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Abstract . Purpose of this work is to study the initial-boundary value problem for a parabolic functional-
differential equation in an annular region, which describes the dynamics of phase modulation of a light wave
passing through a thin layer of a nonlinear Kerr-type medium in an optical system with a feedback loop, with a
rotation transformation (corresponds the involution operator) and the Neumann conditions on the boundary in
the class of periodic functions. A more detailed study is made of spatially inhomogeneous stationary solutions
bifurcating from a spatially homogeneous stationary solution as a result of a bifurcation of the “fork” type
and time-periodic solutions of the “traveling wave” type. Methods. To represent the original equation in the
form of nonlinear integral equations, the Green’s function is used. The method of central manifolds is used to
prove the theorem on the existence of solutions of the indicated equation in a neighborhood of the bifurcation
parameter and to study their asymptotic form. Numerical modeling of spatially inhomogeneous solutions and
traveling waves was carried out using the Galerkin method. Results. Integral representations of the considered
problem are obtained depending on the form of the linearized operator. Using the method of central manifolds, a
theorem on the existence and asymptotic form of solutions of the initial-boundary value problem for a functional-
differential equation of parabolic type with an involution operator on an annulus is proved. As a result of
numerical modeling based on Galerkin approximations, in the problem under consideration, approximate spatially
inhomogeneous stationary solutions and time-periodic solutions of the traveling wave type are constructed.
Conclusion. The proposed scheme is applicable not only to involutive rotation operators and Neumann conditions
on the boundary of the ring, but also to other boundary conditions and circular domains. The representation of
the initial-boundary value problem in the form of nonlinear integral equations of the second kind allows one to
more simply find the coefficients of asymptotic expansions, prove existence and uniqueness theorems, and also
use a different number of expansion coefficients of the nonlinear component in the right-hand side of the original
equation in the neighborhood of the selected solution (for example, stationary). Visualization of the numerical
solution confirms the theoretical calculations and shows the possibility of forming complex phase structures.

Keywords: optical system, Kerr-type nonlinear medium, parabolic nonlinear equation, involution operator, stability
solved.

For citation : Kornuta AA, Lukianenko BA. Dynamics of solutions of nonlinear functional differential equation of
parabolic type. Izvestiya VUZ. Applied Nonlinear Dynamics. 2022;30(2):132–151. DOI: 10.18500/0869-6632-2022-
30-2-132-151

This is an open access article distributed under the terms of Creative Commons Attribution License (CC-BY 4.0).

Introduction

In the last few decades, mathematical models of nonlinear optics have attracted the attention
of researchers. They have rich dynamics of self-organizing systems, and variation of parameters
allows you to control such dynamics and observe experimentally a wide range of changes in the
light field. Characteristic is an optical system consisting of a thin layer of a nonlinear Kerr-type
medium and a variously organized external contour of two-dimensional feedback [1–3]. Depending
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on the feedback implementation, models are considered that are described by ordinary differential
equations or parabolic functional differential equations with the transformation of spatial variables
of the desired function [4, 5]. More general is the case of taking into account the delay in the
system [4,6–8]. In this case, the functional differential equation

τ1
𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
+ 𝑢(𝑥, 𝑡) = µ△𝑢(𝑥, 𝑡) +𝐾(1 + γ cos𝑄𝑢(𝑥, 𝑡− τ)), 𝑥 ∈ 𝑆, 𝑡 ⩾ 0

describes the phase modulation of a light wave 𝑢(𝑥, 𝑡) in a thin layer of a nonlinear Kerr-type
medium within the aperture of 𝑆 ⊂ R2. The specified equation is supplemented by boundary
conditions at the boundary 𝜕𝑆, as well as initial conditions for (𝑥, 𝑡) ∈ 𝑆× [−τ, 0]. In the equation
△ — Laplace operator, µ > 0 — diffusion coefficient of particles of a nonlinear medium, 𝐾 > 0
— the nonlinearity coefficient proportional to the intensity of the input field, γ (0 < γ < 1) —
visibility (contrast) of the interference pattern, 𝑄𝑢(𝑥, 𝑡) = 𝑢(𝑞(𝑥), 𝑡), 𝑞(𝑥) — smooth reversible
transformation of a spatial variable (for example, reflection, rotation).

The study of functional differential equations has a long history, starting with the works of
A.,D.Myshkis [9], R. Bellman, K., Cook [10], the classical work of J. Hale [11], the cycle of works
by A., L. Skubachevsky and his students [12], V. M. Varfolomeeva [13,14], A. B. Muravnik [15,16],
works by A.V. Razgulin and his students [17–19], E. P. Belana [20,21] and his students [22–24],
O. B. Lykova [25] and other authors.

Identification of traveling waves, rotating waves, fronts is of practical interest. Andronov’s
bifurcation–Hopf leads to the birth of rotating waves on the circumference in the case of the
rotation transformation of spatial arguments [5,18,26,27]. Their interaction on a circle was studied
in works [20,21], and two-dimensional rotating waves in a circle with rotation transformation
were considered in [25].

The task of modeling the phenomena of structure formation manifested in experimental
experiments, such as traveling (rotating) waves, is far from complete. The aperture of the region,
the parameters of the problem, the organization of feedback, boundary conditions, as well as the
choice of the bifurcation parameter play an essential role here. Unlike many studies in this paper,
such a parameter is the diffusion coefficient µ. In the works of S. D. Glyzin, A. Yu. Kolesov,
N. H. Pink (in particular, [28]) for dynamic systems of the reaction type–diffusion under the
condition of a decrease in the diffusion coefficient, the phenomenon of multimode diffusion chaos
is considered. The study of these problems is relevant both from the standpoint of the theory of
nonlinear functional differential equations of the parabolic type, and in connection with various
applications in nonlinear optics.

1. Problem statement

On the ring 𝑆 = {(𝑟, θ)| 0 < 𝑟1 ⩽ 𝑟 ⩽ 𝑟2; 0 ⩽ θ ⩽ 2π} the equation is considered

𝜕𝑢

𝜕𝑡
+ 𝑢 = µ△𝑢+𝐾(1 + γ cos𝑄𝑢), (𝑟, θ) ∈ 𝑆, 𝑡 ⩾ 0, (1)

where 𝑢 = 𝑢 (𝑟, θ, 𝑡) with transformation of rotation by angle ℎ, 𝑄𝑢 = 𝑢(𝑟, θ+ ℎ, 𝑡), for example,
ℎ = (2π)/𝑝 (𝑝 ∈ N), with Neumann conditions on the boundary

𝜕𝑢(𝑟1, θ, 𝑡)
𝜕𝑟

= ̃︀𝑔1(θ, 𝑡), 𝜕𝑢(𝑟2, θ, 𝑡)
𝜕𝑟

= ̃︀𝑔2(θ, 𝑡), (2)

the initial condition
𝑢 (𝑟, θ, 0) = 𝑢0 (𝑟, θ) , (3)
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periodicity condition
𝑢 (𝑟, θ+ 2π, 𝑡) = 𝑢 (𝑟, θ, 𝑡) . (4)

Here △𝑢 = 𝜕2𝑢
𝜕𝑟2

+ 1
𝑟
𝜕𝑢
𝜕𝑟 + 1

𝑟2
𝜕2𝑢
𝜕θ2 — Laplace operator in the polar coordinate system, µ > 0 —

diffusion coefficient of particles of a nonlinear medium, angle rotation transformation ℎ = (2π)/𝑝
defines the operator 𝑄 = 𝑄ℎ, which is the involution operator 𝑄𝑝 = 𝐼 [29], 𝐾 > 0 — a coefficient
proportional to the intensity of the incoming flow, γ (0 < γ < 1) — coefficient of visibility (contrast)
of the interference pattern.

