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Abstract . The purpose of this work is study of the neurodynamic foundations of the creative activity of the brain.
Modern AI systems using deep neural network training require large amounts of input data, high computational
costs and long training times. On the contrary, the brain can learn from small datasets in no time and, crucially, it
is fundamentally creative. Methods. The study was carried out through computational experiments with neural
networks containing 5 and 7 oscillatory layers (circuits) trained to represent abstract concepts of a certain class of
animals. The scheme of neural networks with even cyclic inhibition (ECI networks) contains only bilateral inhibitory
connections and consists of two subnets: a reference noncoding network, which is an analogue of the default brain
mode neural network, and the main information network that receives time sequences of environmental signals
and contextual inputs. After training, the reading of the population phase codes was performed with a simple
linear decoder. Results. Conceptual learning of the network leads to the generation of a number of spatial abstract
images that are distinguished by the most pronounced features of the relevant line of animals. In computational
experiments, a wide set of isomorphic representations of concepts was obtained through: a) transformations of
image spaces in a wide range of time scales of the training input signal flow, b) internal regulation of the time
scales of mental representations of concepts, c) confirmation on the model of the dependence of psychological
proximity of concepts on semantic distance; d) calling from memory (decoding) distributed groups of neurons of
animal concepts, which the network has not been trained in. Conclusion. This paper shows for the first time how,
using a small set of event input data (a sequence of 4 CCW and 2 CW signals) and very limited computational
resources, ECI networks exhibit creative cognitions based on relational relationships, conceptual learning and
generalization of knowledge.
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Introduction

In recent years, a new direction of brain sciences has been actively developing — the
neuroscience of creative activity. The basis of this direction is the achievements of psychological
research in recent decades and the latest results of neurobiological research. It is assumed that
the mental mechanisms at the neural network level that support creative thinking and creative
cognition arise from the interaction of cognitive processes at a lower level [1]. Creative cognition
and creative thinking are complex processes that include components of attention, cognitive
control, imagination, generalization and memory [2]. At the same time, the basis of these creative
processes is relational thinking, that is, the brain’s ability to establish connections between
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seemingly unrelated concepts. Various aspects of creative thinking are supported by episodic and
semantic memory. Semantic memory provides basic knowledge of facts and concepts that can be
combined to solve creative problems and generate new ideas [3], which is confirmed by cognitive
and fMRI (Functional magnetic resonance imaging, functional magnetic resonance imaging)
studies of semantic memory [4]. Important concepts in theories about the role of semantic memory
in creative thinking are conceptual spaces and semantic distance. In recent years, there has been
a growing body of evidence for the presence of common neural mechanisms underlying navigation
in both physical and semantic space, using in both cases codes of direction and distance between
places, even if they are categorical and designated symbols. [5].

The opinion that people can use the same neural mechanisms to support the representation
of both spatial and non-spatial information by the organization of concepts and memory using
spatial codes has received direct experimental confirmation of the participation of the medial
prefrontal cortex and the right entorhinal cortex in this. After training, both regions encoded
the distances between concepts, which made it possible to restore an accurate two-dimensional
representation of the semantic space directly from their multidimensional activity patterns, while
the right entorhinal cortex (EC) demonstrated periodic modulation as a function of the direction
traveled. These results show that brain regions and coding schemes that support relationships and
movements between spatial locations in mammals are "reused"in the human body to represent a
two-dimensional multisensory conceptual space during a symbolic categorization task. [5].

Conceptual knowledge is partially organized into low-dimensional geometries — "cognitive
maps which are analogs of world-oriented representations of the environment and are associated
with the hippocampal formation of the brain and "image spaces which are analogs of egocentric
spatial relationships and are mainly associated with the parietal (parietal) cortex. Cognitive maps
are information about distances between locations that were previously shown only in navigation
tasks for physical space. The hippocampus encodes in a similar way the distances between points
in an abstract semantic space with continuous stimulus signs that were relevant for the acquisition
of a new concept [6, 7]. Cognitive maps and image spaces may be specific manifestations of the
more general tendency of the human brain to organize knowledge in low-dimensional spaces [8].
Image schemes are more abstract than ordinary visual mental images, and consist of dynamic
spatial patterns that underlie spatial relationships and movements found in particular real images.
Low-dimensional cognitive maps and image spaces play a key role in a person’s remarkable
ability to draw analogies in different fields. In principle, drawing analogies involves ignoring
many differences and focusing on a few similarities between objects. In addition, low-dimensional
cognitive maps can be important for creating analogies between objects and events that are far
away in our experience, but which can be compared only by a few selected dimensions [8].

Generativity is an ability that is essential for cognitive functions of the brain, including for
planning the future, imagination, decision-making and creative activity. Generativity contributes
to behavior by predicting future outcomes, which clearly directs current behavior and creativity,
and indicates a unified role in cognition. How is generativity implemented in the brain at the neural
level, what are the candidate patterns of neural activity encoding a possible future scenario? It has
been experimentally established that the hippocampus presents alternative hypothetical scenarios
alternately and cyclically approximately every 125 ms, which corresponds to a theta rhythm, that
is, the brain simulates all possible behavior scenarios, and not only those implemented in the
future! At the same time, the underlying activity patterns had an equivalent temporal structure
among different locations and directions of movement, implying a general process of cyclic coding.
Moreover, the cycle was started at all levels: from single cells to their populations [9].

In the process of evolution, nature has created organisms capable of diverting their attention
from the present moment to create a personal mental space in which an infinite number of
possibilities can be realized. The contents of this mental space can take different forms: from
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fantasies to re-experiences of a past event or imagining how a future event might unfold. All this
is an act of creative thinking, a mental representation of what does not exist at the moment [10].
Note that the definition of "imagination— "imagination"given by the Oxford English Dictionary
sounds like "... the ability to form internal images or ideas of objects and situations that are not
actually perceived by the senses."What neurodynamic phenomena underlie this ability of the
brain is one of the main questions of this study.

Finally, the most important problem of studying creative thinking is understanding the
language (code) of thoughts, without which it is impossible to imagine the realization of the
huge cognitive potential of the brain. The first broad experimental study of the language of
thinking to explain the representation of visual-spatial sequences was conducted by M. Amalric
with co-authors [11]. A study of French adults, preschoolers, as well as people from the Amazon
Indigenous group — Munduruku — with limited numerical and geometric vocabulary and access to
school education, showed spontaneously occurring primitives of symmetry and rotation. Moreover,
the subjects easily combined these geometric forms of primitives into hierarchically organized
expressions. The authors’ theoretical model suggests that «the subjects ‘compressed"spatial
sequences into a minimal internal rule or program» [11].

