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Abstract . Purpose of this work is to study the initial-boundary value problem for a parabolic functional-
differential equation in an annular region, which describes the dynamics of phase modulation of a light wave
passing through a thin layer of a nonlinear Kerr-type medium in an optical system with a feedback loop, with a
rotation transformation (corresponds the involution operator) and the Neumann conditions on the boundary in
the class of periodic functions. A more detailed study is made of spatially inhomogeneous stationary solutions
bifurcating from a spatially homogeneous stationary solution as a result of a bifurcation of the “fork” type
and time-periodic solutions of the “traveling wave” type. Methods. To represent the original equation in the
form of nonlinear integral equations, the Green’s function is used. The method of central manifolds is used to
prove the theorem on the existence of solutions of the indicated equation in a neighborhood of the bifurcation
parameter and to study their asymptotic form. Numerical modeling of spatially inhomogeneous solutions and
traveling waves was carried out using the Galerkin method. Results. Integral representations of the considered
problem are obtained depending on the form of the linearized operator. Using the method of central manifolds, a
theorem on the existence and asymptotic form of solutions of the initial-boundary value problem for a functional-
differential equation of parabolic type with an involution operator on an annulus is proved. As a result of
numerical modeling based on Galerkin approximations, in the problem under consideration, approximate spatially
inhomogeneous stationary solutions and time-periodic solutions of the traveling wave type are constructed.
Conclusion. The proposed scheme is applicable not only to involutive rotation operators and Neumann conditions
on the boundary of the ring, but also to other boundary conditions and circular domains. The representation of
the initial-boundary value problem in the form of nonlinear integral equations of the second kind allows one to
more simply find the coefficients of asymptotic expansions, prove existence and uniqueness theorems, and also
use a different number of expansion coefficients of the nonlinear component in the right-hand side of the original
equation in the neighborhood of the selected solution (for example, stationary). Visualization of the numerical
solution confirms the theoretical calculations and shows the possibility of forming complex phase structures.
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Introduction

In the last few decades, mathematical models of nonlinear optics have attracted the attention
of researchers. They have rich dynamics of self-organizing systems, and variation of parameters
allows you to control such dynamics and observe experimentally a wide range of changes in the
light field. Characteristic is an optical system consisting of a thin layer of a nonlinear Kerr-type
medium and a variously organized external contour of two-dimensional feedback [1–3]. Depending
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on the feedback implementation, models are considered that are described by ordinary differential
equations or parabolic functional differential equations with the transformation of spatial variables
of the desired function [4, 5]. More general is the case of taking into account the delay in the
system [4,6–8]. In this case, the functional differential equation

t1
@u(x; t)

@t
+ u(x; t) = m4u(x; t) + K(1 + g cos Qu(x; t� t)); x 2 S; t > 0

describes the phase modulation of a light wave u(x; t) in a thin layer of a nonlinear Kerr-type
medium within the aperture of S � R2. The specified equation is supplemented by boundary
conditions at the boundary @S, as well as initial conditions for (x; t) 2 S� [�t; 0]. In the equation
4 — Laplace operator, m > 0 — diffusion coefficient of particles of a nonlinear medium, K > 0
— the nonlinearity coefficient proportional to the intensity of the input field, g (0 < g < 1) —
visibility (contrast) of the interference pattern, Qu(x; t) = u(q(x); t), q(x) — smooth reversible
transformation of a spatial variable (for example, reflection, rotation).

The study of functional differential equations has a long history, starting with the works of
A.,D.Myshkis [9], R. Bellman, K., Cook [10], the classical work of J. Hale [11], the cycle of works
by A., L. Skubachevsky and his students [12], V. M. Varfolomeeva [13,14], A. B. Muravnik [15,16],
works by A.V. Razgulin and his students [17–19], E. P. Belana [20,21] and his students [22–24],
O. B. Lykova [25] and other authors.

Identification of traveling waves, rotating waves, fronts is of practical interest. Andronov’s
bifurcation–Hopf leads to the birth of rotating waves on the circumference in the case of the
rotation transformation of spatial arguments [5,18,26,27]. Their interaction on a circle was studied
in works [20,21], and two-dimensional rotating waves in a circle with rotation transformation
were considered in [25].