When investigating the problem (1)–(4), the following spaces are used: functional space
𝐻 = 𝐿𝑟

2(𝑟1, 𝑟2)× (0, 2π) — the space of functions of 𝐿2 quadratically integrable with weight 𝑟,
with scalar product and norm, respectively

⟨𝑢, 𝑣⟩𝐻 =

2π∫︁
0

𝑟2∫︁
𝑟1

𝑢(𝑟, θ)𝑣(𝑟, θ)𝑟𝑑𝑟𝑑θ, ‖𝑢‖2𝐻 =

2π∫︁
0

𝑟2∫︁
𝑟1

|𝑢(𝑟, θ)|2𝑟𝑑𝑟𝑑θ;

functional space 𝐻2 — Sobolev space of complex-valued functions of two real variables with scalar
product and norm, respectively

⟨𝑢, 𝑣⟩𝐻2 = ⟨𝑢, 𝑣⟩𝐻 + ⟨−△𝑢,−△𝑣⟩𝐻 , ‖𝑢‖2𝐻2 =
√︀
⟨𝑢, 𝑢⟩𝐻2 ;

function space 𝐻2
2π = {𝑢|𝑢(θ+ 2π) = 𝑢(θ)} —closed space of 2π-periodic functions from 𝐻2.

The correctness of the initial boundary value problem (1)–(4) for the ring 𝑆 can be proved
by analogy with the problem for the circle 0 < 𝑟 < 𝑟1, proved earlier in the paper [30].

The problem of finding an approximate spatially inhomogeneous solution of the problem
(1)–(4) bifurcating from its spatially homogeneous solution is considered. The diffusion coefficient
is chosen as the bifurcation parameter µ.

2. Integral representations of the equation

Let 𝑤 be one of the solutions to the problem (1)–(4). Let’s replace 𝑢 = 𝑤+𝑣, where 𝑣(𝑟, θ, 𝑡) —
a new unknown function. Then taking into account cos(𝑤 + 𝑣) = cos𝑤 cos 𝑣 − sin𝑤 sin 𝑣 =
cos𝑤(cos 𝑣−1) −
− sin𝑤 sin 𝑣 + cos𝑤, we get

𝐾 [1 + γ cos𝑄ℎ𝑢] = 𝐾[1 + γ𝑄ℎ cos(𝑤 + 𝑣)] =

= 𝐾 [1 + γ cos𝑄ℎ𝑤]−𝐾γ sin𝑄ℎ𝑤 ·𝑄ℎ𝑣 + 𝑓(𝑄ℎ𝑤,𝑄ℎ𝑣),

where 𝑓(𝑄ℎ𝑤,𝑄ℎ𝑣) = 𝐾γ (cos𝑄ℎ𝑤(cos𝑄ℎ𝑣 − 1)− sin𝑄ℎ𝑤(sin𝑄ℎ𝑣 −𝑄ℎ𝑣)) .
The decomposition of the nonlinear function 𝑓(𝑄ℎ𝑣,𝑄ℎ𝑤) into a series by powers of 𝑣

begins с 𝑣2 и 𝑓(𝑄ℎ𝑤, 0) = 0.
The problem (1)–(4) with respect to 𝑣 will take the form

𝜕𝑣

𝜕𝑡
+ 𝑣 = µ△𝑣 −𝐾γ sin𝑄ℎ𝑤 ·𝑄ℎ𝑣 + 𝑓(𝑄ℎ𝑣,𝑄ℎ𝑤), (𝑟, θ) ∈ 𝑆, 𝑡 ⩾ 0, (5)

with conditions of the second kind on the boundary

𝜕𝑣(𝑟1, θ, 𝑡)
𝜕𝑟

= 𝑔1(θ, 𝑡),
𝜕𝑣(𝑟2, θ, 𝑡)

𝜕𝑟
= 𝑔2(θ, 𝑡), 𝑔𝑖(θ, 𝑡) ∈ 𝐻2

2π, 𝑖 = 1, 2, (6)
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the initial condition
𝑣 (𝑟, θ, 0) = 𝑣0(𝑟, θ), (7)

periodicity condition
𝑣 (𝑟, θ+ 2π, 𝑡) = 𝑣 (𝑟, θ, 𝑡) . (8)

Keeping in decomposition 𝑓(𝑄ℎ𝑣,𝑄ℎ𝑤) a finite number of terms of the series, we obtain a
series of model equations.

In [31], a detailed analysis of the partial solutions of 𝑢(𝑟, θ, 𝑡) = 𝑤 of the equation (1):
stationary, equal to a constant, 𝑢 = 𝑤 = const; stationary, depending only on 𝑟, 𝑢 = 𝑤(𝑟);
stationary, depending only on θ, 𝑢 = 𝑤(θ); stationary, depending on 𝑟 and θ, 𝑢 = 𝑤(𝑟, θ);
unsteady, depending only on 𝑡, 𝑢 = 𝑤(𝑡); unsteady, depending on 𝑡 и θ, 𝑢 = 𝑤(θ, 𝑡).

The equation (5), depending on the specifics of the problem statement, is convenient to
represent in three operator forms

𝜕𝑣

𝜕𝑡
= 𝐴𝑗𝑣 +𝐵𝑗 , 𝑗 = 1, 2, 3,

𝐴1𝑣 = µ△𝑣, 𝐵1 = −𝑣 −𝐾γ sin𝑄ℎ𝑤 ·𝑄ℎ𝑣 + 𝑓(𝑄ℎ𝑣,𝑄ℎ𝑤);

𝐴2𝑣 = µ△𝑣 − 𝑣, 𝐵2 = −𝐾γ sin𝑄ℎ𝑤 ·𝑄ℎ𝑣 + 𝑓(𝑄ℎ𝑣,𝑄ℎ𝑤);

𝐴3𝑣 = µ△𝑣 − 𝑣 −𝐾γ sin𝑄ℎ𝑤 ·𝑄ℎ𝑣, 𝐵3 = 𝑓(𝑄ℎ𝑣,𝑄ℎ𝑤).