Summing up this review, we briefly note the following. High-level cognitive processing is
based on the remarkable ability of the brain to conceptualize information, that is, to distinguish
one or more features peculiar to other objects of the environment. These signs correspond to
abstract cognitive variables or concepts, the knowledge of which allows you to generalize and
immediately draw conclusions about a newly encountered alleged object or event. High-level
cognitive processing involves the presence of a language (code) of thoughts, mental compression
of perceptual information, flexible recombination of simpler parts, the use of low-dimensional
semantic spaces, simple geometric primitives and rules. The language of thinking is based on the
brain’s ability to establish connections between seemingly unrelated concepts, which determines
the relational nature of our thinking. Using the fundamental characteristics of brain activity
discussed above, this paper presents for the first time a neurodynamic model of creative cognition of
relational neural networks with even cyclic inhibition, including the following series of experiments.

• Investigation of the potential of cognitive capabilities of ECI networks.
• Study of a range of time scales relevant to the generation of abstract images of animals.
• Large-scale transformations of objects by means of internal regulation of the phase timing

of events by the contextual input of the network.
• Study of the basics of creative cognition of neural networks with even cyclic inhibition.

The above series of computational experiments are a further development of research
on networks with even cyclic braking, see [12, 13]. For the first time, the mathematical model
and architecture of these networks were described in detail, indicating dynamic modes, phase
transitions demonstrating the genesis of theta-gamma rhythmic activity in the basic module - the
main information unit of the network, as well as the basics of phase coding of sensory events in
the brain. The next stage in the development of the idea of phase coding in oscillatory networks
was its application to the navigational behavior of organisms, where the author’s vector-phase
and topological approach to computational modeling of this problem was described [14]. An
important result of this period of research was the differentiation and functional specialization
of information units into topological and directional groupings in each ensemble of the external
contours of the network, as well as the gradual transition of ensembles of the internal layers of
the network to purely topological ones. This one was first described in the ECI networks model
(neural networks with Even Cyclic Inhibition — ECI networks) the neurodynamic phenomenon
had an important behavioral functionality: the internal ensembles of the network determined the
location of the virtual navigator, the external ones — its spatial trajectory of movement in an
allocentric spatial environment [14].
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This result is also interesting because the hippocampal cells of the site [15] and entorhinal
lattice cells (grids) [16] discovered for the first time in rodents (rats) received their role in a model
neural network study at the population level of coding spatial behavior. The reference coordinate
system of the ECI network defines a scheme in which spatial information, that is, the position of
an object, can be represented relative to the starting point. Depending on the anchoring of the
origin of the coordinate system, the same information can be encoded both egocentrically and
allocentrically. If the reference system is connected to the navigator’s body or a part of his body,
for example, the head, then the representation will be egocentric by definition. If the origin is a
fixed point of the environment (for example, the corner of the room), then the representation
will be allocentric. It is clear that the same spatial information represented by idiotic signals,
for example, vestibular, can be used to describe information about one’s own movement either
egocentrically, that is, relative to the navigator’s body or body part , or allocentrically. Together,
these types of information give navigating organisms a mental map of the spatial environment
that encodes spatial information in allocentric coordinates. [7, 17].

Turning again to the thesis described above that conceptual knowledge is partially organized
into low-dimensional geometries - "cognitive maps"that are associated with the hippocampal
formation of the brain and "image spaces we note that the latter definitely belong to the analogues
of egocentric spatial relations. We should also add that cognitive maps make it possible to get
away from the so-called "curse of dimensionality"problem associated with the fact that objects
are characterized by numerous feature spaces, the encoding and recognition of which in a number
of life situations would be unacceptably long in time. Therefore, cognitive maps and abstract
image spaces may be concrete manifestations of a more general tendency of the human brain
to organize knowledge in low-dimensional spaces. It is important that the abstraction process
solves this problem by creating abstract variables describing features shared by different concrete
objects, reducing dimension and making generalization possible in new situations. [18].

Based on the idea of spatial abstract representations in the mental activity of the brain,
the materials of the study of the neurodynamic model of constructing egocentric spatial images
of objects are presented here. The result of these studies was the development of a neural code
of "thoughts"for learning and spatial representations of a number of objects of living organisms
in the form of large-scale symbolic records in the time dimension. A number of modern works
emphasize that people can use the same neural mechanism to maintain representations of both
spatial and non-spatial information, the organization of concepts and memories using spatial codes.
This point of view predicts that the same neural coding schemes that characterize navigation
in physical space based on distance and direction should underlie navigation through abstract
semantic spaces.

Recently, this point of view has received direct experimental confirmation in the work
S. Vigano and M. Piazza [5]. Using the brain’s fMRI and representative similarity analysis based
on the spotlight model, the authors found evidence of the brain’s response to both distance
and direction. The areas commonly involved in spatial navigation are the medial prefrontal
cortex mPFC and the right entorhinal cortex (EC). After training the study participants, both
regions encoded the distances between concepts, which made it possible to restore an accurate
two-dimensional representation of the semantic space directly from their multidimensional activity
patterns, while the right EC also demonstrated periodic modulation depending on the direction
traveled [5]. These results show that brain regions and coding schemes that support relationships
and movements between spatial locations in mammals are also used to represent two-dimensional
multisensory conceptual space during the symbolic categorization task in humans.
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1. Methods

1.1. Spatial organization and mathematical model of networks with even cyclic
braking. All experimental series presented in this paper were performed on oscillatory neural
networks with even cyclic braking, first described in the works of the author of this article [12,14].
The ECI network scheme contains only recurrent inhibitory connections and consists of two
sub-networks: a reference non-coding, which is an analogue of the Default Mode Network (DMN)
— an operational rest neural network, in other words, a passive mode network or a default brain
mode network (various translations from English) [4,19,20] and the main information network
receiving temporary sequences of external information signals and contextual input.

In general, the mathematical model of a freely scalable ECI network looks like this:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

τ𝑖
𝑑𝑥𝑖
𝑑𝑡

= −𝑥𝑖 − 𝑏𝑖𝑧𝑖 −
𝑛∑︀

𝑗=1
𝑎𝑖𝑗𝑦𝑗 + 𝑆0𝑖 + 𝑆𝑖(𝑡),

𝑇𝑖
𝑑𝑧𝑖
𝑑𝑡

= −𝑧𝑖 + 𝑦𝑖,

𝑦𝑖 =

{︃
𝑘(𝑥𝑖 − 𝑝𝑖), 𝑥𝑖 > 𝑝𝑖,

0, 𝑥𝑖 ⩽ 𝑝𝑖, 𝑖 = 1, ..., 𝑁.

(1)

In particular, its separate module - the oscillator node of the ECI network can be written as the
following system of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ1
𝑑𝑥1
𝑑𝑡

= −𝑥1 − 𝑏1𝑧1 − 𝑎21𝑦2 + 𝑆01,

𝑇1
𝑑𝑧1
𝑑𝑡

= −𝑧1 + 𝑦1,

τ2
𝑑𝑥2
𝑑𝑡

= −𝑥2 − 𝑏2𝑧2 − 𝑎12𝑦1 + 𝑆02,

𝑇2
𝑑𝑧2
𝑑𝑡

= −𝑧2 + 𝑦2,

𝑦1,2 =

{︃
𝑘(𝑥1,2 − 𝑝1,2), для 𝑥1,2 > 𝑝1,2,

0, для 𝑥1,2 ⩽ 𝑝1,2,

(2)

where 𝑥𝑖 — the membrane potentials of neurons; 𝑧𝑖 — the depth or degree of adaptation of these
neurons to a constant level of input exposure; τ𝑖 — the time constants of the neuron input; 𝑇𝑖,
𝑏𝑖 — parameters that determine the time constants and the level of adaptation neurons; 𝑝𝑖 —
thresholds of neurons; α𝑖𝑗 — weights of inhibitory connections; 𝑆0𝑖 and 𝑆𝑖(𝑡) — constant and
variable inputs of neurons, respectively; 𝑦𝑖 — output activity of neurons; 𝑘 — gain; 𝑛 — number
of oscillator nodes of the network.

