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Abstract. Purpose is to study the mechanisms leading to genetic divergence (stable genetic differences between
two adjacent populations). We considered the following classical model situation. Populations are panmictic with
Mendelian rules of inheritance. The action of natural selection (differences in fitness) on each of population is the
same and is determined by the genotypes of only one diallel locus. We assume that adjacent generations do not
overlap and genetic transformations can be described by a discrete time model. This model describes the change in
the concentration of one of the alleles in each population and the ratio (weight) of first population to the total
size. Methods. We used the analogue of saddle charts to construct parametric portraits showing the domains of
qualitatively different dynamic modes. The study is supplemented with phase portraits, basins of attraction and
bifurcation diagrams. Results. We found that the model dynamic regimes qualitatively coincide with the regimes
of a similar model with continuous time, but only for a weak migration. With a strong coupling, fluctuations of
the phase variables are possible. We showed that the genetic divergence is possible only with reduced fitness of
heterozygotes and is the result of a series of bifurcations: pitchfork bifurcation, period doubling, or saddle-node
bifurcation. After these qualitative changes, the dynamics become bi- or quadstable. In the first case, the solutions
corresponding to the genetic divergence are unstable and are just a part of the transient process to monomorphic
state. In the second case, the divergence is stable and appears as 2-cycle for a strong migration coupling. Conclusion.
In neighboring populations, movement towards an asymptotic genetic structure (monomorphism, polymorphism or
divergence) can be strictly monotonous or in the form of damped unstable or undamped stable fluctuations with a
period of 2 for biologically significant parameters. For insignificant parameters, we found a complex dynamics
(chaos) that consist of divergent fluctuations around fixed points and quasi-random transitions between them.
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Introduction

The theoretical study of the evolution and microevolution of biological populations under
the influence of natural selection has a long and rich history [1-3]. One of the most interesting tasks
is related to the search for the basic mechanisms of speciation, and its complexity is determined
by the following circumstances. On the one hand, under the action of selection in the population
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is the consolidation (fixation) of such a trait (genotype), which provides the greatest fitness of
individuals and, as a result, the highest reproduction rate. As a result , in isolated in populations,
such a genotype is fixed, and others disappear or dissolve among heterozygotes, and there is no
subsequent evolution preceding a new one speciation does not occur. On the other hand, in the
presence of geographical isolation, pronounced hereditary differences may occur between initially
genotypically similar aggregates of individuals (populations): primary genetic divergence.

It is important to understand under what conditions the primary genetic divergence will be
stable and will persist if spatial isolation between populations is violated.

This task has been considered by many researchers [4-7|. It has been shown that in order
to achieve divergence between different populations, only only genetic mechanisms — still need a
strong ecological mechanism that provides regulation of population growth and significantly affects
evolutionary processes. In addition, genetic and ecological processes should operate at comparable
speeds [8,9]. Growth restrictions may be related to various mechanisms of self-imitation within
the population [10-13] or interspecific interactions [14-16|. Apparently, this is also true for the
more general case when selection is based on two or more traits (genotype) [17-19].

This work continues the description of the mechanisms and the study of the conditions for the
occurrence of primary genetic divergence, which was started in [20]. A discrete-time mathematical
model based on recurrent equations (maps) and describing the change in allele frequencies and the
ratio of numbers in the system of two adjacent panmictic populations associated with migration is
considered. From a meaningful, biological point of view, discrete-time models are more adequate
than models based on differential equations, in cases where Populations of biological species with
a fixed breeding season occupying a very short life cycle period are considered [21]. In particular,
this is usually characteristic of species with pronounced stages of development, metamorphosis
and non-overlapping generations, when all the individuals involved in breeding do not survive
until the next breeding season.

In this paper, the possibilities, conditions and mechanisms of the formation of a stable
difference in the genetic structures of the populations under consideration are investigated by the
methods of bifurcation analysis. The model under study, being a discrete analog models from the
work [20], has a number of dynamics features related to fluctuations and complex modes (chaos).
Their research, to some extent, it goes beyond the scope of the substantive part of the problem,
but it may be interesting for specialists in the theory of dynamical systems.

1. Brief description of the model

As in the previous work [20], we will limit ourselves to describing the simplest situation
when all diversity in a population is determined by a single diallel locus with allelomorphs A and
a. To describe the action of natural selection each genotype — AA, Aa and aa — can be matched
with one coefficient w4, w4, and weg, called fitness. This coefficient is equal to half the ratio of
the number of gametes that entered the zygotes of descendants of this genotypic class, survivors
and those who have started migration and gametoproduction (reproduction), to the total number
of organisms born of this genetic class. Assume that there is local panmixia, that is, free crossing
of individuals with different genotypes occurs in each population. It is easy to show that in the
case of panmixia, to describe the dynamics of the genetic structure of a local population, it is
enough to monitor a single value of ¢ — the concentration of gametes carrying, for example, the
allele A, since between the concentrations of fertilized zygotes (individuals), bearing the genotypes
AA, Aa and aa, and the concentrations of alleles A and a present in the gametes of individuals
that formed them, in this case, the relations following from the Hardy-Weinberg law are fulfilled.
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In the case of a local population with disjoint generations, the concentration of gametes
with the A allele, as well as the total number of N of the population, are determined by the
following classical equations [4-6], which relate their values in adjacent generations:

a(t +1) = g (wara(t) + wao (1 - a(1)) ) /0(2), "
N(t+1)=w(t)N(t),

where t = 0,1,2,... — generation number, w(t) = waaq?(t) + 2wAaq(t)(1 — q(t)) + waa (1 — q(t))?
— average fitness of the population. The first equation of the system (1) does not depend on the
second and describes the change in the concentration of the allele A under the action of natural
selection. Different ratios of the parameters wa 4, wa, and wg, defines a specific type of selection
in the population. Since the model is sufficiently aggregated, it is not so important to understand
the qualitative properties of the model (1) as the absolute values of the parameters, but their ratio.
In the case of the so -called driving selection was > waq > Waq > 0 (Weq > Wag > waa > 0)
only the fixed point ¢ = 1 is stable (g = 0). There are no other fixed points. As a result , the
concentration of the A allele increases (decreases) according to the logistic law, from any initial
state 0>¢(0)>1, linebreak and only homozygotes with AA (aa) alleles remain in the population,
and the second homozygotes and heterozygotes inevitably die. In the case when the fitness of
heterozygotes lies outside the range adaptations of homozygotes, between fixed points 0 and 1
appears additional point ¢* = (Waeq —WAq)/(WAA —2WAq+Waa). With wag > was and wag > Weq
it is stable, and over time , a stable polymorphism is established in the population, in which
all three genotypes coexist with a constant value of both their concentrations and frequencies
of alleles of their components. With wa, < waa and wa, < Weq, the point ¢* — is unstable. In
the latter case, at 0 > ¢(0) > ¢*, the frequency of the A allele drops to 0, and at ¢* > ¢(0) > 1
grows to 1. However, polymorphism in this case can persist in the population for quite a long
time (during transition process) if ¢(0) is close to ¢* (but strictly not equal to this value).