The task of modeling the phenomena of structure formation manifested in experimental
experiments, such as traveling (rotating) waves, is far from complete. The aperture of the region,
the parameters of the problem, the organization of feedback, boundary conditions, as well as the
choice of the bifurcation parameter play an essential role here. Unlike many studies in this paper,
such a parameter is the diffusion coefficient m: In the works of S. D. Glyzin, A. Yu. Kolesov,
N. H. Pink (in particular, [28]) for dynamic systems of the reaction type–diffusion under the
condition of a decrease in the diffusion coefficient, the phenomenon of multimode diffusion chaos
is considered. The study of these problems is relevant both from the standpoint of the theory of
nonlinear functional differential equations of the parabolic type, and in connection with various
applications in nonlinear optics.

1. Problem statement

On the ring S = f(r; j)j 0 < r1 6 r 6 r2; 0 6 j 6 2pg the equation is considered

@u

@t
+ u = m4u + K(1 + g cos Qu); (r; j) 2 S; t > 0; (1)

where u = u (r; j; t) with transformation of rotation by angle h, Qu = u(r; j + h; t); for example,
h = (2p)=p (p 2 N), with Neumann conditions on the boundary

@u(r1; j; t)

@r
= eg1(j; t);

@u(r2; j; t)

@r
= eg2(j; t); (2)

the initial condition
u (r; j; 0) = u0 (r; j) ; (3)
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periodicity condition
u (r; j + 2p; t) = u (r; j; t) : (4)

Here 4u = @2u
@r2 + 1

r
@u
@r + 1

r2
@2u
@j2 — Laplace operator in the polar coordinate system, m > 0 —

diffusion coefficient of particles of a nonlinear medium, angle rotation transformation h = (2p)=p
defines the operator Q = Qh; which is the involution operator Qp = I [29], K > 0 — a coefficient
proportional to the intensity of the incoming flow, g (0 < g < 1) — coefficient of visibility (contrast)
of the interference pattern.

When investigating the problem (1)–(4), the following spaces are used: functional space
H = Lr

2(r1; r2)� (0; 2p) — the space of functions of L2 quadratically integrable with weight r,
with scalar product and norm, respectively

hu; viH =

2pZ
0

r2Z
r1

u(r; j)v(r; j)rdrdj; kuk2H =

2pZ
0

r2Z
r1

ju(r; j)j2rdrdj;

functional space H2 — Sobolev space of complex-valued functions of two real variables with scalar
product and norm, respectively

hu; viH2 = hu; viH + h�4u;�4viH ; kuk2H2 =
p
hu; uiH2 ;

function space H2
2p = fuju(j + 2p) = u(j)g —closed space of 2p-periodic functions from H2:

The correctness of the initial boundary value problem (1)–(4) for the ring S can be proved
by analogy with the problem for the circle 0 < r < r1; proved earlier in the paper [30].

The problem of finding an approximate spatially inhomogeneous solution of the problem
(1)–(4) bifurcating from its spatially homogeneous solution is considered. The diffusion coefficient
is chosen as the bifurcation parameter m.

2. Integral representations of the equation

Let w be one of the solutions to the problem (1)–(4). Let’s replace u = w+v; where v(r; j; t) —
a new unknown function. Then taking into account cos(w + v) = cos w cos v � sin w sin v =
cos w(cos v�1) �
� sin w sin v + cos w, we get

K [1 + g cos Qhu] = K[1 + gQh cos(w + v)] =

= K [1 + g cos Qhw]�Kg sin Qhw �Qhv + f(Qhw; Qhv);

where f(Qhw; Qhv) = Kg (cos Qhw(cos Qhv � 1)� sin Qhw(sin Qhv �Qhv)) :
The decomposition of the nonlinear function f(Qhv; Qhw) into a series by powers of v

begins с v2 и f(Qhw; 0) = 0:
The problem (1)–(4) with respect to v will take the form

@v

@t
+ v = m4v �Kg sin Qhw �Qhv + f(Qhv; Qhw); (r; j) 2 S; t > 0; (5)

with conditions of the second kind on the boundary

@v(r1; j; t)

@r
= g1(j; t);

@v(r2; j; t)

@r
= g2(j; t); gi(j; t) 2 H2

2p; i = 1; 2; (6)
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the initial condition
v (r; j; 0) = v0(r; j); (7)

periodicity condition
v (r; j + 2p; t) = v (r; j; t) : (8)

Keeping in decomposition f(Qhv; Qhw) a finite number of terms of the series, we obtain a
series of model equations.