With certain parameters and ratios of amplitudes of external inputs of neurons, a separate
oscillator module is capable of autonomous generation of two rhythms — high-frequency (gamma-
like) and slow-wave (theta-like). The generation of these rhythms is triggered by constant, but
different levels of excitation and time constants of both neurons, and all phase manipulations
with high-frequency oscillation packets are carried out by a short exciting pulse input to a neuron
with a small input time constant. A feature of rhythmogenesis in such a module is the presence
of various modes of oscillation generation and the existence of phase transitions between them,
in particular, from a continuous high-frequency to a two-frequency mode, that is, slow-wave,
interspersed with high-frequency oscillation bundles. In such a network, the energy of the input
pulse signal patterns leads to phase shifts of high-frequency gamma-ray bursts. Computational
experiments show that the phase dynamics of network neurons has a complex dependence on a
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number of factors: the state of the network, the energy of input signals, the matrix of weights of
inhibitory connections, time constants of inputs and adaptation of neurons. The rhythmogenesis
of an individual module is determined by several different factors: a) the difference of the resting
potentials of both neurons of the module — 𝑆0𝑖; b) the value of the adaptive parameter of the
neuron — 𝑏𝑎; c) the ratio of the time constants of the inputs of both neurons— τ𝑖 и 𝑇𝑖.

In computational experiments, the solution of the above systems of equations was performed
by the 4-order Runge-Kutta numerical method with an integration step equal to 0.01. In all
computational experiments, the following numerical values of neuronal parameters for the adaptive
neuron module were accepted: τ1 = 0.01; 𝑇1 = 30; 𝑏1 = 10; 𝑆01 = 0.083; α12 = α21 = 2.27;
for a conditional oscillatory neuron: τ2 = 0.5; 𝑇2 = 0.8; 𝑏2 = 27; 𝑆02 = 1; 𝑘 = 1; 𝑝1,2 = 0. All
values are — dimensionless. The value of recurrent inhibitory interneuronal connections α𝑖𝑗 was a
constant value equal to 0.001. The difference between the oscillatory units of the reference and
information subnets is only that the information units have external modulating inputs 𝑆𝑖(𝑡),
and the reference units do not have such inputs. In all computational experiments, the listed
parameters remained unchanged, only the external information inputs changed. The values of
inhibitory intramodular connections between adaptive and conditional oscillatory neurons are
2.27, and the weights of network intermodular inhibitory connections are 0.001, that is, they
vary greatly. Thus, the functional unit of rhythmogenesis consists of two departments with a
significant asymmetry in the setting of their time parameters, high values of intramodule coupling
weighting coefficients and a difference in the amplitudes of the constant inputs 𝑆01 and 𝑆02,
which affects the dynamic behavior of the oscillator module as a whole, which is characterized
by strong nonlinearity. As a result, we emphasize that ECI networks are networks of loosely
coupled nonlinear oscillators, which gives greater neurodynamic freedom to the latter. It is also
important to note that the reference system of oscillators generating a coherent theta rhythm
forms a in-network time reference system, which serves to measure the relative phase shifts of
the information oscillators, as well as the feed time of the external contextual and information
inputs causing these shifts. The external excitatory input of 𝑆𝑖(𝑡) neurons is a combination of a
"contextual"input for all units of the network and a specific "differential"input for units with
sensitivity to various kinds of network rotations relative to the vertical axis perpendicular to the
plane of Fig. 1. These inputs differ in the input time, amplitude and duration of the signals, and
this difference was taken into account in the interface with the calculation program.

Combined effects of signals of translational and angular velocity of ECI-network turns lead
to modification of phase response curves and their compressed sequential order of representation
from the external contour to the internal one in the reference theta cycle. The presence of six
steps of local phase coherence in the families of phase curves of networks of any dimension [16]
indicates the stability of this neurodynamic phenomenon and is consistent with the conclusion
about three directions of spatial symmetry encoded by "lattice"cells of the entorhinal cortex,
experimentally confirmed in both animals and humans. Let’s explain this conclusion in more detail.
A remarkable feature of the entorhinal map, discovered experimentally in rodents (rats), consists
in its exceptionally regular organization, with lattices of neighboring cells having a common pitch
(the distance between the fields of cell activity) and a common orientation. However, these lattices
are spatially displaced, but not rotated relative to each other [16]. Theoretically, if the human
brain also includes lattice cells, then our entorhinal cortex as a whole should be more active
when we move along the axes of symmetry of our lattices, and less active when crossing these
axes in motion. Based on the fact that three such main axes were found in the rat, and that it
is possible to move "forward"or "backward"along each of them, which defines six directions, it
can be predicted that the activity of the human entorhinal cortex should also correlate with the
direction of movement with a 6-fold directional symmetry like this. C. Doeller and co-authors [21]
used virtual reality and studied the integral neural activity during the "walking"of the subjects on
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Fig. 1. Пространственная организация многослойных сетей нелинейных осцилляторов с четным циклическим
торможением (a и b — эквивалентные схемы). В любом слое (контуре) сети содержится четное число
тормозных связей, отсюда название even cyclic inhibitory networks (ECI-сети). Большими черными кружками
обозначены осцилляторные некодирующие модули, образующие референтную систему фазовых отсчетов;
большими цветными кружками — информационные осцилляторные модули, на которые поступают внешние
возбуждающие входы; малыми черными кружками — тормозные синапсы между осцилляторными модулями.
На рис. c показан базовый двухкомпартментный элемент, расположенный в узлах решетки ECI-сети —
осцилляторный модуль, состоящий из двух нейронов. Вверху — аналоговый адаптивный нейрон с реакцией
на ступенчатый вход, показанной внутри нейрона; внизу — условно осцилляторный нейрон с быстро
затухающими осцилляциями. Горизонтальные связи между соседними узлами осцилляторной решетки
опосредуются между аналоговыми адаптивными нейронами [по 14]. Дальнейшие пояснения в тексте (цвет
online)

Fig. 1. Spatial organization of multilayer networks of nonlinear oscillators with even cyclic inhibition (a and
b — equivalent circuits). In any layer (contour) the network contains an even number of inhibitory connections,
hence the name even cyclic inhibitory networks (ECI networks). Large black circles indicate oscillatory non-coding
modules that form a reference system of phase counts; large colored circles indicate information oscillator modules
that receive external exciting inputs; small black circles indicate inhibitory synapses between oscillator modules.
Figure c shows a basic two-component element located in the nodes of the ECI-network — an oscillator module
consisting of two neurons. At the top: an analog adaptive neuron with a step input response shown inside the
neuron; at the bottom: a conditionally oscillatory neuron with rapidly decaying oscillations. Horizontal connections
between neighboring nodes of the oscillator array are mediated between analog adaptive neurons [14] (color online)

the computer-generated landscape and looked at the areas of the monitor where the activity had
a similar pattern described above. It turned out that the human entorhinal cortex really shows
this lattice pattern of activity and the corresponding three axes of symmetry in most volunteers.