Lemma 1. The operators 𝐴𝑗 , 𝑗 = 1, 2, 3 have a full in 𝐿2(Ω),Ω = {(𝑟, θ) | 𝑟1 ⩽ 𝑟 ⩽ 𝑟2, 0 ⩽ θ ⩽ 2π}
an orthonormal system of eigenfunctions

ψ𝑛,𝑚(𝑟, θ) = 𝑅𝑛,𝑚(λ𝑛,𝑚𝑟) exp[𝑖𝑛θ], 𝑛 = 0,±1,±2, . . . ; 𝑚 = 1, 2, . . . ,

where
𝑅𝑛,𝑚(𝑟) = 𝑅𝑛,𝑚(λ𝑛,𝑚𝑟) = 𝐽𝑛 (λ𝑛,𝑚𝑟) · 𝑌 ′

𝑛 (λ𝑛,𝑚𝑟1)− 𝑌𝑛 (λ𝑛,𝑚𝑟) · 𝐽 ′
𝑛 (λ𝑛,𝑚𝑟1) (9)

are defined through the Bessel functions 𝐽𝑛,𝑌𝑛 [32] of the first and second kind, respectively, of
the order 𝑛 :

𝐽𝑛(𝑥) =
(︁𝑥
2

)︁𝑛
· ̃︀ψ𝑛(𝑥), где ̃︀ψ𝑛(𝑥) = ∞∑︁

𝑘=0

(−1)𝑘

Γ(𝑘 + 1) · Γ(𝑛+ 𝑘 + 1)

(︁𝑥
2

)︁2𝑘
,

𝑌𝑛(𝑥) = lim
α→𝑛

(︂
ctg πα · 𝐽α(𝑥)−

1

sinπα
· 𝐽−α(𝑥)

)︂
,

λ𝑛,𝑚 = ̃︀λ — a sequence of numbered in ascending order of the roots of the equation

𝐽 ′
𝑛

(︁̃︀λ𝑟1)︁ · 𝑌 ′
𝑛

(︁̃︀λ𝑟2)︁− 𝐽 ′
𝑛

(︁̃︀λ𝑟2)︁ · 𝑌 ′
𝑛

(︁̃︀λ𝑟1)︁ = 0. (10)

The functions 𝑅(𝑟) = 𝑅𝑛,𝑚 (λ𝑚,𝑛) are solutions of the boundary value problem for the
Bessel equation

𝑟2𝑅′′(𝑟) + 𝑟𝑅′(𝑟) +
(︁̃︀λ2𝑟2 − 𝑛2

)︁
𝑅(𝑟) = 0, 𝑅′(𝑟1) = 0, 𝑅′(𝑟2) = 0, 𝑛 = 0,±1,±2, . . . (11)

Eigenvalues: λ = −µλ2𝑛,𝑚 (for the operator 𝐴1); λ = −1− µλ2𝑛,𝑚 (for 𝐴2); λ = −1 −
µλ2𝑛,𝑚+Λ exp[𝑖𝑛ℎ] (for 𝐴3), 𝑛=0,±1,±2, . . . ,Λ=−𝐾γ sin𝑄ℎ𝑤=−𝐾γ sin𝑤, for 𝑤=const.
Рroof. Eigenfunctions ψ𝑛,𝑚(𝑟, θ) we get as a result of applying the method of separation of
variables for equations 𝜕𝑣

𝜕𝑡 = 𝐴𝑗𝑣, 𝑗 = 1, 2, 3. For example, for an equation with the operator 𝐴3,
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representing 𝑣(𝑟, θ, 𝑡) = 𝑋(𝑟, θ) · 𝑇 (𝑡) ≡ 𝑅(𝑟) ·Φ(θ) · 𝑇 (𝑡), we come to the problem of Storming –
Liouville for 𝑋(𝑟, θ):

µ△𝑋(𝑟, θ)−𝑋(𝑟, θ) + Λ𝑄ℎ𝑋(𝑟, θ) = λ𝑋(𝑟, θ),

𝜕𝑋(𝑟1, θ)
𝜕𝑟

= 0,
𝜕𝑋(𝑟2, θ)

𝜕𝑟
= 0, 𝑋 (𝑟, θ+ 2π) = 𝑋 (𝑟, θ)

(12)

and the equation for the function 𝑇 (𝑡): 𝑇 ′(𝑡)− λ𝑇 (𝑡) = 0.
Separating the variables in (12), for 𝑅(𝑟) we come to the problem (11), and for Φ(θ),

unlike the problem with operators 𝐴1,2 (Λ ≡ 0), the Storming problem– of Liouville has the form:

Φ′′(θ) + νΦ(θ) = 0, 𝑄ℎΦ(θ) + αΦ(θ) = 0, Φ(θ+ 2π) = Φ(θ), 0 ⩽ θ ⩽ 2π,

ν = ν𝑛 = 𝑛2, Φ = Φ𝑛(θ) =
1√
2π

exp[±𝑖𝑛θ], α𝑛 = −𝑄ℎΦ𝑛(θ)
Φ𝑛(θ)

, 𝑛 = 0,±1,±2, . . .

Let’s define the eigenvalues of the λ operator 𝐴3 (12).

Laying out in a row 𝑋(𝑟, θ) =
+∞∑︀

𝑛=−∞

+∞∑︀
𝑚=1

𝑣𝑛,𝑚ψ𝑛,𝑚(𝑟, θ) by functions ψ𝑛,𝑚(𝑟, θ), we get for

the coefficients of the decomposition 𝑣𝑛,𝑚(︀
−1− µλ2𝑛,𝑚 + Λ exp[𝑖𝑛ℎ]

)︀
𝑣𝑛,𝑚 = λ𝑣𝑛,𝑚, 𝑛 = 0,±1,±2, . . . , 𝑚 = 1, 2, . . .

Whence it follows that for 𝐴3

λ = −1− µλ2𝑛,𝑚 + Λ exp[𝑖𝑛ℎ], 𝑛 = 0,±1,±2, . . . , 𝑚 = 1, 2, . . .

With Λ = 0, we get eigenvalues for the operator 𝐴2 and, obviously, λ = −µλ2𝑛,𝑚 for the
operator 𝐴1.

The solutions of the boundary value problem (11) are the functions 𝑅(𝑟) = 𝐶1𝐽𝑛(𝑟) +
𝐶2𝑌𝑛(𝑟). Given the boundary conditions of the problem (11), we get:

𝐶1𝐽
′
𝑛(
̃︀λ𝑟1) + 𝐶2𝑌

′
𝑛(
̃︀λ𝑟1) = 0,

𝐶1𝐽
′
𝑛(
̃︀λ𝑟2) + 𝐶2𝑌

′
𝑛(
̃︀λ𝑟2) = 0.

(13)

The system (13) with respect to 𝐶1 and 𝐶2 has a nontrivial solution if ̃︀λ is a solution of the
equation (10). It is known that the equation (10) has a countable number of positive roots [32]
λ𝑛,𝑚, 𝑛 = 0,±1,±2, . . . , 𝑚 = 1, 2, . . . Then 𝐶1 and 𝐶2 are determined from any equation of the
system (13) (that is, the solution is determined (9)):

𝐶1 = −𝐶2
𝑌 ′
𝑛

(︀
λ𝑛,𝑚𝑟1

)︀
𝐽 ′
𝑛

(︀
λ𝑛,𝑚𝑟1

)︀ или 𝐶2 = −𝐶1
𝐽 ′
𝑛

(︀
λ𝑛,𝑚𝑟1

)︀
𝑌 ′
𝑛

(︀
λ𝑛,𝑚𝑟1

)︀ . □

Based on the calculations of the method of separating variables of Lemma 1, we write
down the Green function for the operator 𝐴1:

𝐺1(𝑟, ρ, θ,3, 𝑡, τ) =
ρ
2π

+∞∑︁
𝑛=−∞

∞∑︁
𝑚=1

exp[−𝑖𝑛(θ− 3)]𝑅𝑛,𝑚(𝑟)𝑅𝑛,𝑚(ρ) exp[−µλ2𝑛,𝑚(𝑡− τ)]
𝑑2𝑛,𝑚

,

𝑑2𝑛,𝑚 =
2

π2λ2𝑛,𝑚𝑟21

[︂
π2𝑟21
4

(︀
λ2𝑛,𝑚𝑟22 − 𝑛2

)︀ (︀
𝑅𝑛,𝑚(𝑟2)

)︀2 − (︀λ2𝑛,𝑚𝑟21 − 𝑛2
)︀]︂

,

𝑛 = 0,±1,±2, . . . 𝑚 = 1, 2, . . .