In [31], a detailed analysis of the partial solutions of u(r; j; t) = w of the equation (1):
stationary, equal to a constant, u = w = const; stationary, depending only on r, u = w(r);
stationary, depending only on j, u = w(j); stationary, depending on r and j, u = w(r; j);
unsteady, depending only on t, u = w(t); unsteady, depending on t и j, u = w(j; t):

The equation (5), depending on the specifics of the problem statement, is convenient to
represent in three operator forms

@v

@t
= Ajv + Bj ; j = 1; 2; 3;

A1v = m4v; B1 = �v �Kg sin Qhw �Qhv + f(Qhv; Qhw);

A2v = m4v � v; B2 = �Kg sin Qhw �Qhv + f(Qhv; Qhw);

A3v = m4v � v �Kg sin Qhw �Qhv; B3 = f(Qhv; Qhw):

Lemma 1. The operators Aj ; j = 1; 2; 3 have a full in L2(W);W = f(r; j) j r1 6 r 6 r2; 0 6 j 6 2pg
an orthonormal system of eigenfunctions

yn;m(r; j) = Rn;m(ln;mr) exp[inj]; n = 0;�1;�2; : : : ; m = 1; 2; : : : ;

where
Rn;m(r) = Rn;m(ln;mr) = Jn (ln;mr) � Y 0n (ln;mr1)� Yn (ln;mr) � J 0n (ln;mr1) (9)

are defined through the Bessel functions Jn;Yn [32] of the first and second kind, respectively, of
the order n :

Jn(x) =
�x

2

�n
� eyn(x); где eyn(x) =

1X
k=0

(�1)k

G(k + 1) � G(n + k + 1)

�x

2

�2k
;

Yn(x) = lim
a!n

�
ctg pa � Ja(x)� 1

sin pa
� J�a(x)

�
;

ln;m = el — a sequence of numbered in ascending order of the roots of the equation

J 0n

�elr1

�
� Y 0n

�elr2

�
� J 0n

�elr2

�
� Y 0n

�elr1

�
= 0: (10)

The functions R(r) = Rn;m (lm;n) are solutions of the boundary value problem for the
Bessel equation

r2R00(r) + rR0(r) +
�el2r2 � n2

�
R(r) = 0; R0(r1) = 0; R0(r2) = 0; n = 0;�1;�2; : : : (11)

Eigenvalues: l = �ml2
n;m (for the operator A1); l = �1� ml2

n;m (for A2); l = �1 �
ml2

n;m+L exp[inh] (for A3), n=0;�1;�2; : : : ;L=�Kg sin Qhw=�Kg sin w; for w=const:
Рroof. Eigenfunctions yn;m(r; j) we get as a result of applying the method of separation of
variables for equations @v

@t = Ajv; j = 1; 2; 3: For example, for an equation with the operator A3;
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representingv(r; j ; t) = X (r; j ) � T(t) � R(r ) � F (j ) � T(t); we come to the problem of Storming �
Liouville for X (r; j ):

m4 X (r; j ) � X (r; j ) + L QhX (r; j ) = l X (r; j );

@X(r1; j )
@r

= 0 ;
@X(r2; j )

@r
= 0 ; X (r; j + 2p) = X (r; j )

(12)

and the equation for the function T(t): T0(t) � l T(t) = 0 :
Separating the variables in (12), for R(r ) we come to the problem(11), and for F (j );

unlike the problem with operators A1;2 (L � 0); the Storming problem� of Liouville has the form:

F 00(j ) + nF(j ) = 0 ; QhF(j ) + aF (j ) = 0 ; F (j + 2p) = F(j ); 0 6 j 6 2p;

n = nn = n2; F = F n (j ) =
1

p
2p

exp[� in j ]; an = �
QhF n (j )

F n (j )
; n = 0 ; � 1; � 2; : : :

Let's de�ne the eigenvalues of thel operator A3 (12).

Laying out in a row X (r; j ) =
+ 1P

n= �1

+ 1P

m=1
vn;m y n;m (r; j ) by functions y n;m (r; j ); we get for

the coe�cients of the decomposition vn;m

�
� 1 � ml2n;m + L exp[inh ]

�
vn;m = l vn;m ; n = 0 ; � 1; � 2; : : : ; m = 1 ; 2; : : :

Whence it follows that for A3

l = � 1 � ml2n;m + L exp[inh ]; n = 0 ; � 1; � 2; : : : ; m = 1 ; 2; : : :

With L = 0 , we get eigenvalues for the operatorA2 and, obviously, l = � ml2n;m for the
operator A1:

The solutions of the boundary value problem(11) are the functions R(r ) = C1Jn (r ) +
C2Yn (r ): Given the boundary conditions of the problem (11), we get:

C1J 0
n (el r1) + C2Y 0

n (el r1) = 0 ;