It has been experimentally shown that mammalian head direction neurons can be controlled
by peripheral inputs, mainly vestibular, visual, and auxiliary afferents of the angular velocity of
rotation of the head [22–24]. The "spatial view cells"found in primates are characterized by the
fact that their activation occurs only when the animal looks at a certain place in space [25,26]. The
highly developed vision and oculomotor system of primates allow them to explore and remember
from the outside what is in a particular place of the environment, even without visiting these
places. Such spatial review cells can be useful as part of a spatial memory system in which they
should provide a representation of a part of space, regardless of exactly where the monkey or man
was, and what can be associated with events occurring in these places. Spatial representations of
primates should also be useful in memorizing trajectories when performing navigation tasks, etc.

The integral of velocity over time determines the position of the body in space. The same
trajectory integration operation is implemented in the hippocampal-entorhinal system of the
brain, using signals of the body’s own movement during navigation for this operation. In the
model under consideration, this implicit trajectory integration operation is implemented as follows.
At the input of all information units of the network in the third theta cycle after the start of the
integration process, a signal of translational (linear) speed with a duration of 5 cu is received.
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time and amplitude increments of 2 ·10−5 in the range of normalized amplitudes [0.00084...0.0014].
Then, in the next, fourth theta cycle, signals of the angular velocity of rotation are sent to cells
sensitive to independent variables — CCW and CW signals with a duration of 3 cu and an
amplitude gradient step of 1 · 10−5 distributed among the relevant cells. All symbolic records of
the training datasets presented in this article included various values of relative time intervals
between CCW/CW events in a wide range of time scales. An example of an interface with a
software package is shown in Fig. 2.

Presented in Fig. 2 the sequence of five numerical values of the training data set, limited
to points in the record, means the values of the time intervals between events, and the signals
themselves have a standard duration of 3 cu. time. The minus sign in the first inter-event interval
means the temporary overlap of the second CCW signal with the first CCW signal by 7 cu in the
internal time scale of the neural network, and the value "0"means that the end of the second and
the beginning of the third event coincide in time. This form of recording is an expression of a time
sequence of signals in the symbolic language of "thoughts"developed by the author — the form of
recording, which is shown at the bottom of each graph or diagram presented in the article and
which was "understandable"to the trained neural network. The word "understandable"is derived
from the word "concept"or "concept hence relational conceptual learning — a neurodynamic
learning process of a neural network, as a result of which a network representation of the
semantic space of living organisms was obtained. We also emphasize that the combined effects
of translational and angular velocity signals on the network in the neurodynamic sense become
interdependent, therefore the resulting directions and distances are also interdependent, which is
clearly seen in the representations of the spatial trajectories of object images obtained as a result
of decoding the population phase curves of information units of the network.

Fig. 2. Снимок с экрана компьютера интерфейс программного комплекса Expert-2013 на примере начала
символьной записи первого события концепта CAT: 5k6s-[-7].0.77.2.25

Fig. 2. A screenshot of the computer interface of the Expert-2013 software package on the example of the beginning
of the symbolic recording of the first event of the CAT concept: 5k6s -[-7].0.77.2.25
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1.2. Population phase coding and time compression in the process of network
learning. The ECI network scheme, thanks to its symmetrical bilateral organization, can be
linked to the "body scheme"of the virtual navigator organism. In particular, if the right diagonal
of the neural network structural organization scheme is rigidly connected to the frontal direction
of the body, then the right-sided sub-network in the reference system (see below, Fig. 4, shown
by the two colors of the cell) will correspond to the right side of the body, and the subcell of cells
located to the left of the same diagonal — the left side of the body. To get a complete picture of
the neural network’s ability to integrate motion trajectories in any direction, namely, in the frontal
direction (straight forward), to the right, that is, clockwise (CW), or to the left, counterclockwise
(CCW), computational experiments were conducted in which a range of normalized values of
amplitudes was determined these directive signals. Integral curves of phase responses of both
populations of directionally sensitive network units to CCW and CW signals were constructed by
a machine algorithm in consecutive segments in each theta cycle following the signal of the total
translational rate.

Patterns of pulse effects of a certain amplitude (in a normalized range of values) and their
duration cause a corresponding phase sweep in the theta cycle following the end of the training
set. The angular velocity pulse input signal distributed among the relevant inputs of the ECI
network is integrated by the network at each step of the amplitude increment of the contextual
input of the translational velocity and stored in short-term memory as a rectilinear segment of
the phase trajectory - vector, the direction and length of which are represented in two integral
families of oppositely directed phase response curves. The entire history of the network’s training
of an information set of signals in a wide range of time scales is step-by-step compressed and
stored in a reference theta cycle following the last theta cycle in which input information was
received.

Thus, the entire learning process in ECI networks consists of three time windows: early,
medium and late after the input training set is turned on in symbolic form, which is clearly
visible on all graphs of phase response curves (Fig. 3, 4, 5). At an early stage of the process,
encoding and highly compressed phase implicit representation of both CCW and CW signals
in the reference theta cycle occurs. At the second stage, due to the stepwise increment of the
amplitude of the contextual input of the translational velocity, orthogonal representations of
both angular velocity signals are observed and, finally, their gradual transformation to parallel
representations at a late stage of training. At the same time, each step of the modification of the
phase representations of the CCW and CW signals under the influence of the contextual input is
stored in buffer memory and represented graphically as separate segments of the phase response
curves of all information units.

1.3. Representation of the spatial trajectory — the "mental"memory trace of
the conceptual representations of the network in the egocentric space. The specific
organization of the ECI network encodes the relative spatial order of the fields of activity of
information units, and not the dependence of one or another information unit on a specific
location or a particular event. It is important that the relative order in the neural network space
can be fixed, since the network has local phase coherence and a reference non-coding system
of oscillators. Thus, the phenomenon of "perception"of space in this neural network model is
based not on a passive reflection of the spatial organization of external stimuli, but on the active
construction of one’s own internal representation of space. And here the lattice activity of the
information units of the network plays an important role, which collectively "sketch"a kind of
coordinate grid (like entorhinal lattice fields of activity) on the spatial environment under study.
A continuous attractor neural network model can maintain the activity of its neurons to represent
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any location along any physical dimension, for example, a visual spatial overview or a given
spatial environment. An ECI network can keep a packet of neural activity constant wherever it
starts to represent the current state (head direction, position, etc.) [14].