In any of these three cases, the average fitness of w(t) can only grow as the genetic structure
(the value of ¢(t)) will tend to one of the possible stationary states (fixed points 0, 1 or 0 < ¢* < 1).
At the beginning of this growth, fitness, as a rule, does not exceed one. As a result, at certain
values of N(0), the number of N(¢) in the model (1) may fall so much that it reaches zero, while
g will continue to rise or fall. Obviously, the model (1) loses its meaning here. However, earlier
it may happen that the value of w(¢) will reach one and the decline in numbers will stop. Or
from some number of the season ¢, the value of w(t) will exceed one, and the fall will be replaced
by exponential growth. Having reached the final genetic structure (the limit value of ¢(t) at
t — 00), fitness also reaches its limit value, depending on which limit state is stable: w(t) — wgq
if q(t) = 0; W(t) = waa, if ¢(t) = 1; W(t) = (WAAWaa — WY, )/ (WaA — 2WAq + Waa) if q(t) — ¢*.
Obviously, the absolute values of the parameters waa,wa, and wg, are already important here,
as well as the initial genetic structure and starting number ¢(0) u N(0).

Let us now consider two such adjacent populations that exchange migrants with the intensity
of migration flows proportional to the size of the population from which these migrants originate.
The proportionality coefficient or, in other words, the migration coefficient m is the same for all
genotypes in both populations. In this case, the following sequence of population processes is
possible: formation of zygotes from gametes, mortality or selection of zygotes, migration between
populations after selection, production of new gametes. Let’s limit ourselves to the case when both
populations identical in terms of fitness values of w4, w4, and wg,, as well as gametoproducts.
Let’s assume that heterozygotes produce the same number of gametes of each type, there is no
differentiation of gamete survival, and gametoproduction is calculated taking into account the
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loss of gametes. By describing these processes through changes in the numbers of gametes and
zygotes at different stages of population development, we can obtain the following system of
recurrent equations with four variables:

alt+1)= o ((1 = m)au () (warqr(8) + was (1 - @1 (1) ) +
+ mlg(f)(t)fn(t) (wAACD(t) + wAa(l - QQ(t))>> )
@t+1) = Ggl(t) ((1 —m)qa(t) (U)AAQQ(t) +waa(l— 92(75)))+ (2)
+ mlf(;)(t)m(t) (wAAth () + waa (1 - ql(t))>> ;
p(t+1) = C;;((t?p(t),
| Nt+1) = GON@),

p ¢1 and g2 — concentrations of the A allele in the first and second populations (0<g;<1),
p = Ni/(N14+N2) — weight of the first population (0 < p < 1), N = Ny + No — the number of

1—p(t
both populations in the tth season. Coefficients G1(t) = (1 —m)w1 (t) + mip()@(t), Go(t) =

p(t)

(1—m)s(t +mlf(;)(t)wl (t) and G(t) = p(t)G1 () + (1 —p())Ga(t) = p(t)B (t) + (1 —p(t) 2(t)
are equal to the average generalized fitness of the first, second, and overall of the entire system
populations where W; = waaql(t) +
+2wAaqi (1) (1 — qi (1)) + waa(1 — qi(t))? (i = 1,2). The model (2) represents two interconnected
systems (1) with a variable migration coefficient. Due to the independence of the concentrations
of ¢; and the weight of p from the total number, we can limit ourselves to considering only the
first three equations.

It should be noted that in the traditional approach, when describing the dynamics of allele
frequencies, the number as a variable is not often used. It is believed that there are quite a lot
of individuals and selection does not significantly change the total number — only the ratio of
genotypes changes. For example, the articles [10,22] consider a similar model situation, but the
number is considered as a parameter, the variation of which changes the area of monomorphism
and polymorphism in adjacent populations. Using population size or weight complicates the
model compared to the models in these two papers — in (2) the coupling coefficient turns out
to be a variable. It is easy to show that in the case of synchronous monotonic growth of both
populations (p = 1/2) qualitatively, the behavior of the system (2) and the models from these
works will coincide. For the sake of completeness of the study, this case is considered in the last
paragraph of the article.

It is also important to emphasize here that the model (2) corresponds to the situation
when migration occurs after selection in the specified chain of population processes . We can also
consider the case when migration precedes selection. However, it is not difficult to show that the
model equations in the case of the same selection in adjacent populations does not depend on the
sequence of these population processes and in these situations completely coincide [6].

We specify the type of selection. We are interested in the possibility and conditions for the
formation of genetic divergence (stable differences in genetic structures) in the system of two
adjacent populations living in a homogeneous area. The question arises: what type of selection
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can lead to genetic divergence? Driving selection, when w4 > Waq > Wag OF Wag > WAq > WAA,
is clearly not suitable here. So it is necessary to analyze the situation when the fitness of a
heterozygote lies outside the range of adaptations of homozygotes. Let us confine ourselves to
consideration «symmetric» case w44 = wg, and, since without taking into account the equation,
describing the dynamics of the number, only the ratios of these parameters are important, let’s
assume that wagq = wee = 1, waq = 14+ s > 0, where s > —1 — the selection coefficient for
heterozygote [10,22,23]. Given this, we rewrite the equations (2) as follows:

a(t+1) = Gll(t) ((1 —m)a(t) (14 (1 - a(®))+

+m 2000 (14501 _qQ@))),

p(t)
a2(t+1) = Gzl(t) <(1 = m)a(t) (14 (1 - () )+ o
o1+ -a0) )
p(t+1) = (2(%)19(75)-

Here the average fitness is equal to the following values: Gi(t) = (1 — m)(1 + 2sq1(t) X

(1= @)+ m B 2501 - ) Galt) = (1= m)(1+ 251 - () +
2 (1 2500010 () 1 GLE) = L 25(0(0m (01— (8 + (L= ()1~ 220).

The number, as before, can be found from the equation: N (¢t + 1) = G(t)N(t). For biological
reasons , it makes sense to talk only about those solutions of the system (3) that lie entirely in
the unit cube: 0 < 1 <1, 0< e <1lul<p<1.

For the model (3), the most interesting case is s < 0, since each individual of its the
equation, like the local model (1), turns out to be bistable. As a result , in the case of complete
isolation (m = 0), different territories may persist significant differences in the genetic structure
(divergence) — on one there are individuals with the A allele, on the other — with the a allele.
A question arises. What are the conditions for the existence and maintenance of differences in
the case of a non-zero migration relationship between populations? Are there any significant
differences from the case continuously the developing population considered in the previous
work [20]? To find the answer, we will perform a qualitative study of the system (3).