(14)
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For a inhomogeneous linear equation with operator 𝐴1 with conditions reduced to
homogeneous boundary and initial conditions

𝑣𝑡 = 𝐴1𝑣 + 𝑣0(𝑟, θ)δ(𝑡) + 𝑔2(θ, 𝑡)δ(𝑟 − 𝑟2)− 𝑔1(θ, 𝑡)δ(𝑟 − 𝑟1) + 𝑓(𝑟, θ, 𝑡) ≡ 𝐴1𝑣 + 𝑓1,

the solution can be represented through the Green function

𝑣(𝑟, θ, 𝑡) =

𝑡∫︁
0

𝑟2∫︁
𝑟1

2π∫︁
0

𝐺1(𝑟, ρ, θ,3, 𝑡, τ)𝑓1(ρ,3, τ)𝑑3ρ𝑑ρ𝑑τ.

Green’s function 𝐺2 for operator 𝐴2 will differ from 𝐺1 by the multiplier exp[−(1+µλ2𝑛,𝑚)𝑡]
instead of exp[−µλ2𝑛,𝑚𝑡], and 𝐺3 for the operator 𝐴3 is a multiplier exp[(−1− µλ2𝑛,𝑚 + Λ exp[𝑖𝑛ℎ])𝑡].

In the case of nonlinear equations with operators 𝐴𝑗 with zero boundary and non-zero
initial conditions, the use of Green’s functions 𝐺𝑗 leads to nonlinear equations of the following
form

𝑣𝑗(𝑟, θ, 𝑡) =

𝑡∫︁
0

𝑟2∫︁
𝑟1

2π∫︁
0

𝐺𝑗(𝑟, ρ, θ,3, 𝑡, τ)[𝐵𝑗(𝑣(ρ,3, τ)) + 𝑣0(ρ,3)δ(τ)]𝑑3ρ𝑑ρ𝑑τ, 𝑗 = 1, 2. (15)

The equations (15) are convenient for approximate calculations and estimates.

3. Solution bifurcation, asymptotic representation

Further in this section we consider spatially inhomogeneous stationary solutions bifurcating
from spatially homogeneous stationary solution 𝑢(𝑟, θ, 𝑡) = 𝑤 = const, which is defined by the
equality

𝑤 = 𝐾(1 + γ cos𝑤). (16)

Known [33], that with an increase in 𝐾, the number of roots of the equation (16) grows and
their composition changes. Let’s fix a smooth branch corresponding to one of the solutions (16)

𝑤 = 𝑤 (𝐾, γ) , 1 +𝐾γ sin𝑤(𝐾, γ) ̸= 0.

We linearize the equation (1) on the selected stationary spatially homogeneous solution 𝑤(𝐾, γ),
we replace 𝑢 = 𝑣 + 𝑤 and, having selected the linear part, we obtain the equation:

𝜕𝑣

𝜕𝑡
+ 𝑣 = µ△𝑣 −𝐾γ sin𝑤 ·𝑄ℎ𝑣 + 𝑓(𝑄ℎ𝑣, 𝑤), (𝑟, θ) ∈ 𝑆, 𝑡 ⩾ 0.

To detect solutions that have been observed in experiments (for example, [34]), assume
that the operator 𝑄ℎ is involutive: 𝑄𝑝

ℎ = 𝐼. Let’s choose ℎ = 2π/𝑝, 𝑝 ∈ N. 𝑝 ⩾ 3 is of interest
(the case of 𝑝 = 2 was investigated earlier [24]).

Operator eigenvalues 𝐴3

λ = −1− µλ2𝑛,𝑚 −𝐾γ sin𝑤 exp

[︂
𝑖
2π𝑛
𝑝

]︂
, 𝑛 = 0,±1,±2, . . . , 𝑚 = 1, 2, . . . . (17)

Lemma 2. The stability of the solution 𝑣 is determined by the sign of the real part of the
expression (17): λ = α𝑛,𝑚 + 𝑖β𝑛,𝑚, где Re λ = α𝑛,𝑚 = −1− µλ2𝑛,𝑚 −𝐾γ sin𝑤 cos(2π𝑛/𝑝), Im λ =
β𝑛,𝑚 =
= −𝐾γ sin𝑤 sin(2π𝑛/𝑝). If Re λ < 0, then the solution 𝑣 is stable, if Re λ > 0, then the solution
𝑣 is unstable [35, page 29].
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The real part α𝑛,𝑚 = −1−µλ2𝑛,𝑚+Λ cos(2π𝑛/𝑝) contains the parameters 𝐾, γ, 𝑤, µ, of which
in the general case, 𝐾 and µ𝑎𝑟𝑒𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡. Let’s choose the diffusion coefficient µ as a bifurcation
parameter, fixing at this Λ.

In general, for 𝑄ℎΦ(θ) = Φ (θ+ 2π/𝑝), the following statement is true.

Statement 1. The solution of the linearized problem corresponding to (5)–(8) can be represented
as

+∞∑︁
𝑛=−∞

+∞∑︁
𝑚=0

𝐶𝑛,𝑚𝑅𝑛,𝑚(𝑟) exp [−𝑖𝑛θ] exp

[︂(︂
−1− µλ2𝑛,𝑚 + Λ exp

[︂
𝑖
2π𝑛
𝑝

]︂)︂
𝑡

]︂
.

Depending on the values of the real and imaginary parts of λ, various types of solutions
can be obtained, in particular, when Re λ ̸= 0, Im λ = 0, we obtain stationary solutions (5)–(8),
for Re λ = 0, Im λ ̸= 0 we get purely periodic solutions (5)–(8)

𝐴𝑛,𝑚(𝑟) exp

[︂
−𝑖

(︂
𝑛θ+ Λ sin

2π𝑛
𝑝

𝑡

)︂]︂
.

3.1. The method of central manifolds. To study bifurcation phenomena, we use an
accepted methodology based on the construction of a hierarchy of simplified models in the vicinity
of bifurcation points [20,36].

Next, consider the case of Re λ ̸= 0. Using the linearization of the equation (5) on a
dedicated stationary spatially homogeneous solution 𝑤(𝐾, γ), we will replace 𝑢 = 𝑣 + 𝑤 and
consider one of the model problems of the problem (5)–(8):

𝜕𝑣

𝜕𝑡
+ 𝑣 = µ△𝑣 −𝐾γ sin𝑤 ·𝑄ℎ𝑣 −

𝐾γ cos𝑤
2!

·𝑄ℎ𝑣
2 +

𝐾γ sin𝑤
3!

