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Abstract. Purpose of this work is to build a model of the infection spread in the form of a system of differential
equations that takes into account the inertial nature of the transfer of infection between individuals. Methods. The
paper presents a theoretical and numerical study of the structure of the phase space of the system of ordinary
differential equations of the mean field model. Results. A modified SIRS model of epidemic spread is constructed
in the form of a system of ordinary differential equations of the third order. It differs from standard models by
considering the inertial nature of the infection transmission process between individuals of the population, which
is realized by introducing a «carrier agent» into the model. The model does not take into account the influence of
the disease on the population size, while population density is regarded as a parameter influencing the course of
the epidemic. The dynamics of the model shows a good qualitative correspondence with a variety of phenomena
observed in the evolution of diseases. Discussion. The suggested complication of the standard SIRS model by
adding to it an equation for the dynamics of the pathogen of infection presents prospects for its specification via
more precise adjustment to specific diseases, as well as taking into account the heterogeneity in the distribution of
individuals and the pathogen in space. Further modification of the model can go through complicating the function
which defines the probability of infection, generation and inactivation of the pathogen, the influence of climatic
factors, as well as by means of transition to spatially distributed systems, for example, networks of probabilistic
cellular automata.
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Introduction

Methods of nonlinear dynamics allow us to study natural phenomena by constructing and
analyzing simple (qualitative) mathematical models. Qualitative models, unlike simulation models,
do not pretend to predict the detailed behavior of the simulated system under specific conditions.
However, they allow us to understand the nature of the observed phenomena, to identify their
patterns and internal mechanisms, as well as to determine by what parameters or influences their
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characteristics can be changed. One of the areas of application of qualitative models is the study
of the spread of epidemics of infectious diseases in biological populations [1–4].

Mathematical modeling of epidemics is one of the sections of population dynamics [5], used
both in biology and in other sciences, for example, sociology. Various mathematical methods are
used to predict the course of epidemics: time series analysis [6], regression [7] and autoregressive [8]
models, grids of cellular automata [9–12], artificial neural networks [13–15] and others.

Classical models of the spread of infections are systems of ordinary differential equations. The
most famous of them is the SIRS model, proposed in the 1920s Kermack and McKendrick [16]. In
the SIRS model, the population is divided into groups of healthy and susceptible (S— Susceptible),
infectious (I— Infectious) and recovered (R— Recovered) individuals and systems of equations
are constructed that determine the law of change the relative number of individuals in each of
the groups, based on the assumption of random and the uniform distribution of individuals in
the population. Such a system is called the mean-field model. At the same time, the processes of
infection of individuals are described like collisions of ideal gas particles in statistical physics.

The basis of this approach is the assumption of Hamer [17] that the rate of spread of the
epidemic depends on the frequency of contacts between susceptible and infected individuals. The
frequency of contacts is determined by the product of the population densities of susceptible and
infected individuals in the population. This approach, despite its obvious simplicity and clarity,
does not always adequately describe the real processes of infection, which may be characterized
by a certain non-locality and inertia. Inertia of biological processes it can be taken into account
by introducing a delay time into the model, that is, by using equations with a delayed argument.

One of the first such approach was applied in 1948 in the work of Hutchison [18]. In the
future, delayed equations were used in a variety of works, an overview of which can be found
in [19, 20]. However, lag models are systems with an infinite number of degrees of freedom, which
makes it difficult to analyze them.

A one more possible approach is the introduction of an additional equation and an additional
variable that describe the inertia mechanism. It is this method that is proposed in the work.

In this paper, a modification of the SIRS model is proposed, in which the transmission
of infection occurs indirectly, due to interaction with the carrier agent. Viruses, bacteria or
parasites can act as such an agent1. This approach is especially relevant for predicting the
spread of respiratory viral infections, in which the agent causing infection is extremely mobile
and relatively long-lived. Therefore, the act of infection can occur far (in time and space) from
infected individuals. Such a model is a model of interaction between two systems: a population
of individuals and a population of viruses, each of which lives according to its own laws. By
individuals we will understand isolated particles whose state changes in a discrete way, and by
viruses — an external field that affects individuals and leads to a change in their state, that is,
infection.