To begin with, we note that it is necessary to consider only the case of s > —1 in a
meaningful way. Because otherwise the fitness of w4, for heterozygotes will be a negative value.
As a result, there may be a situation in which the abundance (weight) or concentration of
the A allele may reach negative values or experience fluctuations that go beyond the limits of
a single cube. However, as will be shown below, even with —2 < s < —1, it is not difficult
to find limited solutions of the system (3) that they lie entirely in a single cube and, at first
glance, do not contradict the biological content. This becomes possible due to the relationship
between populations, when negative values of allele frequencies in one site are «compensated»
by migration influx from another site, and the final frequency turns out to be positive. For a
complete understanding of the behavior solutions of the system (3) we will consider not only the
biologically significant range of values of the selection coefficient s > —1, but also the values of
s < —1, at which, in particular, irregular dynamics occurs.
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2. Research on the sustainability of solutions

Despite the cumbersome appearance of the system (3), it is possible to perform a fairly
complete study of the stability of each fixed point, including calculating the eigenvalues of the
Jacobi matrix at each of the points, determining the areas of their existence and describing the
mechanisms for the formation of different dynamic modes.

The system (1) has the following fixed points:

e Fy(0,0,1) — both populations are represented only by individuals with the aa genotype
(the AA or Aa genotype is missing) (monomorphic population);

e F;(1,1,1) — both populations consist only of individuals with the AA genotype (monomorphic
population);

e F5(1/2,1/2,1/2) — both populations include individuals all genotypes at the same concentration
of each of the two alleles (polymorphic population);

1 Vs?2+4 1 Vs?2+4 1
e pair of dots F3 4 (2 + i ;_ ms’ 3 F i ;— mS, 3| which exists at s < 0 and s+4m <
s s

0. For s > 0, it exists for any 0 < m < 1, but lies outside the unit cube, which contradicts

the meaning phase variables. A pair of dots is born (or disappears) on the line m = —s/4 E3
and F4 due to fork bifurcation. In this case, the point F «splits» into a pair of points Es 4.
Each of these points corresponds to a divergent state of the population system (different
alleles predominate in each population). However, as in the case of a continuous-time model,
they are unstable at any parameter values.

To study the general nature of the dynamics, consider the value Q(t) = ¢1(t)p(t) +
+ q2(t)(1—p(t)), which is equal to the concentration of the A allele in both populations. Substituting
the right parts of the system (3) into this expression and giving similar terms, we obtain a non-
autonomous recurrent equation:

Q1) = g (Q(t) + G“;”) @)

The increment of @) is equal to:

Git)y—1(1
AQ=Q+1)-Q(t) = Ol <2 - Q(t)>~
Thus, the mapping (4) has a fixed point @ = 1/2 (for AQ = 0). This means that in the phase
space of the system (3) the expression ) = 1/2 defines a surface that turns out to be invariant
with respect to the mapping (3) (mapped to itself). Then all the trajectories whose beginnings lie
on this surface belong entirely to it.

It is easy to make sure that the points Es, F3 and E4 belong to the surface @ = 1/2. The
stability of fixed points and the nature of global dynamics are closely related to the properties of
this surface. It is easy to show that for s > 0 the inequality 0 < % < 1 holds, then the surface
Q@ = 1/2, like the point Es, is attractive. W —2 < s < 0 is in progress —1 < Gal < 0, then the
surface @ = 1/2 is a repulsive separatrix surface dividing the unit cube into two equal basins of
attraction of stable points Eg and Ej. Let ’s denote this surface as W¥.

To understand the nature of the movement of various trajectories , consider the local
stability of each of the fixed points of the system (3), which is determined by the values of the
eigenvalues of the Jacobi matrix calculated at each fixed point (multipliers A;). In Fig. 1 shows the
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arrangement of eigenvalues revealed for the system (1) relative to the unit circle. It is established
that the system (1) has only real eigenvalues, which, apparently, is also true for multiple periodic
points arising in the system (3) (in fig. 1 only a pair is shown 2P 3).

Numerical analysis of the stability of fixed points with variation of the parameter s from
—2 to 2 and m from 0 to 1 revealed 11 combinations of stability types of fixed points (drain,
source or saddle with different numbers of stable and unstable proper subspaces). In this range
of parameters, at least one point is stable (in Fig. 1 this corresponds to the selected cell): at
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Fig. 1. Pacnonoxenune coGCTBEHHBIX wmMCeN HEMOABUKHBIX (F;) m mepumommaeckux Toduek (2P) oTHOCHTENHHO
€JIMHUYHON OKPY?KHOCTH B Pa3HBIX 00J1aCTsIX Ha napamerpudeckoM noprpere. st nap Eo 1, Es 4 n 2P 2 3HaueHns
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CyIIeCTBYeT

Fig. 1. Location of eigenvalues on a unit circle for fixed (F;) and periodic points (2P) in different domains of
the parametric portrait. For couples Eo 1, E34 and 2P; 2, the eigenvalues are the same. The highlighted cell
corresponds to a stable point or a pair of points. NE is point does not exist
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s> 0, the point F> is stable, at —2 < s < 0 — the point Fy and Eq1. At —4 < s < —2 there are
no stable points in the system (3), and complex dynamics are observed. Us < —4 stable points
reappear, and two more are added to the 11 combinations of stable and unstable points (areas 12
and 13 in Fig. 1). Each of these combinations is preserved at a certain ratio of parameters s and
m. As a result, 13 regions can be distinguished on the parameter plane, characterized by a certain
ratio of stable and saddle fixed points (analogous to saddle maps [24]). It can be argued that
qualitatively equivalent types of dynamics are formed in each of these areas. In Fig. 1 and 2, a
these parameter areas are indicated by circles with numbers 71—-13.

2.1. Simple dynamics modes. Let us consider the areas of stability and the simple
dynamics modes arising in them.

In the areas 1—4, only the point Fs is stable, the rest are — saddles. As can be seen from
Fig. 1, these regions differ in the dimension of stable and unstable proper subspaces (manifolds) in
the neighborhood of each of the fixed points (see Fig. 1). For example, in the regions I and 4, the
saddle points Fy and E; have a one-dimensional stable manifold (one eigenvalue lies inside the
unit circle), and in the regions 2 and 3 — a two-dimensional stable manifold (two the eigenvalues
lie inside the unit circle). But their more significant difference is that as soon as the migration
parameter m turns out to be greater than 1/2 (but not more than 1), some of the eigenvalues of
the Jacobi matrix (multiplier ;) turn out to be negative, and this happens simultaneously with
all fixed points. As a result, dynamic modes arise for parameters from the 8 domain, in which
the striving for a single stable point Fs is accompanied by damping oscillations around it (see
Fig. 2, ¢). At the same time the trajectory remains strictly on one side of the surface @ = 1/2.
In the area 4 , the damped oscillations around the point Ey are preceded by a monotonous
movement in its side, combined with divergent oscillations, if the initial conditions are taken in
the vicinity of unstable points Ey or F;. The nature of these fluctuations is clearly visible in the
variable p (Fig. 2, e). Otherwise , there are no fluctuations, and only a monotonous movement
to the point FEs is observed. It is important to emphasize that these fluctuations, if they occur,
never go beyond the limits of a single cube, unlike similar fluctuations in other areas at s < 0. In
addition, in the areas of 1—4 the fixed points E3 and E4, which correspond to genetic divergence,
lie outside the unit cube and are unstable nodes (sources).