·𝑄ℎ𝑣
3,

0 < 𝑟1 ⩽ 𝑟 ⩽ 𝑟2, 0 ⩽ θ ⩽ 2π, 𝑡 ⩾ 0,

(18)

with conditions of the second kind on the boundary

𝜕𝑣(𝑟1, θ, 𝑡)
𝜕𝑟

= 0,
𝜕𝑣(𝑟2, θ, 𝑡)

𝜕𝑟
= 0, (19)

the initial condition
𝑣 (𝑟, θ, 0) = 0 (20)

and the periodicity condition
𝑣 (𝑟, θ+ 2π, 𝑡) = 𝑣 (𝑟, θ, 𝑡) . (21)

Given that Λ = −𝐾γ sin𝑤, and, denoting Ω = −𝐾γ(ctg𝑤/2), (18) we write as

𝜕𝑣

𝜕𝑡
= −𝑣 + µ△𝑣 + Λ𝑄ℎ𝑣 +Ω𝑄ℎ𝑣

2 − Λ
6
𝑄ℎ𝑣

3,

0 < 𝑟1 ⩽ 𝑟 ⩽ 𝑟2, 0 ⩽ θ ⩽ 2π, 𝑡 ⩾ 0.

(22)

The equation (22), linearized in the neighborhood of the zero solution, is represented in
the form

𝜕𝑣

𝜕𝑡
= 𝐴3𝑣, (23)

where 𝐴3𝑣 = −𝑣 + µ△𝑣 + Λ𝑄ℎ𝑣.
Next, we assume that ℎ = π/3 (other cases can be considered similarly).
The linear operator 𝐴3 with domain of definition 𝐻2, considered as an unbounded operator

in space 𝐻, is a self-adjoint operator. Based on Lemma 1, it is established
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Lemma 3. For the case of rotation, ℎ = π/3, 𝑅𝑒λ𝑛 ̸= 0, Im λ𝑛= β𝑛,𝑚= 𝐾γ sin𝑤 sin(π𝑛/3) = 0,
the ratorus 𝐴3 corresponds to a series expansion by eigenfunctions ψ3𝑠,𝑚(𝑟, θ)=𝑅3𝑠,𝑚 cos 3𝑠θ,𝑠 =
1, 2, . . . with eigenvalues

λ3𝑠 = −µλ23𝑠,𝑚 − 1 + (−1)𝑠Λ, (24)

where λ3𝑠,𝑚 — 𝑚-the root of the equation (10).

The proof follows from the general case (Lemma 1) of the decomposition of the linear
operator 𝐴3, considered in the Hilbert space 𝐻 with domain of definition 𝐻2 by a complete
orthonormal system of eigenfunctions ψ𝑛,𝑚(𝑟, θ).

The following theorem holds.

Theorem 1. For ℎ = π/3, Λ < −1, there exists δ > 0, such that for a fixed value of
𝑚 = 1 and for any values of the parameter µ satisfying the inequality µ1 − δ < µ < µ1, где
µ𝑠 = (−1− (−1)𝑠Λ)/λ23𝑠,𝑚, 𝑠 = 1, 2, . . . , there is a continuous branch of stationary points 𝑧(µ) > 0
of the equation

𝑧̇ = λ3(µ)𝑧 +
1

2𝑑23,1

(︃
Λγ1
4

− Ω2γ22(︀
2λ3 − λ6

)︀
𝑑26,1

)︃
𝑧3 + . . . , (25)

which corresponds to the stationary solution 𝑣 = 3(𝑟, θ, µ) equations (22), defined by equality

3(𝑟, θ, µ) = 𝑧𝑅3,1(𝑟) cos 3θ+ 𝑧2𝑃6(𝑟, µ) cos 6θ+ 𝑧3𝑃9(𝑟, µ) cos 9θ+ ξ(𝑧, 𝑟, θ, µ) |𝑧=𝑧(µ), (26)

𝑃6(𝑟, µ) =
Ωγ2

2 (2λ3 − λ6) 𝑑26,1
·𝑅6,1(𝑟), (27)

𝑃9(𝑟, µ) =
1

2 (3λ3 − λ9) 𝑑29,1

[︃
− Ω2γ2γ3
(2λ3 − λ6) 𝑑26,1

+
Λγ4
12

]︃
·𝑅9,1(𝑟), (28)

where ξ(𝑧, 𝑟, θ, µ) = 𝑂(|𝑧|4), 𝑅3𝑠,1 and 𝑑23𝑠,1, 𝑠 = 1, 2, 3 are defined by the equalities (9) and (14),
respectively,

γ1 =

𝑟2∫︁
𝑟1

𝑟𝑅4
3,1(𝑟)𝑑𝑟, γ2 =

𝑟2∫︁
𝑟1

𝑟𝑅2
3,1(𝑟)𝑅6,1(𝑟)𝑑𝑟,

γ3 =

𝑟2∫︁
𝑟1

𝑟𝑅3,1(𝑟)𝑅6,1(𝑟)𝑅9,1(𝑟)𝑑𝑟, γ4 =

𝑟2∫︁
𝑟1

𝑟𝑅3
3,1(𝑟)𝑅9,1(𝑟)𝑑𝑟.

(29)

The solution 3(𝑟, θ, µ) — is orbitally stable.

Proof. According to Theorem 5.1.1 of [36] and Lemmas 1, 2, if Λ > 1, then the null solution
(23) is unstable for any µ > 0. If −1 < Λ < 1, then the null solution (23) is asymptotically stable
for any µ > 0. The case of Λ < −1𝑖𝑠𝑜𝑓𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡. Now let’s choose 𝐾 so that the condition is met:
Λ = Λ (𝐾) < −1.

Here µ𝑠 = (−1 − (−1)𝑠Λ)/λ23𝑠,𝑚, 𝑠 = 1, 2, . . . . If µ > µ1, then according to the Lemma 2
the null solution of the problem (23) is stable. When the parameter µ decreases and it passes
through the value µ1, one eigenvalue λ3 passes through the imaginary axis.

If µ2 < µ < µ1, then the instability index of the null solution is 1. The instability index of
the null solution increases by one when µ decreases and it passes through µ𝑠, 𝑠 = 2, 3, . . . .

In neighborhood 𝑣 = 0 for µ satisfying the inequality µ1 − δ < µ < µ1, there exists a central
manifold [36], which can be represented as

3(𝑟, θ, µ) = 𝑧𝑅3,1(𝑟) cos 3θ+ 𝑧2𝑃6(𝑟, µ) cos 6θ+ 𝑧3𝑃9(𝑟, µ) cos 9θ+ ξ(𝑧, 𝑟, θ, µ) |𝑧=𝑧(µ), (30)
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where 𝑃6(𝑟, µ), 𝑃9(𝑟, µ), . . . functions from space 𝐿𝑟
2[𝑟1, 𝑟2]. On the manifold (30), the equation (22)

takes the form
𝑧̇ = λ3(µ)𝑧 + 𝐶2𝑧

2 + 𝐶3𝑧
3. (31)

Find the coefficients of the expansions (30) and (31). For this, we substitute (30) and (31)
into equation (22):(︂