1. Modified two-component SIRS model of the spread of infectious diseases

Infectious diseases have common features:

• the disease spreads through infection, the source of which is a previously infected individual
(𝐼), and the recipient is a susceptible individual (𝑆). As a result, the susceptible individual
becomes ill and becomes the source of subsequent infections itself: 𝑆 → 𝐼;

• the ill individual is cured with time, while getting immunity to subsequent infections (𝑅):
𝐼 → 𝑅;

1In the future, we will conditionally call all such intermediary agents viruses
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• acquired immunity is lost with time, the individual returns to its original state: 𝑅 → 𝑆.
Thus, in the evolution of each individual, we observe a cyclic chain of transformations between a
discrete and a finite set of states 𝑆 → 𝐼 → 𝑅 → 𝑆. Hence the name of this model — SIRS.

In the standard SIRS -model, the act of infection is described as the result of local contact
of individuals 𝑆 and 𝐼: 𝑆 + 𝐼 → 2𝐼. However, in practice, infection can occur without direct
interaction of individuals. In this paper, we propose exactly such an infection scheme based on
«exchange interaction» individuals with viral particles. In this scheme, an infected individual (𝐼)
acts as a generator of viruses (𝑉 ), which then, due to diffusion or mixing, spread through the
habitat, infecting susceptible individuals (𝑆): 𝑆 𝑉→ 𝐼. Viruses in this scheme are intermediaries
between a ill individual and a susceptible one. Thus, instead of the standard SIRS -model, we
propose a two-component (individuals + viruses) model: 𝑆 𝑉→ 𝐼 → 𝑅 → 𝑆.

In the proposed model, the dynamics of viral particles is fundamentally different from the
behavior of individuals in the population. Individuals of a population are objects with a discrete
set of states {𝑆, 𝐼,𝑅}. Transitions between them are random events and are characterized by
their probability values (𝑃𝑘). Each of the individuals requires a certain habitat. Therefore, the
number of individuals in a given area is always limited to some maximum number 𝑁 . Viral
particles can accumulate indefinitely at every point in space. Therefore , their number can take
arbitrary positive values. They are also able to move in the process of diffusion. Thus, the
interaction of individuals with viruses is some analogy of the interaction of particles with a field.
The described transformations that occurred in each elementary cell of space during the time ∆𝑡
can be represented as the following scheme (Fig. 1):

𝐼 → 𝐼 + ν𝑉,

𝑆 + η𝑉
𝑃 (η)→ 𝐼 + η𝑉,

𝐼
𝑃2→ 𝑅, (1)

𝑅
𝑃3→ 𝑆,

𝑉 → (1− µ)𝑉,

where the letters above the arrows indicate the probabilities of the corresponding transitions.
We briefly describe the sequence of operations of the scheme (1).

1. An infected individual (𝐼) generates ν of virus particles (𝑉 ).
2. A susceptible individual (𝑆) becomes infected upon contact with η viruses with a probability

of 𝑃 (η).
3. An infected individual (𝐼) recovers with a probability of 𝑃2 and becomes immune (𝑅).
4. An immune individual (𝑅) loses immunity with probability 𝑃3 and returns to the receptive

state (𝑆).

Fig. 1. Diagram of transitions between states of the SIRS+V model: solid lines indicate the direction of transitions;
a dashed line indicates the influence of viruses on the transition between states of individuals
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5. Inactivation of µ viruses.
All transformations are unidirectional. The order of changing the states of individuals is rigidly
deterministic. At the same time, the transformations themselves and the moments of time at
which they occur are random. The dynamics of this model is determined by both the parameters
and the choice of the function 𝑃 (η).