In order to obtain a graphical spatial representation of the motion trajectory, it is necessary
to obtain forward phase values at each step of the velocity vector change, which are then translated
in accordance with the algorithm described above into segments (rectilinear segments) of the
spatial trajectory in an egocentric coordinate system. Thus, the representation of the trajectory
occurs in accordance with the vector strategy: the direction and length of each subsequent
vector are calculated based on the difference in the phase representations of cells with CW
and CCW sensitivity at each step of the increment of the contextual input (the horizontal
axis on the graphs of phase response curves). The total time of the process of phase coding
and network training in these experimental series was 600–1200 theta cycles with a duration
of one theta cycle of approximately 97 cu. time depending on the time scale of the training
set of signals (vertical axis on the graphs of phase response curves). The test egocentric space
had four fixed directions. Along the horizontal axis, the amplitudes of the contextual input
were plotted with the same step as when constructing phase curves; along the vertical axis —
the difference between the weighted phase values of CW cells (with a minus sign in the lower
half-plane) and CCW cells (with a plus sign in the upper half-plane). This value determined the
direction of the motion vector at the current time with accuracy up to a constant coefficient [27].

2. Results and discussion

In the model experiments presented below, a number of results are shown that determine the
cognitive neurodynamics of the network, and, in particular, the formation of the conceptual space
of the ECI network using the synthesized language (code) of "thoughts". First of all, however, it
is necessary to note the neurodynamic similarities and differences of the phase response curves
when training each object of this class with training sets of input data (see Fig. 3). Interestingly,
the obtained differences in these curves are determined only by the last time interval in the
training set, which causes a noticeable restructuring of the entire chain of consecutive segments
of the spatial trajectory. Such a coordinated vector-phase rearrangement causes a change in the
observed concepts. Another important example of dynamic phase rearrangement, which resulted
in a large set of isomorphic concepts of each object, was obtained by reading the code from
small distributed groups of neurons with the initial selective CW and CCW tuning (see [28]).
Computational experiments were carried out in accordance with the following plan for the study
of cognitive neurodynamics of concept representations:

а) experimental model study of the dependence of the psychological proximity of concepts on
semantic distance — a well-known fact in cognitive psychology (see Fig. 3);

б) studies of the range of time scales of training sets of signals relevant to the generation of
spatial representations of animal images (see Fig. 4);

в) study of large-scale transformations of imaginary objects (see Fig. 5);
г) study of creative possibilities and demonstration when calling from memory (decoding)

animal concepts that the network has not been trained (Fig. 6).

2.1. An experimental study on the ECI-network model of the dependence of
the psychological proximity of concepts on semantic distance. The dependence of
the psychological proximity of concepts on semantic distance is a well-known fact in cognitive
psychology. However, how this problem is solved at the neural network level is not currently
known. In this regard, one of the tasks of the present series of model experiments was to search
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Fig. 3. Семантическое пространство 7 абстрактных изображений животных (сверху вниз: BORZ, DOG,
BEA, CAM, BUL, miniBUL и CAT), созданное обучающими входными потоками сигналов, синтезированных
автором вручную. Обучающий набор каждого концепта состоит из 6 событий (4 CCW- и 2 CW-сигналов),
разделенных временными интервалами различной длительности (здесь и далее показано внизу каждого
изображения). В каждом ряду, слева-направо: схема ECI-сети, обученная тому или иному концепту; в
центре — кривые фазовых ответов всех нейронов сети в референтном тета-цикле, показанном вдоль оси
ординат графиков и обозначенном REF (означающими начало и конец тета-ритма); многочисленные вер-
тикальные линии — шаг градиента контекстного входа, равный 2 · 10−5; справа — вызов из памяти сети —
декодирование популяционного векторно-фазового кода каждого концепта (подробнее см. в работе [12] и
ранних работах автора). На схеме сети: большими черными кружками показаны 4 кластера осцилляторных
нейронов, чувствительных к вращениям сети против часовой стрелки (CCW), а серым цветом — 4 кластера
нейронов — к вращениям по часовой стрелке (CW). Правая диагональ сети, оканчивающаяся стрелкой,
привязана к фронтальному направлению схемы тела организма. Решетка малых черных кружков в схеме
сети — некодирующая референтная субсеть осцилляторных нейронов. Все связи в сети — билатеральные
рекуррентные тормозные; кластеры информационных нейронов, показанные большими черными кружками,
получают возбуждающие информационные сигналы с различными временными интервалами и, соответствен-
но, генерируют гамма пачки с различными фазами в тета-цикле. Нейроны схемы, обозначенные малыми
черными кружками, получают постоянные входы и генерируют когерентный референтный тета-ритм

Fig. 3. Semantic space of 7 abstract images of animals (top-down: BORZ, DOG, BEA, CAM, BUL, miniBUL
and CAT), created by training input signal streams synthesized by the author manually. The training set for
each concept consists of 6 events (4 CCW and 2 CW signals), separated by time intervals of different lengths
(hereinafter shown at the bottom of each image). In each row, from left to right: an ECI network diagram trained
on a particular concept; in the center — curves of phase responses of all neurons in the network in the reference
theta cycle, shown along the ordinate axis of the graphs and denoted by REF (meaning the beginning and end of
the theta rhythm); numerous vertical lines — the step of the gradient of the contextual input equal to 2 · 10−5;
on the right — a call from the network memory — decoding of the population vector-phase code of each concept
(for more details, see [12] and early works of the author). On the network diagram: large black circles show 4
clusters of oscillatory neurons that are sensitive to counterclockwise rotation of the network (CCW), and in gray —
4 clusters of neurons — to clockwise rotation (CW). The right diagonal of the net, ending with an arrow, is tied
to the frontal direction of the body diagram of the organism. The lattice of small black circles in the network
diagram is a noncoding reference subnetwork of oscillatory neurons. All connections in the network are bilateral
recurrent inhibitory; clusters of information neurons, shown by large black circles, receive excitatory information
signals at different time intervals and, accordingly, generate gamma bursts with different phases in the theta cycle.
Small black circles receive constant inputs and generate a stable reference theta rhythm