In contrast to this situation in the areas 12 and 13, as well as in the area 4 at s < —4
(topologically equivalent to the area 4 for s > 0) the points E3 and E4, as well as the periodic
points 2P o lie in the unit cube. For 0 < m < 0.5 , the points 2P » lie on the line ¢ = 1 — ¢o,
p = 0.5 between the points F3 and Fy4, and at 0.5 < m < 1, the points E3 and Fj4 lie between
2P 2. As a result, there is a situation where damped oscillations are almost always they go beyond
the limits of a single cube. Moreover, in these areas, the trajectory periodically it turns out to be
on different sides of the surface Q = 1/2 when moving to a point stable in these areas Fs.

Solutions of the system (3) corresponding to genetic divergence, lying in a single cube, can
be expected to be found with reduced fitness of heterozygotes, that is, at s < 0. In this case, the
parametric space turns out to consist of a larger number of regions, some of which are numbered
(where there are stable points), and some with complex dynamics require separate consideration
(in Fig. 2, a is denoted as Chaos). Let’s first consider those that have a meaningful biological
meaning and correspond to simple stable dynamics modes, namely those for which the selection
coeflicient of heterozygotes lies in the range —1 < s < 0.

In the area &, at the intersection of the line m = —s/4, a pair of fixed points F3 and Ey4
corresponding to genetic divergence is split off from the point F,. They are located in a unit
cube on the line ¢ + g2 = 1, but they turn out to be unstable. In the 6 area, this pair disappears.
In both cases, the fixed points Fy and Ej correspond to the monomorphic state of adjacent
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Fig. 2. a — Parametric portrait of the system (3) and b—e — examples of dynamics in the domains 71—/ (polymorphic
state is stable) for s > 0 (color online)

populations, — stable. Therefore, the dynamics of the system (3) is bistable. The pools of their
attraction, as already noted, are limited by the faces of a single cube and the separatrix surface
WS, If the starting point lies below W* (Q < 1/2), individuals with only the aa genotype remain
in both populations over time (¢; = 0, g2 = 1), if higher than W*¥ (Q > 1/2) — with genotype
AA (@1 =1, g2 = 0). However, the presence in the § region of even an unstable pair of points Ej3
and FEj significantly changes the nature of the transition to one of these monomorphic states. For
example, for parameters from the area 6, where there are no points F3 and FEy, the transition to
Ey or E; is monotonous and corresponds to logistic growth (transition to Ej) or falling (to Ep).
While in the 5 region, the presence of a pair of saddle points E3 and Fy leads to the fact that,
under certain conditions , rather non-monotonic transient dynamics modes arise (Fig. 3, a). They
arise if the trajectory passes in the vicinity of an unstable one-dimensional manifold starting from
the point E3 or E4 and passing into a stable manifold of points Ey or E; (heteroclinic contour
wY).

For parameters from the 7 and & regions, the points are also stable Ey and E7, and the
pair F3 and F4 does not exist. As a result , stability of dynamics is also observed. But unlike the
previous case , there are several features here.

First, similar to the areas 8 and 4, two eigenvalues in points Ey — FEo become negative
when m > 0.5. This means that sawtooth oscillations are formed in the vicinity of fixed points. It
can be expected that when moving to one of the stable points (Ey or E7) , damping fluctuations
occur. However, it is not difficult to show that not every perturbation or starting point leads to
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Fig. 3. Phase portrait (on the left) and examples of dynamics (3) (on the right) for parameters from domain 5 and
8 (monomorphic states are stable) at a — s = —0.5, m = 0.1 and b — s = —0.65, m = 0.9 (color online)

fluctuations, especially in variables ¢; and go. Such fluctuations occur only if the coordinates of
the starting point the points are arranged symmetrically with respect to 1 or 0. For example, if
0 <q1(0) <1< g(0)orq(0) <0< q2(0) <1, which contradicts the meaning of these phase
variables. However, even if it is not (0 < ¢1(0) < ¢2(0) < 1), and the variables ¢; and g2 do
not exhibit damped oscillations, then fluctuations may be present in the variable p. But only
if p(0) # 0.5; and the more p(0) differs from 0.5 (but does not come out of the unit cube), the
greater the scope of fluctuations and the longer the transition process. At the same time, in the
vicinity of the point Fs located in the center of the unit cube, there are fluctuations in all three
phase variables. The condition of their occurrence: ¢;(0) # ¢2(0) and p(0) # 0.5. Since both
negative eigenvalues at this point lie in a unit circle, and the third is greater than one, these
fluctuations are quickly replaced by a monotonous rise or fall to point Ey or Fj.

Secondly, in addition to the described dynamic behavior , a pair of saddle periodic points
appears in the neighborhood of points Ey — Fo for parameters from the area 8 and in the display
(3) . This pair splits off from F5 at the intersection of the line m =1+ s/4, and its appearance is
accompanied by the exit of one of the negative eigenvalues from the unit circle. But since the
third eigenvalue is still greater than one, the periodic point turns out to be unstable, that is, in
this case there is a subcritical period doubling bifurcation. Let’s denote a pair of these points by
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2P 5. One of its coordinates is easy to calculate by putting p = 0.5, ¢1 = 1 — g2 and integrating
the one-dimensional map twice:

m+ (1 + s —2m)q — sq>

—
a 1+ 2sq(1 —q)

As a result, the periodic point of the system (3) has the form:

2P12<1 N s(s—4m+4)71:F s(s—4m+4)71>.
A\ 2 2s 2 2s 2

These two points lie on the line ¢; + g2 = 1 and, to some extent, «replace» the fixed points
FE5 and E4 missing in the area 8, corresponding to the genetic divergence. It should be noted
that the same pair of points exists at s > 0, but lies outside the limit of the unit cube.

As for fixed points, the corresponding eigenvalues of the Jacobi matrix calculated for a
doubly iterated system (3) can be calculated for a periodic point. As a result, it is easy to see
that in the & pair 2P; 9 — is a saddle with a one-dimensional unstable manifold that forms a
heteroclinic contour WY closed to stable points Eg and E;. Since all eigenvalues at points 2P
are positive, the mapping (3) is orientable. Therefore, there is there are four contours, and from
the points 2P » you can come to both Ey and Fj. As a result, the movement to stable points Fj
and F4 for any initial conditions consists of two branches: for even ¢, the trajectory lies below
the plane p = 0.5, for odd ones — higher, or vice versa, depending on where the starting point is
located. As a result, there are fluctuations in all three variables, an example of which is shown in
Fig. 3, b, where the starting point is located in the neighborhood of the manifold W*. In this
case, the trajectory first moves along the separatrix surface W towards the periodic point 2P,
where it «lingers» for a while, and then rushes to the point Fy or E; along the two branches of
the contour WY. It should be noted that none the trajectory does not intersect the surface of
W* in this case.