λ3(µ)𝑧 + 𝐶2𝑧
2 + 𝐶3𝑧

3

)︂(︂
𝑧𝑅3,1(𝑟) cos 3θ+ 2𝑧𝑃6(𝑟, µ) cos 6θ+ 3𝑧2𝑃9(𝑟, µ) cos 9θ

)︂
=

= µ

(︂
𝑧𝑅

′′
3,1(𝑟) cos 3θ+ 𝑧2𝑃

′′
6 (𝑟, µ) cos 6θ+ 𝑧3𝑃

′′
9 (𝑟, µ) cos 9θ+

+
𝑧𝑅

′
3,1(𝑟) cos 3θ

𝑟
+

𝑧2𝑃
′
6(𝑟, µ) cos 6θ

𝑟
+

𝑧3𝑃
′
9(𝑟, µ) cos 9θ

𝑟
−

−
9𝑧𝑅

′′
3,1(𝑟) cos 3θ

𝑟2
− 36𝑧2𝑃

′′
6 (𝑟, µ) cos 6θ

𝑟2
− 81𝑧3𝑃

′′
9 (𝑟, µ) cos 9θ

𝑟2

)︂
+

(32)

+Λ

(︂
− 𝑧𝑅3,1(𝑟) cos 3θ+ 𝑧2𝑃6(𝑟, µ) cos 6θ− 𝑧3𝑃9(𝑟, µ) cos 9θ

)︂
+

+Ω
(︂
− 𝑧𝑅3,1(𝑟) cos 3θ+ 𝑧2𝑃6(𝑟, µ) cos 6θ− 𝑧3𝑃9(𝑟, µ) cos 9θ

)︂2

−

−Λ
6

(︂
− 𝑧𝑅3,1(𝑟) cos 3θ+ 𝑧2𝑃6(𝑟, µ) cos 6θ− 𝑧3𝑃9(𝑟, µ) cos 9θ

)︂3

.

Due to the orthogonality of the system of eigenfunctions cos 3𝑠θ, 𝑠 = 1, 2, 3, we equate the
coefficients for these functions in the left and right parts of equality (32). R cos 3θ we get

𝑅3,1(𝑟)

[︂
𝑧

(︂
λ3 + 1 + Λ

)︂
+ 𝐶2𝑧

2(𝑡) + 𝐶3𝑧
3

]︂
=

= µ𝑧
(︂
𝑅

′′
3,1(𝑟) +

𝑅
′
3,1(𝑟)

𝑟
− 9𝑅3,1(𝑟)

𝑟2

)︂
−Ω𝑧3𝑅3,1(𝑟)𝑃6(𝑟, µ) +

Λ𝑧3𝑅3
3,1(𝑟)

8
.

Since 𝑅3,1(𝑟) — solution of the boundary value problem of the Bessel equation (11), then

𝑅3,1(𝑟)

[︂
𝑧

(︂
λ3 + 1 + Λ+ µλ23,1

)︂
+ 𝐶2𝑧

2 + 𝐶3𝑧
3

]︂
=

= −Ω𝑧3𝑅3,1(𝑟)𝑃6(𝑟, µ) +
Λ𝑧3𝑅3

3,1(𝑟)

8
.

Since λ3 = −1− µλ23,1 − Λ, then 𝐶2 = 0, 𝐶3𝑅3,1(𝑟) = −Ω𝑅3,1(𝑟)𝑃6(𝑟, µ) +
Λ𝑅3

3,1(𝑟)

8
. Therefore,

𝐶3 =
1

𝑑23,1

⎛⎝−Ω
𝑟2∫︁

𝑟1

𝑟𝑅2
3,1(𝑟)𝑃6(𝑟, µ)𝑑𝑟 +

Λγ1
8

⎞⎠ , (33)

where γ1 =
𝑟2∫︀
𝑟1

𝑟𝑅4
3,1(𝑟)𝑑𝑟, 𝑃6(𝑟, µ) =

γ2Ω𝑅6,1(𝑟)

2𝑑26,1 (2λ3 − λ6)
.
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a b
Fig. 1. Приближённое стационарное решение (30) для Λ = −3/2, ℎ = π/3 в цилиндрической системе координат
при µ = 0.1 (a) и µ = 0.01 (b)

Fig. 1. Approximate stationary solution of (30) for Λ = −3/2, ℎ = π/3 in a cylindrical coordinate system for
µ = 0.1 (a) and µ = 0.01 (b)

Based on the condition Λ < −1 and the equality (24), it is obvious that 𝐶3 < 0, then there
is a supercritical bifurcation of the "fork"type (see [36], ch. 6. 3) and from the trivial singular
the points of the equation (25) branch off two stable stationary points.

Carrying out similar (cumbersome) calculations for 𝑠 = 2, 3, we obtain the statements of
the Theorem.

Thus, in some neighborhood µ1 there exists a stationary solution 𝑣 =
= 3(𝑟, θ, µ) the equations (22), defined by the equalities (26)–(28). The solution 3(𝑟, θ, µ) —
is orbitally stable. □

The theorem is local in nature.
When using the package «Wolfram Mathematica 11.3» for Λ = −3/2, ℎ = π/3 approximate

solutions of (30) obtained in the Theorem are constructed for various values of the bifurcation
parameter µ (fig. 1).

Corollary 1. The results obtained are consistent with the one-dimensional case when a narrow
ring can be replaced by a circle. For ℎ = π/3, Λ < −1, there exists δ > 0 and µ1 = (−1− Λ)/9,
such that for any values of the parameter µ satisfying the inequality µ1 − δ < µ < µ1,there is a
continuous branch of stationary points 𝑧(µ) > 0 of the equation

𝑧̇ = λ3(µ)𝑧 +
1

2

(︃
Λ
4
− Ω2(︀

2λ3 − λ6
)︀)︃ 𝑧3 + . . . ,

which corresponds to the stationary solution 𝑣=31(θ, µ) equations (22) on circle 𝑆 (𝑟1=𝑟2) with
condition 2π-periodicity, defined by equality

31(θ, µ) = 𝑧 cos 3θ+ 𝑧2
Ω

2 (2λ3 − λ6)
cos 6θ+

+𝑧3
1

2 (3λ3 − λ9)

[︂
− Ω2

(2λ3 − λ6)
+
Λ
12

]︂
cos 9θ+ ξ(𝑧, θ, µ) |𝑧=𝑧(µ),

where ξ(𝑧, θ, µ) = 𝑂(|𝑧|4), λ3𝑠 = −1 + (−1)𝑠Λ− (3𝑠)2µ, 𝑠 = 1, 2, 3.
The solution 31(θ, µ) — is orbitally stable.
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3.2. The Galerkin method. In order to investigate the asymptotics of stationary
solutions of the problem (18)–(21) with a decrease in the bifurcation parameter µ and its
departure from the critical value of µ1, we will use the Galerkin method, according to which we
will present approximate solutions in the following form

3*(𝑟, θ) =
𝑁∑︁
𝑘=1

(𝑧𝑘 exp[𝑖𝑘θ] + 𝑧𝑘 exp[−𝑖𝑘θ])𝑅𝑘,1(𝑟), (34)

here 𝑧𝑘, 𝑧𝑘 are complex conjugate expressions.
Requiring that the function 3*(𝑟, θ), defined by the equality (34), satisfies the equation (18),

we obtain a system of ordinary differential equations

𝑧̇𝑘 = λ𝑘𝑧𝑘 + σ𝑘(𝑧, 𝑧),

𝑧̇𝑘 = λ𝑘𝑧𝑘 + σ𝑘(𝑧, 𝑧),
(35)

where λ𝑘(µ) = −1− µλ2𝑘,1 + exp[𝑖𝑘ℎ]Λ, λ𝑘(µ) = −1− µλ2𝑘,1 + exp[−𝑖𝑘ℎ]Λ, σ𝑘(𝑧, 𝑧), σ𝑘(𝑧, 𝑧) —
forms of the third degree from 𝑧𝑘, 𝑧𝑘, 𝑘 = 1, 2, . . . , 𝑁 .