for spatial representations of objects (animals) that differ, on the one hand, the most pronounced
signs of relevant animals (the length and width of the muzzle, the shape of the ears or their
absence). On the other hand, in connection with the temporal encoding of input signal patterns
that we had previously adopted in studies of the neurodynamics of ECI networks, it was necessary
to find a form of symbolic notation in the language of "thoughts"in which the defining variable in
the inter-event CW/CCW intervals would be internal network time, which determines the spatial
representation this or that concept. Recall that the reference subnetwork described in the Methods
allows for a highly accurate assessment of time intervals both in the input training sequence of
signals and in the time code (relative phase shifts of information units) during network training.
In addition, the initial selective tuning of four clusters of information units to incoming input
signals counterclockwise (CCW) and the same number with selective tuning to clockwise signals
(CW) was adopted. The corresponding settings of the cell clusters are shown in black and gray,
and are indicated by the corresponding arrow directions in the upper corner of the ECI network
diagram in Fig. 3. In this series of experiments, symbolic recordings of training sets of signals
with time intervals of the form 5k6s were used-94.93.76.100.115 — ... 5k6s-94.93.76.100.121 with
the last interval successively changing per unit of time, as shown from top to bottom in each row
in Fig. 3. The symbolic entries presented here encode a temporary program for supplying input
signals to the network, which, ultimately, after decoding the implicit phase representations of the
network, allows the observer to see the relative change in the lengths and directions of vectors
sequentially constructing the spatial trajectory of an object, starting from the paws and ending
with the tail.
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It can be seen that as a result of conceptual training of the network and decoding of
the population phase code, a series of 7 spatial abstract images was obtained, differing in the
most pronounced signs of animals with the conditional names BORZ, DOG, BEA, CAM, BUL,
miniBUL and CAT, namely the shape of the muzzle and ears or their absence. Thus, using a
minimal set of characteristic features, as a result of this series of computational experiments, a
semantic space containing the seven animals listed above was obtained. Each spatial representation
of a certain concept from this line of animals is characterized by the total value of inter-event time
intervals in the input training sequence. At the same time, the spatial boundaries of particular
representations of concepts are due to the difference in the last time interval, which in this case is
1 cu. Note, however, an important detail that the relative representations of concepts do not
occur discretely, but continuously (analogically) changing in time dimension, and the difference
is 1 cu. it is not a threshold value, but reflects only the most obvious difference between the
representations of concepts in the semantic space. In other words, a continuous sequence of spatial
representations of objects passes from the most recognizable concepts to the indefinite ones and,
returning again, but already to new images from the one presented in Fig. 3 object rulers. In
addition, the dependence of the psychological proximity of concepts on the semantic distance,
which is observed in this series of experiments described by symbolic records that differ from each
other by only 1 cu. The time in the last time interval can be easily extended to other numerous
training sets, several examples of which will be discussed in the next section.

In conclusion, we note, in particular, that the DOG concept is clearly perceptually different
from the mini bulk concept more than the miniBUL concept from the CAT concept, and this
fully corresponds to their distances in semantic space. In the first case, such a distance is 4 cu.
time, and in the second — 1 cu. time, from which it clearly follows that the "driving force"of
perceptual differences of objects in semantic space is relative time and related neurodynamic
rearrangements in the network. Thus, the concepts BORZ and CAT, located at opposite ends of
the semantic line of the category of animals represented by the network, differ in a large amount
of relative time. In this regard, we note the opinion of S. Bernardi et al. [18], that the further a
person moves away from a concept in the space of semantic memory, the more new or creative
this new concept will be.

2.2. Investigation of the range of time scales of training sets relevant to the
generation of spatial representations of animal images. The training data set presented
above, which differs only in the last time interval, is only one example of the generation of
conceptual spatial representations of animals, therefore, the range will be investigated further
and the evaluation of time scales relevant to the generation of spatial representations of animal
concepts will be given. In addition, the applicability of the above assessment of the perception
of perceptual proximity of objects, depending on the semantic distance in the studied range of
time scales, will be considered. In the upper two rows of the figure, the time scale of the training
dataset of all three DOG, BUL and CAT concepts presented in the symbolic record is 92, 96
and 97 units, respectively, that is, all three time scales of the training signals completely fit
into the theta cycle, the duration of which in the model is slightly more than 97 units of time.
In the next, 3rd and 4th rows of the same figure, the time scale of the training signal sets of
the DOG, BUL and CAT concepts is already 189, 193 and 194 cu., Nevertheless, the spatial
representations of these concepts are perceptually isomorphic to the initial representations in
the training sequence of inter-event intervals compressed to a separate theta cycle. Experimental
studies of the model have shown a wide range of time scales of training signals up to a tenfold
increase. Finally, in the last two rows of Fig. 4 clearly visible distortions of the phase response
curves and the corresponding spatial representations of the DOG, BUL and CAT concepts on
a time scale, respectively 1060, 1061 and 1063 cu, are shown, indicating the upper limit of the
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Fig. 4. Концептуальные пространственные представления на примере трёх животных DOG, BUL и CAT в
широком диапазоне временных шкал обучающих наборов сигналов, поступающих на информационные входы
сети. В первых двух рядах видно, что временные межсобытийные интервалы столь коротки, что суммарно
все последовательности сигналов составляют 92, 96 и 97 у.е. времени для трех концептов, соответственно.
Знак минус в данном выражении означает перекрытие 1-го и 2-го межсобытийных временных интервалов, а
ноль — что между 2-м и 3-м событийными сигналами нет временного разрыва. Во втором случае сумма
временных межсобытийных событийных интервалов составляла 189, 193 и 194 у.е., а в последнем — 1060, 1061
и 1063 у.е. Отметьте, что в последнем случае становятся заметны десинхронизированные фазовые кривые
информационных единиц, что естественно сказывается на появляющихся искажениях пространственных
изображений концептов (нижний ряд)

Fig. 4. Conceptual spatial representations using the example of three animals DOG, BUL and CAT in a wide
range of time scales of training sets of signals arriving at the network inputs. In the first two rows of the figure,
it can be seen that the time intervals between events are so short that in total all signal sequences are 92, 96,
and 97 conventional units time for the three concepts, respectively. The minus sign in this expression means the
overlap of the 1-st and 2-nd inter-event time intervals, and zero means that there is no time gap between the
2nd and 3rd event signals. In the second case, the sum of time inter-event event intervals was 189, 193, and 194
conventional time units, and in the latter — 1060, 1061 and 1063 conventional time units. Note that in the latter
case, desynchronized curves of phase responses of information units begin to appear, which naturally affects the
emerging distortions of spatial images of concepts (bottom row)

range.
It is interesting to note several important results of this series of experiments. Firstly, it

is a strict correspondence of each concept to the total value of time intervals attributed to it of
a given symbolic sequence of signals. Secondly, the obtained tenfold estimate of the magnitude
of the time scale range of the input training signals, relevant to obtaining isomorphic spatial
representations of the selected line of animal concepts. Just as the speed of pronunciation of
words can vary significantly, but there is a limited physiological range of speeds available for
perceptual perception of speech. Thirdly, another proof of the correctness of the methodological
approach to modeling cognitive neurodynamics in oscillatory networks with even cyclic inhibition
is obtained, expressed in this case in a simple quantitative assessment of the distance between
concepts, which reflects the psychological proximity of objects (perceptual similarity) in semantic
space: smaller relative distances correspond to greater similarity of spatial representations of
animal concepts, smaller similarity — long distances.

In conclusion, we emphasize that the above was achieved despite the fact that the time
scale of the input training sets of signals relevant to the generation of spatial representations of
animal images was very wide, covering almost a tenfold time range from the upper to the lower
limit of the permissible values of the total inter-event time intervals in symbolic records.

In conclusion, we note that the definition of distance provides an internal measure of
similarity, taking distance in conceptual space as an indicator of semantic similarity. The concept
of similarity is an important construction for modeling categorization and concept formation.