C1J 0
n (el r2) + C2Y 0

n (el r2) = 0 :
(13)

The system(13) with respect to C1 and C2 has a nontrivial solution if el is a solution of the
equation (10). It is known that the equation (10) has a countable number of positive roots [32]
l n;m ; n = 0 ; � 1; � 2; : : : ; m = 1 ; 2; : : : Then C1 and C2 are determined from any equation of the
system (13) (that is, the solution is determined (9)):

C1 = � C2
Y 0

n

�
l n;m r1

�

J 0
n

�
l n;m r1

� èëè C2 = � C1
J 0

n

�
l n;m r1

�

Y 0
n

�
l n;m r1

� : �

Based on the calculations of the method of separating variables of Lemma 1, we write
down the Green function for the operatorA1:

G1(r; r ; j ; 3; t; t ) =
r
2p

+ 1X

n= �1

1X

m=1

exp[� in (j � 3)]Rn;m (r )Rn;m (r ) exp[� ml2n;m (t � t )]

d2
n;m

;

d2
n;m =

2
p2l 2

n;m r 2
1

�
p2r 2

1

4

�
l 2

n;m r 2
2 � n2

� �
Rn;m (r2)

� 2 �
�
l 2

n;m r 2
1 � n2

�
�

;

n = 0 ; � 1; � 2; : : : m = 1 ; 2; : : :

(14)
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For a inhomogeneous linear equation with operatorA1 with conditions reduced to
homogeneous boundary and initial conditions

vt = A1v + v0(r; j )d(t) + g2(j ; t)d(r � r2) � g1(j ; t)d(r � r1) + f (r; j ; t) � A1v + f 1;

the solution can be represented through the Green function

v(r; j ; t) =

tZ

0

r 2Z

r 1

2pZ

0

G1(r; r ; j ; 3; t; t )f 1(r ; 3; t )d3r dr dt :

Green's functionG2 for operator A2 will di�er from G1 by the multiplier exp[� (1+ ml2n;m )t]
instead ofexp[� ml2n;m t ], and G3 for the operator A3 is a multiplier exp[(� 1 � ml2n;m + L exp[inh ])t].

In the case of nonlinear equations with operatorsA j with zero boundary and non-zero
initial conditions, the use of Green's functionsGj leads to nonlinear equations of the following
form

vj (r; j ; t) =

tZ

0

r 2Z

r 1

2pZ

0

Gj (r; r ; j ; 3; t; t )[B j (v(r ; 3; t )) + v0(r ; 3)d(t )]d3r dr dt ; j = 1 ; 2: (15)

The equations (15) are convenient for approximate calculations and estimates.

3. Solution bifurcation, asymptotic representation

Further in this section we consider spatially inhomogeneous stationary solutions bifurcating
from spatially homogeneous stationary solutionu(r; j ; t) = w = const, which is de�ned by the
equality

w = K (1 + gcosw): (16)

Known [33], that with an increase inK , the number of roots of the equation (16) grows and
their composition changes. Let's �x a smooth branch corresponding to one of the solutions(16)

w = w (K; g) ; 1 + K gsinw(K; g) 6= 0 :

We linearize the equation(1) on the selected stationary spatially homogeneous solutionw(K; g);
we replaceu = v + w and, having selected the linear part, we obtain the equation:

@v
@t

+ v = m4 v � K gsinw � Qhv + f (Qhv; w); (r; j ) 2 S; t > 0:

To detect solutions that have been observed in experiments (for example, [34]), assume
that the operator Qh is involutive: Qp

h = I: Let's chooseh = 2p=p, p 2 N: p > 3 is of interest
(the case ofp = 2 was investigated earlier [24]).

Operator eigenvaluesA3

l = � 1 � ml2n;m � K gsinw exp
�
i
2pn

p

�
; n = 0 ; � 1; � 2; : : : ; m = 1 ; 2; : : : : (17)

Lemma 2. The stability of the solution v is determined by the sign of the real part of the
expression(17): l = an;m + ibn;m ; ãäå Rel = an;m = � 1 � ml2n;m � K gsinw cos(2pn=p); Im l =
bn;m =
= � K gsinw sin(2pn=p): If Rel < 0; then the solutionv is stable, if Rel > 0; then the solution
v is unstable [35, page 29].
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The real part an;m = � 1� ml2n;m + L cos(2pn=p) contains the parametersK; g; w; m; of which
in the general case,K and maresignif icant: Let's choose the di�usion coe�cient mas a bifurcation
parameter, �xing at this L :

In general, for QhF(j ) = F (j + 2p=p), the following statement is true.