One of the solutions of the (35) system is a null solution whose stability is determined by
the spectrum {λ𝑘(µ), λ𝑘(µ)} of the corresponding stability matrix. As above, we assume that the
condition is met Λ < −1.

Let ℎ = π/3, then the first critical value of the bifurcation parameter at which the
zero stationary solution of the system (35) loses stability, µ1 = (−Λ− 1)/λ23,1. As a result, a
bifurcation of the type «fork» occurs and at µ < µ1 a pair of stable stationary points ±𝑧*(µ) =
{0, 0,±𝑧*3 , 0, 0,±𝑧*6 , . . .}, being solutions of an algebraic system of equations

λ𝑘𝑧𝑘 + 𝜀𝑘(𝑧𝑙) = 0, 𝑘, 𝑙 = 1, 2, . . . , 𝑁, (36)

where 𝜀𝑘(𝑧𝑙) is a third degree polynomial containing the second and third degrees 𝑧𝑙.
Based on this, taking into account (34), the spatially inhomogeneous stationary solution

of the problem (18)–(21) is determined by the asymptotic equality

3*(𝑟, θ, µ) =
[𝑁/3]∑︁
𝑘=1

𝑧3𝑘(µ) cos[3𝑘θ]𝑅3𝑘,1(𝑟). (37)

For example, for 𝑁 = 3, the solution is 𝑧*(µ) is determined by the system

λ3𝑧1 +
1

8𝑑23

[︀
Λ
(︀
β3𝑧31 + 2δ36𝑧22𝑧1 + 2δ39𝑧23𝑧1 + ζ39𝑧

2
1𝑧3 + ξ639𝑧

2
2𝑧3
)︀
− 8Ω𝑧2 (δ369𝑧3 + ξ36𝑧1)

]︀
= 0,

λ6𝑧2 +
1

8𝑑26

[︀
−Λ𝑧2

(︀
β6𝑧22 + 2δ36𝑧21 + 2δ69𝑧23 + 2ξ639𝑧1𝑧3

)︀
+Ω𝑧1 (8δ369𝑧3 + 4ξ36𝑧1)

]︀
= 0,

λ9𝑧3 +
1

24𝑑29

[︀
3Λ
(︀
β9𝑧33 + 2δ39𝑧21𝑧3 + 2δ69𝑧22𝑧3 + ζ39Λ𝑧

3
1 + ξ639𝑧

2
2𝑧1
)︀
− 24δ369Ω𝑧2𝑧1

]︀
= 0,

where

β𝑘 =

𝑟2∫︁
𝑟1

𝑟𝑅4
𝑘,1(𝑟)𝑑𝑟, 𝑘 = 3, 6, 9; δ𝑘𝑙 =

𝑟2∫︁
𝑟1

𝑟𝑅2
𝑘,1(𝑟)𝑅

2
𝑙,1(𝑟)𝑑𝑟, 𝑘, 𝑙 = 3, 6, 9(𝑘 < 𝑙);

ζ39 =

𝑟2∫︁
𝑟1

𝑟𝑅3
3,1(𝑟)𝑅9,1(𝑟)𝑑𝑟, ξ36 =

𝑟2∫︁
𝑟1

𝑟𝑅2
3,1(𝑟)𝑅6,1(𝑟)𝑑𝑟,

δ369 =

𝑟2∫︁
𝑟1

𝑟𝑅2
3,1(𝑟)𝑅

2
6,1(𝑟)𝑅

2
9,1(𝑟)𝑑𝑟, ξ639 =

𝑟2∫︁
𝑟1

𝑟𝑅2
6,1(𝑟)𝑅3,1(𝑟)𝑅9,1(𝑟)𝑑𝑟.

(38)

142
Kornuta A.A., Lukianenko B.A.

Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2022;30(2)



a b
Fig. 2. Приближённое решение (30), полученное с применением метода Галёркина, для Λ = −3/2, ℎ = π/3 в
цилиндрической системе координат при µ = 0.1 (a) и µ = 0.01 (b)

Fig. 2. Approximate solution (30) obtained using the Galerkin method for Λ = −3/2, ℎ = π/3 in a cylindrical
coordinate system for µ = 0.1 (a) и µ = 0.01 (b)

Numerical analysis for 𝑁 = 5 was carried out at fixed values of the parameters Λ = −3/2,
𝑂𝑚𝑒𝑔𝑎 = 0.129264, which corresponds to 𝐾 = 2, γ = 0.761058, 𝑤 = 1.74147. The following
results were obtained.

1. Critical value of the bifurcation parameter µ* ≈ 0.113315.
2. For µ > µ*, the null solution of the system (36) is stable.
3. When the parameter µ decreases and the critical value µ* passes, one of its own values of the

spectrum of the stability matrix of the null solution λ3 passes through
zero and becomes positive. As a result, a bifurcation of the type «fork»
occurs and a pair of stable stationary solutions branches off from the zero solution that is
losing stability. In particular, for µ = 0.11331, the solution of the system is (36) 𝑧*(µ) =
= {0, 0,±0.0481462.0, 0,±0.0000198428, 0, . . .}.

4. When the parameter µ is further reduced, the eigenvalue of λ3 remains positive.
5. The spectrum of the stability matrix of the solution 𝑧*(µ) lies on the negative semi-axis.

In the package «Wolfram Mathematica 11.3» for various values of the bifurcation parameter
µ, approximate solutions of 3(𝑟, θ, µ)𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝑢𝑠𝑖𝑛𝑔𝑡ℎ𝑒𝐺𝑎𝑙𝑒𝑟𝑘𝑖𝑛𝑚𝑒𝑡ℎ𝑜𝑑𝑎𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑, determined
by the equality (37) (Fig. 2).

Approximate solutions of the problem (18)–(21), constructed using the method of central
manifolds and the Galerkin method, practically coincide.

3.3. Running wave. Note that, unlike the results obtained above, the presence of rotation
of spatial coordinates can simulate a situation where a spatially homogeneous solution loses
stability in an oscillatory manner when the parameters in the problem (µ,𝐾) change. In this case,
a traveling wave occurs.

Next, using the representation of the solution (34) of the problem (18)–(21) in the Galerkin
method, we construct a two-mode approximation of its periodic solution of the type «traveling
wave», which is born as a result of the Andronov – Hopf’s bifurcation hspace1pt at the highest
critical value of the parameter µ = µ* : {Re λ(µ*) = 0} (24) from the zero solution losing
vibrationally stability systems (35).