Thus, with reduced fitness of heterozygotes, that is, at —1 < s < 0, genetic divergence is
possible only as part of a transitional process, similar to how it happens in the continuous-time
model [20]. Moreover, for m < —s/4, the solutions of continuous and discrete-time models coincide.
However , at m > 1 + s/4, the discrete nature of reproduction leads to the transition to one
from monomorphic states, it is accompanied by sawtooth oscillations when the ratio of the
concentration of the A allele changes periodically in different populations, which in principle
cannot be in a continuous-time model. It is quite expected that the pair of fixed points F3 and
FE4 corresponding to the divergence becomes stable at m = 0 when the two populations are
unrelated and develop independently. Similar to the case of a continuous-time model [20] points
E5 and Ej turn into straight lines of fixed points (0,1,p) and (1,0,p) (p € R — any number).
As a result, the concentrations of alleles at different sites in the asymptotic case take the values
0 or 1, while as their numbers, expressed in terms of weight p, take any values (depending on
the initial conditions). Similar solutions of the system (3) corresponding to the divergence are
observed at m = 1. In this case, a pair of periodic points 2P; » with coordinates (0,1, p) and
(1,0,p) (p € R) is stable. As a result, the concentrations of alleles ¢; and g2 fluctuate between
0 and 1 with opposite phases, and the range of fluctuations in the weight of p takes any value
depending on its initial value.

Let’s consider the features of dynamics at s < —1, when the system, at first glance, loses
its meaningful meaning. On the one hand, at —2 < s < —1, the solutions, for the most part, lie
in a unit cube. For example, for the 7 and & regions, the parameter values are s lie in the range
[—2; 0], and the above types of dynamics are observed there, and they do not have any features
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that contradict the meaningful meaning of the problem. However, at 0 < m < 0.5 there is a clear
boundary s = —1 between the areas 67 and 9—11. In the area of 9, as in 6, there are no points
FE5 and F, corresponding to the divergence. The points Ey and E; are still stable, but unlike the
area 6, all multipliers are positive. Therefore, only monotonous movement to one of these points
is possible here.

When the line m = —s/4 intersects, a pair of points E3 and Fy4 appears, and two eigenvalues
at points Ey and E; turn out to be negative. In as a result, for parameters from the domain 10
and 11, damping oscillations inevitably occur around the point Ey or 7, which always exit the
unit cube under almost any initial conditions, except for the case when the starting point lies on
the edges of the unit cube, that is, (¢1(0), ¢2(0),p(0)) = Eo or E1 (p(0) can be any). The area 10
differs from 77 only in that the two eigenvalues at the points F3 and E4 become negative.

2.2. Complex modes. Crossing the boundary of s = —2, that is, far beyond the limit
of biologically significant parameters, complex chaotic oscillations are formed in the system (3)
that go far beyond the limits of a single cube and lose their meaningful meaning. Despite this, we
will briefly consider their features, since such dynamics may be of some interest to the theory of
dynamical systems as an example of complexly organized oscillations.

On the line s = —2, the largest modulo eigenvalue for each fixed point is —1. As a result, a
degenerate 2-cycle occurs around the points Ey, 1 or Fo, the amplitude of which depends on the
initial conditions and the value of m. U s < —2 this cycle breaks down and chaotic fluctuations
occur. The features of their appearance and transformation can no longer be described by analyzing
only the values of their own numbers.

In the case of complex dynamics, other criteria are needed. For example, it is not difficult
to numerically determine Lyapunov exponents, and then estimate the dimension the attractor
according to the Kaplan—York formula. The result can be supplemented with a map of dynamic
modes. In Fig. 4, a the calculated indicators of the chaotic dynamics of the system (3) are
shown, from which an important observation follows. At —4 < s < —2, the oscillation period
of the variables ¢i(t) and ¢2(t) — always an unlimited quantity, that is, there is no limit
tlggo llg(t) —q(t+T)|| =0, T € N (it is impossible to estimate the period T" by the finite series

of the solution of the system (3)). While the weight of p(¢) may not experience fluctuations at all
in enough a wide band of parameters (the black bar on the right side of Fig. 4, a). In this range
of parameters, after the transition process, p(t) turns out to be equal to 0.5 (for ¢ — oo). This
is accompanied by a complete synchronization of the dynamics of the variables ¢; and gs. As a
result, the points of the trajectory lie on the line ¢1(t) = g2(t), p(t) = 0.5 in the asymptotic case.

Numerical experiments show that if p(0) # 0.5, then the process of chaotic synchronization
can be quite long, containing intermittent sections of partial synchronization and sections of
non-synchronous dynamics. In addition, strong jumps of the variable are possible p against the
background of seemingly well-established dynamics. As a result, the synchronous mode area
on the dynamic mode map is slightly noisy single white dots inside, and the border is a little
fuzzy, especially when s, close to —2 and —4. But the Lyapunov exponent and the dimension the
attractors are insensitive to such phenomena due to averaging and clearly register the described
boundary. Outside this band, under any initial conditions , the variable p begins to experience
irregular fluctuations, ¢; and ¢o they turn out to be out of sync with each other, and the
dynamics becomes hyperhaotic (with a positive sum of all Lyapunov exponents and a dimension
estimate equal to 3). Closer to the border , modes in which synchronization is interspersed with
non-synchronous behavior are still registered. When moving away from the boundary for both
small and large m, the dynamics becomes completely out of sync. Fig. 4, b shows examples
demonstrating such a transition. The location of the parameter values used in these examples is
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Fig. 4. a — Maximal Lyapunov exponent (L1), Lyapunov dimension (Dy) and oscillation period of p(t) (dynamic
regimes chart). b — Examples of synchronous (at points A1—As) and non-synchronous (A4—Ag) dynamics of system
(3) with the shown parameter values (color online)

marked with points A; on the parametric plane (see Fig. 4, a).

The main feature of such complex dynamics modes is not so much in the alternation
of synchronous and non-synchronous modes (intermittency) and the increase in the degree of
randomization at a distance from the line m = 0.5, as in the structure of the chaotic a set that
is quite clearly traceable. With a minimum degree of randomization (m ~ 0.5, s ~ —2), the
dynamics of the system (3) can be represented as a repeating series of oscillations, which consists
of alternating divergent oscillations around the points Ey and Fy with a quasi-random duration.
So, in the first example (point A;) ellipses highlight several long sections of such dynamics, which
end with a sharp jump in the variables ¢; and ¢o. After the jump trajectory passes into the
vicinity of another fixed point, where divergent oscillations are formed again. Their duration, of
course, is not random, but depends on how close to the fixed point after the jump turned out
to be a trajectory. The closer, the longer the divergent ones last fluctuations. It is easy to see
that the transition to the point Fy occurs «bottoms, that is, the trajectory goes into the area
with negative coordinates, and the transition to E; occurs «from aboves, that is, from an area
with very large coordinates. Apparently, there exist saddle periodic points generating separatrices
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that do not allow unlimited trajectories. Indeed, several of them with small periods have been
numerically detected (2, 3, 4).