When considering the spread of the epidemic, the main interest is not the dynamics of
individuals, but the change in their number 𝑁𝑘 (𝑘 ∈ {𝑆, 𝐼,𝑅}). The total population size of
𝑁𝑆 + 𝑁𝐼 + 𝑁𝑅 is limited in size by some maximum allowable value of 𝑁 , which we will call
the maximum capacity of the population. The value of 𝑁 is due to some common resource (the
amount of food, the area of the territory, etc., etc.), restraining unlimited population growth. The
ratio of the total population to the maximum possible is the relative population

𝐶 =
𝑁𝑆 +𝑁𝐼 +𝑁𝑅

𝑁
,

taking a value from zero to one. Since the total number of particles in the scheme (1) does not
change, 𝐶 is a parameter. The value of the parameter 𝐶 is an important factor determining the
course of infectious processes in the population.

2. The mean-field model

In the mean-field approximation for the scheme (1), it is possible to compose a system of
equations governing the change in the number of individuals in each of the states 𝑁𝑘 (𝑘 ∈ {𝑆, 𝐼,𝑅})
and the number of viruses 𝑁𝑉 for a small interval ∆𝑡. We introduce as variables the relative
population densities 𝑘 = 𝑁𝑘/𝑁 and, passing to the limit ∆𝑡 → 0, write down a system of ordinary
differential equations

�̇� = 𝑃 (𝑣) (𝐶 − 𝑖− 𝑟)− 𝑃2𝑖, (2)
�̇� = 𝑃2𝑖− 𝑃3𝑟,

�̇� = ν𝑖− µ𝑣

(it is taken into account here that 𝑠+ 𝑖+ 𝑟 = 𝐶). To determine the type of the function 𝑃 (𝑣) , it
is natural to assume that it should monotonically increase with the concentration of viruses from
𝑃 (0) = 0 to 𝑃 (∞) = 1. As such a function, we choose 𝑃 (𝑣) = (1− (1− 𝑃1)

𝑣), where 𝑃1 ∈ [0 : 1[
— probability of catching «with a single» portion of viruses2. Denoting α = − ln (1− 𝑃1), you can
write the probability function in a more convenient form: 𝑃 (𝑣) = 1− exp (−α𝑣). In the equation
(2), you can reduce the number of independent parameters by entering a new variable: 𝑧 = α𝑣,
and a new parameter: σ = αν. As a result , we get

�̇� = (𝐶 − 𝑖− 𝑟) (1− exp (−𝑧))− 𝑃2𝑖, (3)
�̇� = 𝑃2𝑖− 𝑃3𝑟,

�̇� = σ𝑖− µ𝑧.

The equation (3) will be the basis for analyzing the behavior of the system (1). It follows from
the conditions of the problem that all variables and parameters (3) are non-negative numbers; in
addition, the variables 𝑖 and 𝑟 are summarily bounded from above: 𝑖+ 𝑟 ⩽ 𝐶 ⩽ 1.

2The choice of this dependence is determined by the fact that the probability of not getting infected by 𝑣
portions of viruses will be 𝑄𝑣, where 𝑄 is— probability to stay healthy after contact with one portion of viruses.
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3. Stationary solutions

Let’s analyze the stationary solutions of the system (3)in the range of acceptable values of
parameters and variables. The limiting trajectories of the system (3) are two equilibrium states:
trivial 𝐸0 = (0, 0, 0) and nontrivial

𝐸1 = (𝑖0, 𝐴𝑖0, 𝐵𝑖0), (4)

where the notation is used: 𝐴 = 𝑃2/𝑃3, 𝐵 = σ/µ, and the value 𝑖0 is defined as the root of the
transcendental equation

𝑖0 =
1

1 +𝐴

(︂
𝐶 − 𝑃2𝑖0

1− exp (−𝐵𝑖0)

)︂
. (5)

The point 𝐸0 corresponds to the case of complete recovery of the population. Its stability is
determined by the roots of the characteristic equation

λ1 = −𝑃3,

λ2,3 =
− (𝑃2 + µ)±

√︁
(𝑃2 − µ)2 + 4σ𝐶

2
,

which, by virtue of the non-negativity of all the quantities included in the formula, are real.
Depending on the ratio between 𝑑 = 𝐵𝐶 and 𝑃2, it can be either a stable node (at 𝑃2/𝑑 > 1) or
a saddle node (at 𝑃2/𝑑 < 1). Bifurcation condition for 𝐸0

𝑃2 = 𝑑 (6)

simultaneously corresponds to the passage of the point 𝐸1 through the origin, at which it becomes
stable. Thus, for any parameter values in the phase space (3) there is only one stable fixed point.
For 𝑃2 > 𝑑, this is the point 𝐸0 while for 𝑃2 < 𝑑 this is the point 𝐸1. In the first case, the
population is not susceptible to infection and any accidental penetration of infection fades in
time; in the second case, if there is an initial infection, an epidemic occurs.