Statement 1. The solution of the linearized problem corresponding to(5)� (8) can be represented
as

+ 1X

n= �1

+ 1X

m=0

Cn;m Rn;m (r ) exp [� in j ] exp
��

� 1 � ml2n;m + L exp
�
i
2pn

p

��
t
�

:

Depending on the values of the real and imaginary parts ofl , various types of solutions
can be obtained, in particular, when Rel 6= 0 ; Im l = 0 , we obtain stationary solutions (5)� (8),
for Rel = 0 ; Im l 6= 0 we get purely periodic solutions (5)�(8)

An;m (r ) exp
�
� i

�
nj + L sin

2pn
p

t
��

:

3.1. The method of central manifolds. To study bifurcation phenomena, we use an
accepted methodology based on the construction of a hierarchy of simpli�ed models in the vicinity
of bifurcation points [20,36].

Next, consider the case ofRel 6= 0 : Using the linearization of the equation (5) on a
dedicated stationary spatially homogeneous solutionw(K; g); we will replace u = v + w and
consider one of the model problems of the problem (5)�(8):

@v
@t

+ v = m4 v � K gsinw � Qhv �
K gcosw

2!
� Qhv2 +

K gsinw
3!

� Qhv3;

0 < r 1 6 r 6 r2; 0 6 j 6 2p; t > 0;
(18)

with conditions of the second kind on the boundary

@v(r1; j ; t)
@r

= 0 ;
@v(r2; j ; t)

@r
= 0 ; (19)

the initial condition
v (r; j ; 0) = 0 (20)

and the periodicity condition
v (r; j + 2p; t) = v (r; j ; t) : (21)

Given that L = � K gsinw; and, denoting W= � K g(ctg w=2); (18) we write as

@v
@t

= � v + m4 v + L Qhv + WQhv2 �
L
6

Qhv3;

0 < r 1 6 r 6 r2; 0 6 j 6 2p; t > 0:
(22)

The equation (22), linearized in the neighborhood of the zero solution, is represented in
the form

@v
@t

= A3v; (23)

where A3v = � v + m4 v + L Qhv:
Next, we assume thath = p=3 (other cases can be considered similarly).
The linear operator A3 with domain of de�nition H 2, considered as an unbounded operator

in spaceH; is a self-adjoint operator. Based on Lemma 1, it is established
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Lemma 3. For the case of rotation,h = p=3; Rel n 6= 0 ; Im l n = bn;m = K gsinw sin(pn=3) = 0 ;
the ratorus A3 corresponds to a series expansion by eigenfunctionsy 3s;m (r; j )= R3s;m cos3sj ;s =
1; 2; : : : with eigenvalues

l 3s = � ml23s;m � 1 + ( � 1)sL ; (24)

where l 3s;m � m-the root of the equation(10).

The proof follows from the general case (Lemma 1) of the decomposition of the linear
operator A3; considered in the Hilbert spaceH with domain of de�nition H 2 by a complete
orthonormal system of eigenfunctionsy n;m (r; j ):

The following theorem holds.

Theorem 1. For h = p=3, L < � 1, there exists d > 0, such that for a �xed value of
m = 1 and for any values of the parameterm satisfying the inequality m1 � d < m< m1; ãäå
ms = ( � 1� (� 1)sL )=l 2

3s;m , s = 1 ; 2; : : : ; there is a continuous branch of stationary pointsz(m) > 0
of the equation

_z = l 3(m)z +
1

2d2
3;1

 
Lg1

4
�

W2g2
2�

2l 3 � l 6
�
d2

6;1

!

z3 + : : : ; (25)

which corresponds to the stationary solutionv = 3(r; j ; m) equations (22), de�ned by equality

3(r; j ; m) = zR3;1(r ) cos 3j + z2P6(r; m) cos 6j + z3P9(r; m) cos 9j + x(z; r; j ; m) jz= z(m) ; (26)

P6(r; m) =
Wg2

2 (2l 3 � l 6) d2
6;1

� R6;1(r ); (27)

P9(r; m) =
1

2 (3l 3 � l 9) d2
9;1

"

�
W2g2g3

(2l 3 � l 6) d2
6;1

+
Lg4

12

#

� R9;1(r ); (28)

wherex(z; r; j ; m) = O(jzj4), R3s;1 and d2
3s;1; s = 1 ; 2; 3 are de�ned by the equalities(9) and (14),

respectively,

g1 =

r 2Z

r 1

rR 4
3;1(r )dr; g2 =

r 2Z

r 1

rR 2
3;1(r )R6;1(r )dr;

g3 =

r 2Z

r 1

rR 3;1(r )R6;1(r )R9;1(r )dr; g4 =

r 2Z

r 1

rR 3
3;1(r )R9;1(r )dr:

(29)

The solution 3(r; j ; m) � is orbitally stable.