It is important to emphasize that the jump in phase variables often turns out to be so large
that it is difficult to depict the nature of oscillations on the linear scale of the coordinate axis .
To solve this problem, you can scale the values of the phase variables according to the following
rule. No scaling is applied for modulo small values of phase variables (for example, from —1.5 to
1.5). For large positive (greater than 1.5) or small negative values (less than —1.5) , logarithm is
performed, preserving the sign of the scaled variable. In the result is a new variable that is used
only for plotting the corresponding graphs (see Fig. 4 and 5), has the form:

In(g;) + 1.5, if ¢; > 1.5,
qi = qi, if —1.5<¢q <1.5,
—In(—¢;) — 1.5, if¢ < —1.5.

A similar scaling is performed for the variable p.

In the second example (point As), divergent oscillations with quasi-random duration
are also observed, but mainly around a polymorphic point FE5. After several «turns» on the
segment 0 < ¢1(t) = ¢2(t) < 1 (p(t) = 0.5) the trajectory leaves the unit cube, reaching large
absolute values, and then returns to the point Fy. But more interesting is the situation when
the trajectory moves between three points Ey, F1 and E3, making several turns around each
of them, the number of which is rarely large. Quasi-random in this case is not so much the
duration divergent oscillations, how much is the point in the vicinity of which the trajectory
will be after the jump of phase variables. In the first example in Fig. 4, b only one series of
transitions is possible: £y — E1 — Eg — ..., where the sign «—» shows the transition of the
trajectory from the neighborhood of one fixed point to another. In the second example, there are
no transitions, and fluctuations are observed only around the point Es. In the third example, there
are significantly more options for the trajectory transition between three points. For example,
transitions are possible £y - F1 — Ey —» E1 — ... — Eo — ... with rather rare traversals
of the trajectory of the neighborhood of the point Es, or on the contrary, frequent transitions
Ey—>FE,—FE - FEy—...or By > FW — Ey — Ey — ..., etc.,etc.

Finally, when the residence time is in the neighborhood of each of the fixed points becomes
minimal (equal to 1-2 periods) the dynamics of the system (3) becomes truly unpredictable,
although implemented on a one-dimensional manifold: g1 = g2, p = 0.5. In this case, the system
(1) is represented as a one-dimensional mapping:

2q(1+s(1—q))
2+4sq(1—q) ’

which has fixed points Ey, E1 and FEs.

The exit from the synchronous dynamics area, as already noted, is accompanied by an
intermittency of synchronous and non-synchronous dynamics sections, as in the fourth example
in Fig. 4, b (A4). At this moment , a series of transitions Ey — Ey or E; — Ej, separated by
jumps of phase variables, are possible in synchronous sections. But it is more interesting that in
this area, before completely losing synchronization, modes arise that contain sections of diverging
or damping oscillations of variables g; and g2, and are quite monotonous variable p (point As in
Fig. 4, b). In this case , the fluctuations of the variables ¢; and g2 are antiphase, which converge
(or diverge) to different values. This indicates that on a two-dimensional manifold, on which in
this case implements all non-synchronous modes, there are saddle fixed (in addition to Ey, F4
and FEs) or periodic points that attract the phase trajectory. Similarly to synchronous modes,
transitions with strong jumps of variables occur between them.
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Fig. 5. Examples of hyperchaotic dynamics (sum of all Lyapunov exponents is greater than zero) of system (3) for
the shown parameters values. ¢ — 2D manifold Wy with the orbit lying on it, and its projection onto the phase
plane in natural (b) and scaled (¢) coordinates (color online)

Finally, for small or large values of m, the dynamics of all variables turns out to be
completely out of sync and hyperchaotic, as in the last example in Fig. 4, b.

Consider the value Q'(¢) = p(t)q1(t) — (1 — p(t))g2(t) — p(t). Numerical calculations show
that all complex dynamics modes lie on the surface given by the equation: @’ = 1/2. In addition,
synchronous modes lie on a part of this surface (on a straight line ¢i(t) = q2(¢), p(t) = 0.5).
Indeed, substituting in @’ the values of the phase variables corresponding to the established
chaotic dynamics, we can make sure that the sum of the squares of the deviation of the phase
trajectory from this surface does not exceed 1079, that is

> (0 (6~ (1 - p(1)aa(t) — plt) ~05)” < 1077,

N
t=M
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rN > M — sufficiently large integers, ¢1(t), g2(t) and p(t) — coordinates of the phase points of
the system (3) at —4 < s < —2. It has not yet been possible to strictly prove the existence of this
variety.

Let’s denote the manifold defined by the equation Q' = 1/2 as W It is easy to notice
that Wls intersects with W along the following lines: ¢; = 0.5, ¢ € R, p=1; q1 € R, q2 = 0.5,
p=0;q =¢q>=0.5,p€ R. In Fig. 5, a shows this surface with phase points lying on it in the
case of hyperchaotic dynamics.

The right and left columns of Fig. 5 show that for different parameter values, the phase
points of the system (3) inhomogeneously fill the manifold Wls . In the examples shown, the phase
points are concentrated along the proper subspaces of the saddle points Fg and Fy, and the
chaotic set contains a fixed point E5. This fact requires a separate thorough study.

3. Features of dynamics in the case of a constant number

Consider a situation in which populations in different territories remain constant in time or
change synchronously. As a result , the ratio of the numbers p = Ny /(N1 + N2) turns out to be a
constant value, such that 0 < p < 1. In this case, the system (3) has the form:

qt+1)=

Gll(t) ((1 — m)ql(t)<1 +s(1- ql(t))) +m p(p(i)(l +s(1- @(t)))) ,

(5)

galt+ 1) = Gj(t) ((1 = m)aa(t) (1451 = @2(1)) ) + T (0)(145(1 - q1<t>))>,

where the normalization factors, as before, will be G1(t) = (1 — m)(1 + 2sq1(¢)(1 — ¢1(¢))) +
P (142502(8)(1—g2(1))) 1 Ga(t) = (1—m)(1+2502(t) (1~ a2 (£)))+m 12 (142501 (1) (1—a1 ().