It can be seen from the expression (6) that the ratio 𝑑/𝑃2 plays a decisive role in epidemic
processes. It is the product of several parameters: αν𝐶τ𝑣τ2, where τ𝑣 = µ−1 — average virus
viability time, τ2 = 𝑃−1

2 — the average duration of the disease (the so-called «infection period»).
What is the biological meaning of this factor? If the average concentration of viruses generated by
one infected individual is ντ𝑣, and the proportion of susceptible individuals is close to 100%, then
the value of 𝑑 determines the average rate of infections produced by one infected individual at
the initial stage of the epidemic. Multiply it by the average period of infection τ2 and we get that
𝑑/𝑃2 represents a well-known characteristic in epidemic modeling — basic reproduction index,
usually denoted as 𝑅0. Thus, the condition of loss of stability by the equilibrium state 𝐸0 in
the equation (3) is completely consistent with the condition of epidemic occurrence known in
epidemiology 𝑅0 > 1.

4. The established level of the disease in the population

Next, consider the system ((3) at 𝑃2 < 𝑑, that is, under conditions of disease development.
In this case, the coordinates of the stable point 𝐸1 determine the establishment of a dynamic
equilibrium between the number of ill and healthy individuals. Usually of interest is the relative
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number of ill individuals in the population 𝑋0 = 𝑖0/𝐶, which characterizes the level of the disease.
It is determined by the transcendental equation

𝑋0 =
1

1 +𝐴

(︂
1− 𝑃2𝑋0

1− exp (−𝑑𝑋0)

)︂
. (7)
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Fig. 2. Dependence of the population infection level on
infection period τ2 with long-term immunity; 𝑑 = 4.16

We will conduct a qualitative evaluation of the
formula (7) for typical values of the parameters
included in it. The value in parentheses is less
than one, and the disease level is limited from
above by the multiplier (1 +𝐴)−1. For most
infections, the average duration of immunity
τ3 = 𝑃−1

3 is many times longer than the
duration of the disease itself τ2 [4].

Therefore, 𝐴 — is a large enough
number3. It follows that: (a) the unit in the
denominator (7) can be neglected and (b) the
value of 𝑋0 does not exceed a few percent.
Therefore, with not too large values of the

factor 𝑑, the exponent in the denominator can be linearized: exp (−𝑑𝑋0) ≃ 1− 𝑑𝑋0. Then the
formula for 𝑋0 will be significantly simplified

𝑋0 ≃
1

𝐴

(︂
1− 1

𝑅0

)︂
. (8)

Here 1−𝑅−1
0 — the established level of the disease in the population that would exist there in

the absence of immunity. As can be seen from the formula (8), the presence of immunity reduces
the average level of patients by 𝐴 times.

It should be noted that the values 𝐴 and 𝑅0 are not independent, since both contain the
parameter 𝑃2. To eliminate this ambiguity , the formula (8) can be rewritten as

3For example, for most respiratory viral infections, the average infection period is one to two weeks, and
immunity can persist for a year or more.
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Fig. 3. Dependence of the eigenvalues of the equilibrium state 𝐸1: a — on τ2 at τ3 = 200 and b — from τ3 at
τ2 = 10; the other parameters are fixed: σ = 0.7, µ = 0.3, 𝐶 = 0.6. The solid curves correspond to real values,
dashed lines correspond to imaginary ones; gray region on the fig. a marks the zone where 𝐸1 is the focus
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𝑋0 ≃
1

τ3

(︂
τ2 −

1

𝑑

)︂
. (9)

In this case, as can be seen from (9), the established level of disease in the population is determined
by the action of two factors, one of which is τ−1

3 , and the second is— exceeding the duration of
the infectious period over its critical value 𝑑−1. In general, the presence of long-term immunity
(τ3 ≫ 1) protects the population from high levels of illness. Other factors constraining 𝑋0 are
equally a decrease in the infection period τ2 and an increase in the inverse factor 𝑑−1.