2.3.Regulation of time scales of mental representations of concerts. Understanding
how the various objects of our physical environment are interconnected, as well as generalizing
this knowledge in different contexts, is one of the fundamental problems of human cognition.
Such generalization is a difficult task when relational patterns of input signals are shared in
different contexts and presented at different physical scales. This section shows the results of a
study of the neurodynamics of different-scale spatial representations of a model performing the
task of comparing objects in order to generalize the concepts of "more"or "less"in the context
of perceptual perception of "further"or "closer". We emphasize that here we are not talking
about comparative amplitudes and time parameters of input information signals about objects
(symbolic records about objects remained unchanged).

It is shown here that the general control of the mechanism of temporal flexibility, that
is, the control of the variable timing of neurons (in our ECI network model, the control of the

Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2022;30(3) 345



346 Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2022;30(3)



Fig. 5. Внутренние масштабные преобразования пространственных представлений объектов на примере
трех концептов, при сохранении во всех трёх случаях амплитуд и межсобытийных временных интервалов
внешних входов. Когда в сети устанавливаются более длинные временные интервалы, популяционная
активность развивается в соответствии с тем же концептом по инвариантной нейронной траектории, но с
меньшей скоростью. Диапазон величин контекстного входа для всех трёх концептов составлял слева направо:
[0.0008...0.0024], [0.0008...0.0018], [0.0008...0.0015] с шагом амплитуд 2 · 10−5 (см. вертикальные линии на
графиках кривых фазовых ответов нейронов)

Fig. 5. Internal large-scale transformations of imaginary objects using the example of three concepts, while
maintaining in all three cases the amplitudes and inter-event time intervals of external inputs. When longer time
intervals are established in the network, population activity develops in accordance with the same concept along
an invariant neural trajectory, but at a lower rate. The range of contextual input values for all three concepts was
from left to right: [0.0008...0.0024], [0.008...0.0018], [0.0008...0.0015] with an amplitude step of 2 · 10−5 (see the
vertical lines on the graphs of the phase responses of neurons)

phases of high-frequency bundles in the reference theta cycle), is mediated by a common neural
network contextual input. The amplitude of this input determines the total duration of the time
interval of the context input, which leads to the modulation of the speed (see Fig. 5). Thus,
a modern and reliable conclusion from numerous experiments is that the production of time
intervals is mediated by internal temporal scaling of neural signals, that is, contextual signals,
regardless of external sensory signals. In the previous section, it was already shown that the
network "understands"incoming input signals in a wide range of time scales, which is reflected
in numerous isomorphic representations obtained in computational experiments (here shown by
the example of three concepts). A fundamental feature of the brain’s mental abilities, such as
imagination, expectation, and reflection, is that they are not tied directly to sensory or motor
events and can unfold on different time scales. Examples of such flexible behavior are managing
the coordination of their own movements in athletes or speakers who can control the pace of their
speech. People can accurately internally manage the timing of their movements and quickly make
changes according to current needs or instructions. To maintain such temporary flexibility, the
brain must control the dynamics of current patterns of neural activity, that is, the timing (time)
of future movements, adjusting the internal speed command. Thus, cognitive control of internal
states can provide a simple and general mechanism for giving temporary flexibility not only to
sensorimotor, but also to cognitive functions of the brain. [29, 30].

In recurrent neural network models, time scaling occurs due to non-linearities in the network,
and the degree of scaling is controlled by the strength of the external input. Previously, this
phenomenon was also established experimentally on animals in accordance with the general
principle of time scaling, which was obvious both at the unicellular and population level. In
particular, on longer time frames at intervals, the population activity of animals developed along
an invariant neural trajectory, but at a slower rate. To investigate the mechanisms underlying
such flexible speed control, the authors analyzed the neurodynamics of recurrent networks using
gradient input to produce different time intervals. The analysis of these models showed that
the degree of scaling was controlled by the input acting on the nonlinear activation function of
individual neurons in the network [29].

Similarly, in our model experiments, large-scale transformations of the DOG, BUL and CAT
concepts in the context of "further-closer"were obtained as a result of training while maintaining
in all three cases the amplitudes and inter-event time intervals of external inputs (see Fig. 5), but
population activity developed in accordance with one or another concept along an invariant neural
trajectory, but at a slower rate. Thus, large-scale transformations of conceptual representations
are implemented due to changes in the width of the phase window in the reference theta cycle of
the network, determined by the range of values of the contextual input, which physically leads to
a spatial representation of the object "further-closer".

Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2022;30(3) 347



2.4. Demonstration of the creative possibilities of relational neural networks with
even cyclic braking. The way to understanding the neurocognitive components of creative
thinking lies in creating a model that meets certain criteria and quantitative measurements of a
number of important characteristics related to the creative activity of the brain, including relational
relations of concepts, semantic space of images, semantic distance, large-scale transformations,
generation of neural network representations distributed in space and time, the above aspects of
which were described and demonstrated in the accompanying figures here and in the previously
presented report at the NDKI-2021 conference in Nizhny Novgorod. We emphasize that the neural
network mechanisms of creative cognition of the brain remain a fundamental problem, which
we will discuss below. It is important that the solution of this the problems will be based on a
large cognitive and neuroimaging reserve of data, indicating that episodic and semantic memory
— memory of autobiographical events and conceptual knowledge, respectively — support various
aspects of creative thinking and cognition. It is assumed that semantic memory supports creative
thinking, having a knowledge base of facts and concepts that can be combined to solve creative
problems and generate new ideas, regardless of time and context [3], whereas episodic memory
stores autobiographical memories that depend on time and context [4]. The episodic system is
considered constructive: instead of simply reactivating memory tracks in the form in which they
were encoded, calling episodic memory involves recombining episodic details to restore a past
event. It is believed that these flexible recombinatory processes support episodic thinking about
the future — imagining a possible future experience that has not yet occurred — by similarly
invoking and combining elements of past experience [34].

How these important theoretical propositions are implemented in our model study is
presented in the following series of experiments, where the creative capabilities of an ECI network
trained in a single image of an animal are demonstrated by "imagination"(in the absence of
external information inputs) of a multitude of abstract representations of concepts (see Fig. 6).
In contrast to the previously presented series of experiments, where the directional selectivity of
cell clusters marked in black and gray on the network diagram was strictly observed, both during
training and decoding when called from memory, in this series of experiments, mixed selectivity
of neurons was implemented, in other words, places in "one-color"clusters of network cells when
called from memory, they could be replaced by cells with the opposite directionality. Thus, the
phenomenon of creative cognition is due to the fact that the "mental imagination"of the network
is realized due to the recombination of elements of the event or conceptual features, such as
the nose (beak), the shape of the animal’s muzzle, passing into the face, etc., etc. From this we
can conclude that the expansion of the semantic space of neural network representations is not
due to the expansion of the training set of input data (the only input set of signals of the BUL
concept was used during training), but due to the internal recombination of image fragments, the
use of mixed selectivity of neurons, recruitment when calling from memory distributed groups
of information units of the network, which, in turn, increases the level of categorization and,
consequently, generalization of mental representations to a wider class of objects, despite the
one-time training of the network, as in this example.