The mapping system (5) has from three to nine fixed points for different values of the
parameters s, m and p . Analytically, in this case , only the first three points can be expressed,
which always coincide with the points Ey, 1 and Ej systems (3) and always exist. The remaining
points are only numerically found as the roots of a sixth-degree polynomial. This does not
prevent us from determining that they appear either by splitting the points Ey, £ and E, for
an additional pair of fixed points (fork bifurcation), or as a result of saddle-node bifurcation. In
Fig. 6, a, ¢ shows the specific boundaries of the birth of these fixed points, as well as the areas of
their stability under variation of parameters. Below are shown the zero points of the system (5),
the intersection points of which correspond to the fixed points of the system (5). The punctured
point indicates that the fixed point is a saddle or unstable node (source), the bold point is a
stable node (drain).

As in the general case (system (3)) with high fitness of heterozygotes, that is, s > 0,
polymorphism is always established in the population (the point Fj is stable). Variation of other
parameters only changes the number of fixed points, the type of stability (saddles turn into
unstable nodes or vice versa), as well as the mechanism of their birth. In Fig. 6, a, ¢ areas of
different colors (grayscale) correspond to the parameters at which a different number of fixed
points exist in the system (5) . Accordingly , when crossing their borders , they are born or some
of the dots disappear. So, fig. 6, b shows, for example, that when moving from the area B to A,
from the points F3 and FEj is simultaneously split off two pairs of dots. Moreover, in such a way
that the point EF3 or Ej4 lies between them, at an equal distance from them. But this happens
only with a large value of the migration coefficient m > 0.5 and p = 0.5. In general, p # 0.5
additional pairs of points appear as a result of saddle-node bifurcation away from the points F3
and Fy. Similar thus, when p = 0.5 and the transition from the region B to C generates one
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Fig. 6. a, ¢ — Parametric portrait (bifurcation diagram) with highlighted area of chaotic dynamics (Chaos). b, d —
Nullclines of system (5), showing the number and location of fixed points in different regions of the parametric
space, are combined with attraction basins of bi- and quadstable regimes. e — Examples of dynamics in the case
of quadstability (two divergent and two monomorphic states are stable). The following parameter values have been
used: a, b —p=10.5 and ¢, d, e — m = 0.1, other values are shown in the figure (color online)

pair of points around the polymorphic point Es. At p # 0.5, it appears as a result of saddle-node
bifurcation (see Fig. 6, ¢). Similarly to the system (3), at high values of the migration parameter
m > 0.5, part of the eigenvalues turns out to be negative (including for the stable point Es). As
a result, the movement towards a stable polymorphic point E5 under certain initial conditions
is accompanied by damping fluctuations of the phase variables ¢; and ¢o. Here you can explain,
that the dotted lines in Fig. 6, a, ¢ show the parameters at which the real part of the eigenvalues
changes its sign or they are located on a unit circle. That is, when these lines intersect in the
system (5) , certain qualitative changes occur, which, at s > 0, although they do not affect the
stability of the point Es, but significantly change the nature of the transition dynamics. In general,
the dynamics modes here are similar to those marked for the complete system (3).

With low fitness of heterozygotes (s < 0), bistability of dynamics is observed. In this
case, the points Fy and F1, which also existed at s > 0, acquire stability when moving from
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the regions A, B or E to the region of parameters D, that is, at —2 < s <0 and 0 < p < 1.
At the same time, with a relatively low migration coefficient in the system (5), four points are
already stable. This happens when moving to the F' area. In this case, we can say that the system
(5) becomes quadrostable, and a stable one is possible in a system of two populations genetic
divergence (fig. 6, €). This is made possible by additional bifurcation. Strictly at p = 0.5 on the
border between E and F' a pair of unstable points is split off from the saddle points F3 and
E4, and E3 themselves and FEy, on the contrary, acquire stability (Fig. 6, b). At p # 0.5, the
points F5 and Ey are always unstable, and the additional two pairs of stable and unstable points
(saddle and node) appear away from them (fig. 6, d). However, in the future they may experience
transcritical a bifurcation and a stable point will appear between the two saddles, although not
so symmetrically as in the case of p = 1/2. For more information about this bifurcation in the
case of a continuous -time model, see [20]. It is important to note here that the more the value of
the parameter p differs from 1/2, the lower the values of s this bifurcation occurs (the appearance
of quadrostable modes) (see Fig. 6, ¢). In addition, the growth of the migration coefficient m
«pushes» this border closer to the chaotic region dynamics whose boundaries do not depend on m
and p. As a result , at high values m fixed points corresponding to genetic divergence (F3 and Ej)
turn out to be unstable or do not exist, and outside the chaotic dynamics region (-2 < s < 0)
only monomorphic points Ey and E; corresponding to the monomorphic state of populations are
stable.

At high values of the migration parameter m , periodic points of period 2 appear instead
of missing points corresponding to divergence, which again make the model (5) quadrostable in a
certain sense. For p = 1/2, one of these pairs coincides with the point 2P; » found for the system
(3). With such a weight value p, it is possible to accurately determine the range of parameters
of the birth of these points and specify the area of their stability. It exists and has positive
coordinates at 4(m — 1) < s < 0. Its appearance is associated with subcritical the bifurcation
of doubling the period of the point Fy at the intersection of the line PD™ and the transition of
parameters from the domain D to D' (Fig. 7, a). By =2 < s < 2(1 —m)(4m —1)/(1 — 2m) and
m > 0.5 the pair of points 2P; o turns out to be stable. At the moment of crossing the PF line
and moving from the D’ area to D”, from it a pair of saddle points is split off, and the points
2P 2 acquire stability. At this moment, from the pool of attraction points Ey and E; (on the left
in Fig. 7, b) two regions of attraction of points are separated 2P; » (on the right in Fig. 7, b).
The size of these areas increases as the migration coefficient increases and the distances between
saddle points increase.

The appearance of a pair of periodic points 2P o indicates that in the system of two
related populations with low fitness of heterozygotes, genetic divergence is possible not only with
a low migration coefficient, and not only as part of the transitional dynamics. This becomes
possible if the ratio of numbers is preserved (p = const). However, unlike the case of weak
migration, divergence in this case manifests itself in the form of periodic fluctuations between two
states that they also coexist with two stable monomophic states of the population (Ey or EY).
These fluctuations are manifested in the fact that the concentrations of the A allele at different
sites experience periodic antiphase fluctuations with a period of 2 between states with a high
concentration of the A allele in the first territory and a low concentration of the a allele in the
second territory or vice versa. If at the same time a couple there are points 2P; 9, but it is not
stable yet (in the range of parameters D’), then genetic divergence in the form of fluctuations
can be observed only as part of transition process under specially selected initial conditions. An
example of such dynamics is shown on the left in Fig. 7, ¢ and is generally similar to the dynamics
in Fig. 3, b. In this case, the starting point is chosen close to the separatrix ¢o = 1 — ¢1. However,
with a sufficiently large migration coefficient (the D” region), these fluctuations turn out to be
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Fig. 7. a — Ilapamerpuueckuii moprper cucremsl (5) npu p = 0.5 ¢ HaHeceHHO! Ha Hero JMHUEH cy6KpHTquCKOI‘/’I
oudypkaru yasoerus nepuoga PD™ u mocienyromeit 6udpypkarun susn PF, mocsie koTopoit mepunoanyeckas Todxka
2P 2 (2-nmka) npuobperaer ycroitunsocts. b — Hynbkimast cucremst (5) (MyHKTHUpHASI JIMHYSI) 1 BTOPOH HTEPAIH
cucremsl (5) (cruromuas), a Tak:ke GacCeiHbI NPUTAXKEHNs yCTORUIMBBIX To4YeK Eo, F1 u 2P 2. ¢ — Ilpumepsr
JMHAMUKHA B ciiydae 6u- (cmeBa) m kBampocrabmiabHOCTH (cmpaBa). Hadamo CTpesKm MOKa3bIBAET MPUMEDPHOE
PACIIOJIOKEHHE CTAPTOBOI TOUKY (IIBET OHJIANH )