Fig. 2 shows graphs 𝑋0(τ2) for long immunity intervals τ3 ∼ 100, calculated according
to the full formula (7) and its simplified version (9); the latter are represented by dotted
lines. We see that even with large 𝑑 ≃ 4, if the average
infection period does not last too long (τ2 ⩽ 10), both formulas give similar values. Therefore,
for many diseases, the ratio (9) can be a good approximation.

5. Initial stage of the disease

The coordinates of the point 𝐸1 determine the level of infection in the population at long
times, that is, at 𝑡 → ∞. However, in practice, it is often important to know how the disease will
develop at the begining stage after the initial infection. Therefore, we are also interested in the
transition process from an arbitrary initial state in the vicinity of the origin to a stable point 𝐸1.
The transition process is determined by the structure of the phase space in the neighborhood of
𝐸1, that is , the type of this equilibrium state. It can be determined based on the eigenvalues of
the λ1−3 Jacobian of the system (3):

⎡⎢⎢⎣exp
(︁
−σ
µ
𝑖0

)︁
− 𝑃2 − 1 exp

(︁
−σ
µ
𝑖0

)︁
− 1

(︂
𝐶 −

(︂
1 +

𝑃2

𝑃3

)︂
𝑖0

)︂
exp

(︁
−σ
µ
𝑖0

)︁
𝑃2 −𝑃3 0
σ 0 −µ

⎤⎥⎥⎦.
The analytical form of eigenvalues is quite cumbersome, so we will use numerical calculations.
Let’s choose the parameter values that were used in the previous section: 𝐶 = 0.6, σ = 0.7,µ = 0.3,
τ2 ∼ 10, τ3 ∼ 100 and plot the dependence of the eigenvalues on the average period infections τ2
(Fig. 3, a) and the average duration of immunity τ3 (Fig. 3, b)

As can be seen from the graphs, in the considered parameter area, the point 𝐸1 has
two complex conjugate eigenvalues λ1 and λ2 and one real — λ3. At the same time, the real
parts of λ1,2 are very small and monotonically decrease with increasing duration of immunity.
Thus, 𝐸1 represents a stable focus. While approaching this point, the trajectory will make many
turns, showing at first significant fluctuations in the number of cases, gradually decreasing in
amplitude.Time-series of this transition the process is determined by the initial conditions. Let’s
choose as such a point near the origin: 𝑖0 = 0.001, 𝑟0 = 0 and 𝑧0 = 0, which corresponds to the
situation of penetration of several infected individuals into an initially healthy population. A
typical variant of the transition process observed in this case is shown in Fig. 4 (line marked with
circles). Here we see an extremely rapid increase of the number of infected immediately after the
start, followed by an equally rapid decline to almost zero. This is followed by a second peak of a
significantly smaller magnitude, after then the trajectory reaches a level close to 𝐸1. From the
point of view of population dynamics, this behavior can be interpreted as a decaying sequence of
infection waves, in which the infection level of the population shows a sequence of sharp peaks
before the epidemic reaches a dynamic equilibrium characterized by a low level of infection. In
this case, the peak of infection at the very beginning of the disease affects more than a third part
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of the population. The large magnitude of this peak is determined by the fact that at this stage
immunity in the population has not yet been formed.