The next important attribute that determines the neurodynamics of the creative capabilities
of ECI networks is their structural organization, which includes a reference system of non-coding
neurons. The functional purpose of this subset of neurons is ambiguous: a) these neurons ensure
the stability of the generation modes of networks with positive feedbacks formed as a result of
the well-known phenomenon of "inhibition of inhibition"; b) these neurons generate the internal
time of the network (clock mechanism) by coherent theta-rhythmic activity, represented on the
ordinate axis of the graphs of phase response curves by the beginning and end of the reference
theta cycle; c) the range of phases of the phase response curves of all information neurons is
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Fig. 6. Воображение многочисленных образов рекрутированием распределенных групп нейронов. Обученная
набором данных концепта BUL, 7k ECI-сеть «ментально» представляет различными группами меченных
нейронов на схеме сети в 1 и 3 ряду рисунка многочисленные концепты животных, птиц и даже человека
(2 и 4 ряд рисунка). Генерация воображаемых образов сетью, обученной единственному концепту BUL,
свидетельствует о её способности к обобщениям на целый класс живых организмов, тем самым значительно
расширяя собственное семантическое концептуальное пространство. Обратите внимание, что такое расшире-
ние семантического пространства произошло из-за нарушения исходной избирательности нейронов к право-
и левосторонним поворотам при обучении (см. верхний ряд рисунка) и первые три серии экспериментов, то
есть благодаря смешанной селективности при считывании из памяти выделенных групп нейронов

Fig. 6. Imagination of multiple images by recruiting distributed groups of neurons. Trained by the BUL concept
dataset (Fig. 1), the 7k ECI network “mentally” represents various groups of labeled neurons on the network
diagram in rows 1 and 3 of the figure, numerous concepts of animals, birds, and even humans (rows 2 and 4 of the
figure). The generation of imaginary images by a network trained in a single BUL concept testifies to its ability to
generalize to a whole class of living organisms, thereby significantly expanding its own semantic conceptual space.
Please note that such an expansion of the semantic space occurred due to a violation of the initial selectivity of
neurons for right- and left-sided turns during learning (see the top row of the figure) and the first three series of
experiments, i.e. due to the mixed selectivity when reading the selected groups of neurons from the memory
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limited by the reference theta cycle, regardless of the network dimension (see the example of
5-contour and 7-contour ECI networks; d) this sub-network participates in coordinating access to
the semantic knowledge repository, providing the latter with connectivity of neurons in distributed
groups.

It is important to emphasize the coordinating role of this neural subnetwork in memory
recall, noting that a similar system in the brain was first discovered and described by Marcus
Raichle in 2015 [31], having received the names Default Mode Network (DMN) — neural network of
operational rest, the default brain mode network (translated from English). In general, numerous
studies have shown that the DMC consists of discrete, bilateral and symmetrical regions in
the parietal, prefrontal, entorhinal cortex and hippocampus [4,19,31,32]. Extensive and largely
overlapping network regions of the default mode participate in the processes of calling episodic
and semantic memory of the brain and differ mainly in the different contributions of hippocampal
and parahippocampal regions in calling episodic memory [19].

One of the characteristic features of neurodynamics, clearly visible on all graphs of phase
response curves, indicates that the patterns of activity of information units were grouped into
two synchronized oppositely directed (CCW and CW) clusters. It is assumed that clustering is a
geometric structure that allows for an important and clear form of generalization that can be used
to determine when a neural ensemble represents a variable in an abstract format. This format
supports the ability to generalize to new situations. The ability to generalize under new conditions
is similar to the ability to decode a variable under experimental conditions that were not used for
training [18]. Let us explain this conclusion with our examples. Our linear decoder tracked the
phase changes of two opposite clusters of cells at each step of the context change (vertical lines on
all phase graphs), producing the resulting spatial representation of the concept that the network
was initially trained in (see Fig. 6, top row). Then, under the new conditions of mixed selectivity,
the decoder read the phase values of the recruited cells with a changed phase orientation in
the theta cycle (that is, offsets to the beginning instead of the end of the theta cycle or vice
versa), which as a result represented a new situation for the decoder. Under these conditions, the
grouped geometric arrangement of the points of spatial representations of concepts was provided
by a successful generalization of the decoder to new conditions of "mental"experiments, since the
original training data set was aimed at obtaining a single BUL concept.

2.5. Abstract spatial representations of imaginary concepts — internal mental
model of generalization of objects. Modern ideas about how new knowledge, imagination
and creative thinking are formed are based on two fundamental processes of structuring knowledge
in the form of cognitive maps and cognitive graphs. Cognitive maps and cognitive graphs can
coexist in the same people, and their availability and use depend on the characteristics of the
environment and the target needs of the organism. Cognitive maps and cognitive graphs are created
partly by different but partially overlapping neural systems in the hippocampal formation, frontal
(frontal) lobes and scene-selective cortical regions. Both representation systems can probably
support abstract thinking [7, 17]; cognitive maps are relevant to conceptual representations that
change along continuous dimensions, whereas cognitive graphs are— representations of transitions
between states and discrete associations between elements [33]. What gives us knowledge of
abstract "cognitive"variables or concepts, examples of which were given as a result of the model
studies discussed above? Knowledge of abstract variables allows you to generalize and immediately
draw conclusions about newly encountered life circumstances. The hippocampus and the entorhinal
cortex form relational cognitive maps that contribute not only to episodic memory, but also
support the formation of concepts by presenting relevant features for distinguishing related
concepts. In addition, the function of memory is not only in remembering important details of
individual experience, but also in the ability to link new information between events in order
to create new knowledge. Navigation inside hippocampal cognitive maps, which are guided by
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lattice hexagonal coding in the entorhinal cortex and implemented by modeling in ECI networks,
contributes to the imagination of the concepts presented in this study and further development of
research in this direction.

Conclusion

The experimental results indicate a wide variety of abstract conceptual representations
obtained in the semantic space of relational neural networks with even cyclic inhibition. It is
shown that the phenomenon of creative cognition is due to the fact that the "mental"imagination
of these networks is realized due to: a) understanding the language (code) of "thoughts in which
the input training sequences were presented; b) the possibility of recombination of elements of
conceptual features of objects by recruiting small distributed groups of neurons of the network; c)
expansion of semantic space due to mixed selectivity when calling distributed groups of neurons
from memory; d) the presence of non-coding, reference neurons in the structure of ECI networks —
analogous to the Default Mode Network (DMN) in the brain — performing a unifying role when
calling distributed information from memory network units. We also emphasize that the considered
model of ECI networks is trained in representations that adapt and compactly capture important
details of encoded objects without any semantics built initially into the network architecture.
The task of future research is to further develop the creative potential of ECI networks, which
includes: 1. Extension of the language of "thoughts"to various classes of physical objects and
visual scenes; 2. Combinatorial learning, imagination and understanding of visual scenes, as a
consequence of understanding the language of "thoughts in which input training sequences of
signals should be presented.
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