Fig. 7. a — Parametric portrait of system (5) at p = 0.5 with a line of subcritical period doubling bifurcation
PD~ and subsequent supercritical pitchfork bifurcation PF after which the periodic point 2P; > (2-cycle) becomes
stable. b — Nullclines of system (5) (dotted line) and second iteration of (5) (solid) as well as the attraction basins
of stable points Eo, E1 and 2P; 2. ¢ — Examples of dynamics in the case of bi- (left) and quadstability (right).
The arrow start shows the location of the starting point (color online)

stable and are observed for an unlimited time (the example on the right in Fig. 7, b). Interestingly,
at lower values of the selection coefficient of heterozygotes s divergence possible with a lower
coupling coefficient. However, crossing the border at s < —1 stable periodic points 2P; o come out
of the unit square and the system (5), like the complete system (3), loses its meaningful meaning.

In the general case p # 1/2, the described scenario of the birth of a stable periodic regime
does not change qualitatively. As the weight value p moves away from 0.5, the points 2P, » and
the saddles surrounding them turn out to be located less symmetrically. As a result, the amplitude
of fluctuations in the concentrations of the A allele at different sites turns out to be different
(more where the number is smaller). In addition, the bifurcation lines PD™ and PF are shifted
higher, that is, a 2-cycle occurs at even higher values of m as the difference grows [p — 0.5|.

In the field of chaotic dynamics, these periodic points also exist, but are unstable. In
addition, in the system (5), these points also exist when s > 0, however, they lie outside the first
quadrant and are always unstable.

The properties of the chaotic dynamics of the system (3) and (5) are generally similar.
However, in addition to synchronous (at high and low p) and absolutely non-synchronous chaotic
modes (at p close to 0.5), the system (5) it also demonstrates antiphase chaotic fluctuations of
the variables ¢; and ¢2. In any case, the dynamics consists of sections of divergent oscillations
around the points Ey, F; and Ey with quasi-random duration, as for the model (3).

Other features of the system (5) include the appearance of nine fixed points at high values
of m > 0.5 and s < —2. Their appearance is associated with a sequence of «doubling» points
Ey, Ey and Es, which was not observed in the model (3). In the area of G, a pair of points it
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splits off from the points Ey and Fp, and in the area of H also from FEjs. It is also true here that
at p = 0.5 these additional points are born due to fork bifurcation (PF), and at p # 0.5 due to
saddle-node bifurcation (SN). However among these additional points, there are never stable ones.
Ouly leaving the area of chaotic dynamics (at s < —4), out of nine fixed points the polymorphic
point Fo becomes stable (the leftmost part of the diagram in Fig. 6, a, ¢).

Another feature of the system (5) is related to the fact that the lines of local bifurcations
of the system (5), in general, similar to the bifurcations of the complete system (3) or a similar
continuous-time model [20], several boundaries are added, on which part of the eigenvalues — are
complex conjugate quantities. However, they exist only in the field of chaotic dynamics (Chaos in
Fig. 6, a, ¢) at —4 < s < —2 and 0 < p < 1. In Fig. 6, a, ¢ these lines are indicated by the symbol
NS™, where the sign «—» indicates that only unstable points that appear together with points
corresponding to genetic divergence are subject to this bifurcation. Therefore, it is quite difficult
to judge changes in dynamics, related to these points, especially in the field of chaotic dynamics.

Conclusion

In this paper, the simplest model of primary genetic divergence in the system of two related
panmictic populations with non-overlapping generations and a clear stage of development was
considered. Unlike most similar works devoted to the search for conditions for the preservation of
polymorphism, divergence and geographical variability [7,10,11, 18|, the most complete model
is considered, taking into account both the frequencies of alleles and the number of related
populations. Specific bifurcations are indicated by modern methods of analysis of dynamic
systems, which lead to divergence. Bifurcation diagrams, phase portraits and pools of attraction
are constructed. Based on the analogue of saddle maps , the following classification of regions in
the parameter space that differ in the type of dynamics (including transient dynamics).

The discrete representation of time in the model leads to some differences from the similar
model with continuous time, which we considered earlier [20]. For small values of the migration
coefficient (m < 0.5) , bifurcation lines coincide, on which solutions corresponding to divergence
are born. The solutions in this case are qualitatively equivalent. Significant differences are observed
at high values of the migration coefficient (m > 0.5), when under certain conditions there are
fluctuations in the frequencies of alleles or the ratio of numbers.

Modes corresponding to divergence are possible with reduced fitness of heterozygotes, when
the dynamics turns out to be bistable or even quadrostable. In the case of bistability, divergence is
possible only as part of the transition process if the corresponding divergences of the solution exist,
but are not yet stable (although bistability is possible without the existence of this additional
solution). The stabilization of the divergent state occurs under certain restrictions imposed on the
growth of the population. For example, with the introduction of ecological limitation of population
growth. The emergence of a stable genetic divergence is accompanied by a number of qualitative
rearrangements. With a weak connection, subcritical fork bifurcation of a polymorphic fixed point
occurs, followed by supercritical fork bifurcation (in the case of equal numbers in both territories),
or saddle-node bifurcation (with unequal numbers). With a strong connection , the scenario
similar, however, instead of subcritical bifurcation of a polymorphic fixed point, a subcritical
doubling of the period occurs, and the subsequent bifurcation generates a stable periodic point
(2-cycle). In this case, the dynamics turns out to be quadrostable — depending on the initial
genetic structure, both populations turn out to be genetically homogeneous (monomorphism),
or they show significant differences in structure (divergence). At high values of the migration
coefficient, divergence is accompanied by antiphase fluctuations in allele frequencies in different
territories.
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Complex dynamic modes have been discovered, which, although they do not have a
meaningful biological meaning, may be interesting as an example. complexly organized dynamics.
Their peculiarity consists in a series of divergent oscillations around different fixed points
corresponding to monomorphism or polymorphism in adjacent populations, and quasi-random
transitions between them.
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