Thus, despite the relatively small established stationary level of infection, the number of
infected at certain points in time can reach significant values. With a severe course of the disease,
accompanied by probable fatal outcomes, the presence of a high peak of the first wave of infection
can lead to serious consequences for the population.
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Fig. 4. Population infection levels 𝑋(𝑡) at initial stage
of the epidemic under different initial conditions; the
parameter values are: τ2 = 5, τ3 = 300, σ = 0.7, µ = 0.3,
𝐶 = 0.6
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Fig. 5. Dependence of maximum value of infected relative
number on the level of formed immunity available in the
population at the time of infection. Dashed line marks
the infection level corresponding to the steady state (𝑋0)

Under other initial conditions, the
dynamics of infection may look different. If,
at the time of initial infection, a sufficient
number of individuals with immunity are
already present in the population (for example,
due to pre-vaccination), the transition process
becomes smoother. In this case, the increase
in the number of infected is slower, and the
maximum level of infection is significantly
lower. At 𝑟0 = 0.2 (which is 33% of the
population) at the peak of infection, the
number of infected is about 0.2. At 𝑟0 = 0.4
(67% of the population size) — less than 0.075
(fig. 4). In general, the dependence of the
maximum number of infected on the level of
immune individuals available at the time of
infection is shown in Fig. 5. As can be seen from
the graph, at the level of immune individuals
from zero to about 60%, the magnitude of
the infection peak decreases with the growth
of 𝑟0 almost linearly, after which it becomes
more gentle and, starting from the level of
80%, stabilization occurs around the value of
𝑋max ≃ 0.075. With other parameter values,
the quantitative values will be different, but
the qualitative the type of this dependency is
preserved.

5.1. The influence of seasonal factors
on the course of the disease. In the
previous sections, an autonomous model of
infection spread was considered, where all
parameters are constant numbers. However,

the processes associated with infection depend on environmental conditions, which for most
climatic zones change periodically due to seasonal factors. Therefore, an autonomous model is
insufficient for them.

Let’s try to modify the system (3) to take into account the influence of changing conditions.
The change of seasons will be to lead to periodic modulation of the equation parameters around
some average values, which may affect seasonal fluctuations in the number of infected. Of all
the parameters used in (3), the most sensitive to the influence of external factors is the rate of
inactivation of viruses µ, the inverse value of which (τ𝑣) determines the time during which viral
particles can remain active outside the infected individuals. This interval significantly depends
on the temperature and humidity of the environment, as well as on a number of other factors
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Fig. 6. Parametric oscillations in the system (3) with modulation of the parameter µ: a — time-series at different
modulation indices at 𝑇 = 170 and b — a family of resonance curves for different 𝑚; dashed line on the fig. a
indicates the modulation of the parameter. Parameter values are: 𝐶 = 0.6, µ0 = 0.3, σ = 0.7 (color online)

(the amount of solar radiation, average wind intensity, etc., etc.). To take into account seasonal
factors, we assume that the parameter µ in the equation (3) modulated by a harmonic function of
time around the mean value of µ0 according to the law: µ(𝑡) = µ0 (1 +𝑚𝐹 (cos (2π𝑓𝑡))), where 𝑓
is the frequency, and 𝑚 is the modulation index; the function 𝐹 defines the influence of external
factors on the parameter µ, it is selected so that |𝐹 (𝑥)| ⩽ 1 when |𝑥| ⩽ 1.

Let’s first consider the case of linear dependence: 𝐹 (𝑥) = 𝑥. Let’s choose the average value of
the parameter µ0 = 0.3. In the presence of parameter modulation, we observe periodic oscillations
of the infection level 𝑋(𝑡) in the form of a regular sequence of sharp infection peaks, the type
of which is shown in Fig. 6, a. The oscillation period is equal to the period of the modulation
function 𝑇 = 𝑓−1. As a result, the disease periodically reaches high infection levels at peaks and
drops to almost zero in the intervals between them. The amplitude of steady-state oscillations
𝐴𝑥 evidently grows with the growth of the modulation coefficient. As for its dependence on the
modulation frequency 𝑓 , it has a resonant character. This can be seen from the resonance curves
plotted in Fig. 6, b. At low modulation indices, the resonant frequency is close to the self frequency
of the oscillator, defined as Im (λ1,2)/(2π) (the latter is shown in the figure by the dotted line).
With an increase in the modulation depth, a slight shift of the resonant frequency towards the
lower frequencies is observed.

