problem of
the motion of a pendulum, the suspension point of which oscillates along a straight line, making
a small angle with the vertical, is presented. The results of numerical simulation for various
parameters of the problem are presented. Numerical solutions show that with a sufficiently small
amplitude of oscillations and a sufficiently high frequency of oscillations of the suspension point,
the pendulum performs periodic motion.
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