Proof. According to Theorem 5.1.1 of [36] and Lemmas 1, 2, ifL > 1, then the null solution
(23) is unstable for anym> 0. If � 1 < L < 1; then the null solution (23) is asymptotically stable
for any m> 0. The case ofL < � 1isof interest: Now let's chooseK so that the condition is met:
L = L (K ) < � 1:

Here ms = ( � 1 � (� 1)sL )=l 2
3s;m , s = 1 ; 2; : : : : If m> m1, then according to the Lemma 2

the null solution of the problem (23) is stable. When the parametermdecreases and it passes
through the value m1, one eigenvaluel 3 passes through the imaginary axis.

If m2 < m< m1, then the instability index of the null solution is 1. The instability index of
the null solution increases by one whenmdecreases and it passes throughms, s = 2 ; 3; : : : :

In neighborhoodv = 0 for msatisfying the inequality m1 � d < m< m1, there exists a central
manifold [36], which can be represented as

3(r; j ; m) = zR3;1(r ) cos 3j + z2P6(r; m) cos 6j + z3P9(r; m) cos 9j + x(z; r; j ; m) jz= z(m) ; (30)
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whereP6(r; m), P9(r; m); : : : functions from spaceL r
2[r1; r2]: On the manifold (30), the equation(22)

takes the form
_z = l 3(m)z + C2z2 + C3z3: (31)

Find the coe�cients of the expansions (30) and (31). For this, we substitute (30) and (31)
into equation (22):

�
l 3(m)z + C2z2 + C3z3

��
zR3;1(r ) cos 3j + 2zP6(r; m) cos 6j + 3z2P9(r; m) cos 9j

�
=

= m
�

zR
00

3;1(r ) cos 3j + z2P
00

6 (r; m) cos 6j + z3P
00

9 (r; m) cos 9j +

+
zR

0

3;1(r ) cos 3j

r
+

z2P
0

6(r; m) cos 6j
r

+
z3P

0

9(r; m) cos 9j
r

�

�
9zR

00

3;1(r ) cos 3j

r 2 �
36z2P

00

6 (r; m) cos 6j
r 2 �

81z3P
00

9 (r; m) cos 9j
r 2

�
+

(32)

+ L
�

� zR3;1(r ) cos 3j + z2P6(r; m) cos 6j � z3P9(r; m) cos 9j
�

+

+ W
�

� zR3;1(r ) cos 3j + z2P6(r; m) cos 6j � z3P9(r; m) cos 9j
� 2

�

�
L
6

�
� zR3;1(r ) cos 3j + z2P6(r; m) cos 6j � z3P9(r; m) cos 9j

� 3

:

Due to the orthogonality of the system of eigenfunctionscos3sj ; s = 1 ; 2; 3, we equate the
coe�cients for these functions in the left and right parts of equality (32). R cos 3j we get

R3;1(r )
�
z
�

l 3 + 1 + L
�

+ C2z2(t) + C3z3
�

=

= mz
�

R
00

3;1(r ) +
R

0

3;1(r )

r
�

9R3;1(r )
r 2

�
� Wz3R3;1(r )P6(r; m) +

L z3R3
3;1(r )

8
:

SinceR3;1(r ) � solution of the boundary value problem of the Bessel equation (11), then

R3;1(r )
�
z
�

l 3 + 1 + L + ml23;1

�
+ C2z2 + C3z3

�
=

= � Wz3R3;1(r )P6(r; m) +
L z3R3

3;1(r )

8
:

Sincel 3 = � 1 � ml23;1 � L ; then C2 = 0 ; C3R3;1(r ) = � WR3;1(r )P6(r; m) +
L R3

3;1(r )

8
. Therefore,

C3 =
1

d2
3;1

0

@� W

r 2Z

r 1

rR 2
3;1(r )P6(r; m)dr +

Lg1

8

1

A ; (33)

where g1 =
r 2R

r 1

rR 4
3;1(r )dr; P6(r; m) =

g2WR6;1(r )
2d2

6;1 (2l 3 � l 6)
:
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a b
Fig. 1. Ïðèáëèæ¼ííîå ñòàöèîíàðíîå ðåøåíèå (30) äëÿ L = � 3=2, h = p=3 â öèëèíäðè÷åñêîé ñèñòåìå êîîðäèíàò
ïðè m= 0 :1 (a) è m= 0 :01 (b)

Fig. 1. Approximate stationary solution of (30) for L = � 3=2, h = p=3 in a cylindrical coordinate system for
m= 0 :1 (a) and m= 0 :01 (b)

Based on the conditionL < � 1 and the equality (24), it is obvious that C3 < 0, then there
is a supercritical bifurcation of the "fork"type (see [36], ch. 6. 3) and from the trivial singular
the points of the equation (25) branch o� two stable stationary points.