In addition to oscillation with the frequency of external parametric action , at some values
of the parameters in the oscillator, a doubling of the oscillations period is observed. In this case,
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Fig. 7. Doubling of the oscillation period: a — time-series 𝑋(𝑡) and b — the phase portrait in variables 𝑖 – 𝑟; the
dashed line on the fig. a indicates the modulation of the parameter. Parameter values are: 𝐶 = 0.6, µ0 = 0.6,
σ = 0.5, 𝑇 = 300 (color online)
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the oscillation period doubles in comparison with the modulation period (Fig. 7, a), and the
phase portrait takes the form of a two-turn limit cycle (Fig. 7, b). This type of oscillations means
in practice the presence of outbreaks of the disease with a two-year interval. A similar dynamic is
indeed observed for some diseases. For example, it was noted for the disease measles before the
introduction of mass vaccination [21].

The dependence of the rate of inactivation of viruses µ on environmental conditions can
also be expressed by a nonlinear function 𝐹 (𝑥). In this case , peaks at harmonics multiples of
the base frequency can be expected in the spectrum of fluctuations in the number of cases. For
example, if we choose a dependence in the form of a quadratic polynomial 𝐹 (𝑥) = 𝑎𝑥2 + 𝑏𝑥+ 𝑐,
then the disease maxima appear twice during the period. This type of oscillation is shown in
Fig. 8. It corresponds to the well-known phenomenon of seasonal outbreaks of respiratory viral
infections.

A non-autonomous model is not invariant to time. Therefore, the choice of the moment
of initial infection can have a significant impact on the processes in it. The development of the
epidemic can occur in different ways, depending on what time of year the initial infection occurred.
To take this factor into account, we introduce the initial phase (3) into the law of parameter
modulation: µ(𝑡) = µ0 (1 +𝑚𝐹 (cos (2π𝑓𝑡+ 3))) and we will measure the level of the disease at
the peak of the epidemic 𝑋max depending on 3. The results of calculations confirm the assumption
about the importance of the moment of initial infection on the course of the epidemic. A typical
type of dependency is shown in Fig. 9. As can be seen from the graph, the magnitude of the peak
of infection can vary several times depending on how favorable the moment of initial infection
penetration into the population turned out to be for the spread of the epidemic .

Conclusion

The proposed modified SIRS model demonstrates the dynamics characteristic of the
development of epidemic processes in natural populations. If we do not take into account the
periodic changes in conditions caused by climatic factors, then in the presence of an initial
infection in the community, a sequence of several attenuating «waves» of infection occurs, which
reduces to a small average steady-state level. At the same time, the amplitude of the first wave
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can reach very large values comparable to the size of the entire populations. Taking into account
climatic factors leads to recurrent outbreaks of the disease, which can occur both with twice the
frequency (seasonal outbreaks of respiratory infections) and with half the frequency of exposure
(biennial outbreaks of certain infections). The period of these processes is determined by the type
of function describing the influence of climatic factors on the rate of inactivation of viruses in the
environment. Specification of the type of this function is possible by taking into account biological
factors that characterize the behavior of the causative agent of infection outside the body of an
infected individual. The system under consideration describes many characteristic phenomena
observed during the development of epidemics. At the same time, it is rather approximate, since it
does not take into account the specific features of diseases, the possible movement of individuals
and the pathogen in space. Modification of the model may follow the path of clarifying the type
of function 𝑃 (ν), for example, taking into account the threshold nature of infection observed for
some diseases; using a more realistic (nonlinear) equation describing the generation of viruses by
a diseased individual; clarifying the type of function modulations 𝐹 (𝑥). Such refinements are an
adjustment of the model to a specific type of disease and take into account its biological features,
that is, they correspond to the transition from qualitative modeling to simulation. Another
direction of modification of the proposed model may be the transition from a system of ordinary
differential equations to lattices of probabilistic cellular automata. Such an approach will make it
possible to naturally take into account the stochastic nature of epidemiological processes and
consider the impact of unevenness in distribution on these processes individuals and viruses by
habitat and the impact of their movement processes.
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