We are looking for the specified solution in the form
𝑧1(𝑡) = ρ1 exp[𝑖θ1], 𝑧2(𝑡) = 0, 𝑧3(𝑡) = ρ3 exp[𝑖(3θ1 + α3)];

𝑧1(𝑡) = ρ1 exp[−𝑖θ1], 𝑧2(𝑡) = 0, 𝑧3(𝑡) = ρ3 exp[−𝑖(3θ1 + α3)],
(39)

where ρ𝑘 = ρ𝑘(𝑡, µ) > 0, θ𝑘 = θ𝑘(𝑡, µ), 𝑘 = 1, 3.

Counting θ1(𝑡, µ) = ω(µ)𝑡. Substitute (39) into (35), we get a system for determining
ρ𝑘,α3 :
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ρ1(λ*1𝑑
2
1 − 𝑖ω)− 1

2
Λ exp[𝑖ℎ]

[︀
ξ13 exp[𝑖α3]ρ3ρ21 − β1ρ31 − 2δ13ρ23ρ1

]︀
= 0,

ρ1(λ̂*1𝑑
2
1 + 𝑖ω)− 1

2
Λ exp[−𝑖ℎ]

[︀
ξ13 exp[−𝑖α3]ρ3ρ21 − β1ρ31 − 2δ13ρ23ρ1

]︀
= 0,

ρ3(λ*3𝑑
2
3 − 3𝑖ω)− 1

6
Λ exp[3𝑖ℎ]

[︀
ξ13 exp[−𝑖α3]ρ31 − 3β3ρ33 − 6δ13ρ3ρ21

]︀
= 0,

ρ3(λ̂*3𝑑
2
3 + 3𝑖ω)− 1

6
Λ exp[−3𝑖ℎ]

[︀
ξ13 exp[𝑖α3]ρ31 − 3β3ρ33 − 6δ13ρ3ρ21

]︀
= 0.

(40)

Here 𝑑2𝑘(𝑘 = 1, 3) is defined by the equality (14), β𝑘(𝑘 = 1, 3), δ13 are defined by the equalities (38),

ξ13 =
𝑟2∫︀
𝑟1

𝑟𝑅3
1,1(𝑟)𝑅3,1(𝑟)𝑑𝑟.

With µ > µ*, the system has only zero (ρ1 = 0, ρ3 = 0) sustainable solution. When the
parameter µ decreases and the critical value µ* passes, the null solution loses stability and at the
same time a solution of the form is born:

ρ21(µ) =
6Ψ𝑐

3

Λ (Ψ𝑐
1 (3γ1(Ψ

𝑐
3)

2 − 4δ13Ψ𝑐
3 − γ3Ψ𝑐

1))

[︃
ω
(︀
3ω sin 4ℎ+ 𝑑23Υ

𝑐
13

)︀
+

+
(︀
𝑑21
(︀
3ωΥ𝑐

31 + 𝑑23
(︀
Λ sin 3ℎ

(︀
1 + µλ23,1

)︀
−Υ𝑠

(︀
1 + µλ21,1

)︀)︀)︀)︀ ]︃
,

sin2 α3(µ) = − 12Ψ𝑐
1Ψ

𝑐
3

Λ2ξ213ρ1(µ)
4
,

cosα3(µ) =
sinα3(µ)

(︀
γ1Λρ21(𝑡)− 2𝑑21Λ

)︀
Ψ𝑠

2Ψ𝑐
1

+
4δ13Ψ𝑐

1

Λξ213 sinα3(µ)ρ
2
1(𝑡)

,

ρ3(µ) =
−2Ψ𝑐

1

Λξ13 sinα3(µ)ρ1(µ)
,

(41)

where Ψ𝑐
𝑘 = 𝑘ω cos(𝑘ℎ)− 𝑑2𝑘 sin(𝑘ℎ)(µλ

2
𝑘,1 + 1), 𝑘 = 1, 3,Ψ𝑠 = ω sinℎ+ 𝑑21 cosℎ(µλ

2
1,1 + 1), Υ𝑐

𝑗𝑘 =

= −Λ cos 𝑗ℎ+ cos 4ℎ(µλ2𝑘,1 + 1), (𝑗, 𝑘 = 1, 3, 𝑗 ̸= 𝑘), Υ𝑠 = −Λ sinℎ+ sin 4ℎ
(︀
µλ23,1 + 1

)︀
, the value

of ω is determined from the basic trigonometric identity for α3(µ), the sign sinα3(µ) is chosen
opposite to the sign Ψ𝑐

1.

Therefore, the system (35) at µ < µ* has the solution

𝑧1(𝑡, µ) = ρ1(µ) exp[𝑖θ1(µ)𝑡], 𝑧2(𝑡) = 0, 𝑧3(𝑡, µ) = ρ3(µ) exp[𝑖(3θ1(µ)𝑡+ α3(µ))];

𝑧1(𝑡, µ) = ρ1(µ) exp[−𝑖θ1(µ)], 𝑧2(𝑡) = 0, 𝑧3(𝑡, µ) = ρ3(µ) exp[−𝑖(3θ1(µ)𝑡+ α3(µ))].
(42)

Substituting (42) into (34), we get the periodic solution 3*(𝑟, θ, 𝑡, µ) tasks (18)–(21).
The specified solution is born stable.
Numerical simulation was performed for ℎ = 2π/3 with fixed values of Λ = −3/2, Ω =

0.129264, which correspond to the parameters 𝐾 = 2, γ = 0.761058, 𝑤 = 1.74147 of the original
problem. In the package «Wolfram Mathematica 11.3», Galerkin approximations of periodic
solutions of 3*(𝑟, θ, 𝑡, µ) were constructed for various values of the bifurcation parameter µ at
𝑁 = 5 (Fig. 3).
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a b
Fig. 3. Приближённое решение (30) типа «бегущая волна», полученное с применением метода Галёркина,
для Λ = −3/2, ℎ = 2π/3 при µ = 0.1 (a) и µ = 0.01 (b)

Fig. 3. An approximate solution (30) of the “traveling wave” type obtained using the Galerkin method for Λ = −3/2,
ℎ = 2π/3 for µ = 0.1 (a) and µ = 0.01 (b)

Conclusion

The paper considers an initial boundary value problem for a parabolic functional differential
equation in a ring domain, which describes the dynamics of phase modulation of a light wave that
has passed through a thin layer of a Kerr-type nonlinear medium in an optical system with a
feedback loop, with an involution operator and by Neumann conditions on the boundary in the
class of periodic functions. Using the Green’s function, an integral representation of the equation
under consideration is obtained, which makes it easier to find the coefficients of asymptotic
expansions, prove the existence and uniqueness theorems (similar to [30]), and also use a different
number of coefficients of expansion of the nonlinear component in the right side of the original
equation in the neighborhood of the selected solution (for example, stationary).

Using the method of central manifolds, a theorem is proved on the existence in the vicinity
of the bifurcation value of the parameter µ (diffusion coefficient) of a spatially inhomogeneous
solution that branches off from a spatially homogeneous solution. Using the Galerkin method,
numerical modeling of bifurcating spatially inhomogeneous stationary solutions and traveling
waves at fixed parameter values was carried out.

The considered mathematical model corresponds to an optical scheme in which the phase
of the light wave is visualized due to the Kerr nonlinearity. The phase distribution corresponds to
the intensity distribution in the cross section. Visualization of the numerical solution confirms
the theoretical calculations and shows the possibility of forming complex phase structures.
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