Carrying out similar (cumbersome) calculations fors = 2 ; 3, we obtain the statements of
the Theorem.

Thus, in some neighborhood m1 there exists a stationary solution v =
= 3(r; j ; m) the equations (22), de�ned by the equalities (26)� (28). The solution 3(r; j ; m) �
is orbitally stable. �

The theorem is local in nature.
When using the package ¾Wolfram Mathematica 11.3¿ forL = � 3=2, h = p=3 approximate

solutions of (30) obtained in the Theorem are constructed for various values of the bifurcation
parameter m(�g. 1).

Corollary 1. The results obtained are consistent with the one-dimensional case when a narrow
ring can be replaced by a circle. For h = p=3, L < � 1, there existsd > 0 and m1 = ( � 1 � L )=9;
such that for any values of the parametermsatisfying the inequality m1 � d < m< m1;there is a
continuous branch of stationary points z(m) > 0 of the equation

_z = l 3(m)z +
1
2

 
L
4

�
W2

�
2l 3 � l 6

�

!

z3 + : : : ;

which corresponds to the stationary solutionv= 31(j ; m) equations(22) on circle S (r1= r2) with
condition 2p-periodicity, de�ned by equality

31(j ; m) = z cos 3j + z2 W
2 (2l 3 � l 6)

cos 6j +

+ z3 1
2 (3l 3 � l 9)

�
�

W2

(2l 3 � l 6)
+

L
12

�
cos 9j + x(z; j ; m) jz= z(m) ;

where x(z; j ; m) = O(jzj4), l 3s = � 1 + ( � 1)sL � (3s)2m, s = 1 ; 2; 3.

The solution 31(j ; m) � is orbitally stable.
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3.2. The Galerkin method. In order to investigate the asymptotics of stationary
solutions of the problem (18)� (21) with a decrease in the bifurcation parameterm and its
departure from the critical value of m1, we will use the Galerkin method, according to which we
will present approximate solutions in the following form

3 � (r; j ) =
NX

k=1

(zk exp[ik j ] + zk exp[� ik j ]) Rk;1(r ); (34)

here zk ; zk are complex conjugate expressions.
Requiring that the function 3 � (r; j ), de�ned by the equality (34), satis�es the equation(18),

we obtain a system of ordinary di�erential equations

_zk = l kzk + sk (z; z);
_zk = l kzk + sk (z; z);

(35)

where l k (m) = � 1 � ml2k;1 + exp[ ikh ]L ; l k (m) = � 1 � ml2k;1 + exp[ � ikh ]L ; sk (z; z); sk (z; z) �
forms of the third degree fromzk ; zk , k = 1 ; 2; : : : ; N .

One of the solutions of the (35) system is a null solution whose stability is determined by
the spectrum f l k (m); l k (m)g of the corresponding stability matrix. As above, we assume that the
condition is met L < � 1:

Let h = p=3; then the �rst critical value of the bifurcation parameter at which the
zero stationary solution of the system (35) loses stability, m1 = ( � L � 1)=l 2

3;1: As a result, a
bifurcation of the type ¾fork¿ occurs and atm< m1 a pair of stable stationary points � z� (m) =
f 0; 0; � z�

3; 0; 0; � z�
6; : : :g; being solutions of an algebraic system of equations

l kzk + " k (zl ) = 0 ; k; l = 1 ; 2; : : : ; N; (36)

where " k (zl ) is a third degree polynomial containing the second and third degreeszl :
Based on this, taking into account (34), the spatially inhomogeneous stationary solution

of the problem (18)�(21) is determined by the asymptotic equality

3 � (r; j ; m) =
[N=3]X

k=1

z3k (m) cos[3kj ]R3k;1(r ): (37)

For example, for N = 3 , the solution is z� (m) is determined by the system

l 3z1 +
1

8d2
3

�
L

�
b3z3

1 + 2d36z2
2z1 + 2d39z2

3z1 + z39z2
1z3 + x639z2

2z3
�

� 8Wz2 (d369z3 + x36z1)
�

= 0 ;

l 6z2 +
1

8d2
6

�
� L z2

�
b6z2

2 + 2d36z2
1 + 2d69z2

3 + 2x639z1z3
�

+ Wz1 (8d369z3 + 4x36z1)
�

= 0 ;

l 9z3 +
1

24d2
9

�
3L

�
b9z3

3 + 2d39z2
1z3 + 2d69z2

2z3 + z39L z3
1 + x639z2

2z1
�

� 24d369Wz2z1
�

= 0 ;

where

bk =

r 2Z

r 1

rR 4
k;1(r )dr; k = 3 ; 6; 9; dkl =

r 2Z

r 1

rR 2
k;1(r )R2

l;1(r )dr; k; l = 3 ; 6; 9(k < l );

z39 =

r 2Z

r 1

rR 3
3;1(r )R9;1(r )dr; x36 =

r 2Z

r 1

rR 2
3;1(r )R6;1(r )dr;

d369 =

r 2Z

r 1

rR 2
3;1(r )R2

6;1(r )R2
9;1(r )dr; x639 =

r 2Z

r 1

rR 2
6;1(r )R3;1(r )R9;1(r )dr:

(38)
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a b
Fig. 2. Ïðèáëèæ¼ííîå ðåøåíèå (30), ïîëó÷åííîå ñ ïðèìåíåíèåì ìåòîäà Ãàë¼ðêèíà, äëÿ L = � 3=2, h = p=3 â
öèëèíäðè÷åñêîé ñèñòåìå êîîðäèíàò ïðè m= 0 :1 (a) è m= 0 :01 (b)

Fig. 2. Approximate solution (30) obtained using the Galerkin method for L = � 3=2, h = p=3 in a cylindrical
coordinate system for m= 0 :1 (a) è m= 0 :01 (b)

Numerical analysis forN = 5 was carried out at �xed values of the parametersL = � 3=2;
Omega = 0 :129264; which corresponds toK = 2 ; g = 0 :761058, w = 1 :74147: The following
results were obtained.

1. Critical value of the bifurcation parameter m� � 0:113315:
2. For m> m� , the null solution of the system (36) is stable.
3. When the parametermdecreases and the critical valuem� passes, one of its own values of the

spectrum of the stability matrix of the null solution l 3 passes through
zero and becomes positive. As a result, a bifurcation of the type ¾fork¿
occurs and a pair of stable stationary solutions branches o� from the zero solution that is
losing stability. In particular, for m= 0 :11331, the solution of the system is(36) z� (m) =
= f 0; 0; � 0:0481462:0; 0; � 0:0000198428; 0; : : :g:

4. When the parametermis further reduced, the eigenvalue ofl 3 remains positive.
5. The spectrum of the stability matrix of the solution z� (m) lies on the negative semi-axis.

In the package ¾Wolfram Mathematica 11.3¿ for various values of the bifurcation parameter
m, approximate solutions of3(r; j ; m)obtainedusingtheGalerkinmethodareconstructed; determined
by the equality (37) (Fig. 2).

Approximate solutions of the problem (18)� (21), constructed using the method of central
manifolds and the Galerkin method, practically coincide.

3.3. Running wave. Note that, unlike the results obtained above, the presence of rotation
of spatial coordinates can simulate a situation where a spatially homogeneous solution loses
stability in an oscillatory manner when the parameters in the problem(m; K ) change. In this case,
a traveling wave occurs.

Next, using the representation of the solution(34) of the problem (18)� (21) in the Galerkin
method, we construct a two-mode approximation of its periodic solution of the type ¾traveling
wave¿, which is born as a result of the Andronov � Hopf's bifurcation hspace1pt at the highest
critical value of the parameter m = m� : f Rel (m� ) = 0 g (24) from the zero solution losing
vibrationally stability systems (35).

We are looking for the speci�ed solution in the form
z1(t) = r 1 exp[i j 1]; z2(t) = 0 ; z3(t) = r 3 exp[i (3j 1 + a3)];

z1(t) = r 1 exp[� i j 1]; z2(t) = 0 ; z3(t) = r 3 exp[� i (3j 1 + a3)];
(39)

where r k = r k (t; m) > 0; j k = j k (t; m); k = 1 ; 3:
Counting j 1(t; m) = w(m)t: Substitute (39) into (35), we get a system for determining

r k ; a3 :
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