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Abstract . Purpose of this work is a numerical study of the Rabinovich–Fabrikant system and its generalized
model, which describe the occurrence of chaos during the parametric interaction of three modes in a nonequilibrium
medium with cubic nonlinearity, in the case when the parameters that have the meaning of dissipation coefficients
take negative values. These models demonstrate a rich dynamics that differs in many respects from what was
observed for them, but in the case of positive values of the parameters. Methods. The study is based on the
numerical solution of the differential equations, and their numerical bifurcation analysis using the MаtCont
program. Results. For investigated models we present a charts of dynamic regimes in the control parameters plane,
Lyapunov exponents depending on the parameters, attractors and their basins. On the parameters plane, which
have the meaning of dissipation coefficients, bifurcation lines and points are numerically found. They are plotted
for equilibrium point and period one limit cycle. For both models we compared dynamics observed in the case
when the parameters that have the meaning of dissipation coefficients take negative values, with the one observed
in the case when these parameters take positive values. And it is shown that in the first case parameter space has a
simpler structure. Conclusion. The Rabinovich–Fabrikant system and its generalized model were studied in detail
in the case when the parameters which have the meaning of dissipation coefficients take negative values. It is shown
that there are a number of differences in comparison with the case of positive values of these parameters. For
example, a new type of chaotic attractor appears, multistability that is not related to the symmetry of the system
disappears, etc. The obtained results are new, since the Rabinovich–Fabrikant system and its generalized model
were studied in detail for the first time in the region of negative values of parameters which have the meaning of
dissipation coefficients.
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Introduction

In 1979, M.,I.Rabinovich and A.,L.Fabrikant investigated the problem of modulation
instability in the parametric interaction of modes in a nonequilibrium dissipative medium with
cubic nonlinearity and with spectrally narrow amplification [1]. The authors have written down a
nonlinear parabolic complex equation, which is a generalization of the well-known Landau model.
Further, they assumed the discreteness of the spatial spectrum of solutions in the resonant case
for periodic boundary conditions. In addition, only three modes fall into the spectral interval
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in which the medium is active - the main one and its two satellites, which arise as a result of
modulation instability. As a result, they obtained the following system for the problem under
consideration:

_a0 = 2sa1a2a�0 exp(�iDwt) + g0a0 + sa0(ja0j2 + 2ja1j2 + 2ja2j2);

_a1,2 = 2sa2,1a2
0 exp(iDwt)� n1,2a0 + sa1,2(2ja0j2 + ja1,2j2 + 2ja2,1j2):

(1)

Here a0 is the complex amplitude of the main mode, a1,2 is the complex amplitudes of the satellites;
g0 is the dissipation coefficient for the main mode, and n1,2 is the dissipation coefficients for the
satellites; Dw — frequency disorder specified as Dw = 2w0 � w1 � w2, where w0 is the frequency
of the main mode, and w1,2 is the frequency of satellites; s is the parameter characterizing the
nonlinearity in the system, t is the dimensionless time. The latter is provided that the main mode
dominates the satellites (a0 � a1 = a2, w1 = w2 = w n1 = n2 = n), has been reduced to a valid
three-dimensional model:

_x = y(z � 1 + x2) + gx;

_y = x(3z + 1� x2) + gy;

_z = �2z(n + xy);

(2)

where x, y, z are dynamic variables (x and y are proportional to
p

a0, and z is — a1), and g and
n — parameters that make sense of dissipation coefficients (g = g0).

As studies of recent years have shown [2–11], the system (2) demonstrates rich dynamics:
regular and chaotic attractors of different topologies, multistability, when attractors of different
types coexist in phase space, etc., So, for example, in [2], the authors investigated a variety of
system attractors (2): equilibrium positions, periodic cycles and chaotic attractors, as well as
heteroclinic orbits connecting equilibrium positions with stable cycles and chaotic attractors.
And in the works [3–5], chaotic attractors of the system (2) were studied for various values
of the parameters g and n. The authors showed that in the Rabinovich–Fabrikant system (2)
typologically different chaotic attractors are observed. At the same time, in the works of [3,4],
the main attention is paid to the so-called «hidden attractors» and «virtual» saddles. In [6],
the authors proposed an analog circuit, which is described by the model (2), and conducted
a detailed study of it: bifurcation diagrams, phase portraits, «first return» displays, etc., etc.
In [7], the authors considered the mechanism of stabilization of a chaotic system in the vicinity
of unstable equilibrium points on the example of several systems, including the Rabinovich–
Fabrikant system (2).

In the work [8] numerically investigated in detail the Rabinovich–Fabrikant system (2):
maps of dynamic modes, dependences of Lyapunov exponents, attractors and pools of their
attraction are constructed, lines of the main bifurcations of fixed points and the limit cycle are
found. Also in this paper, examples of periodic and chaotic attractors of different topologies are
given and it is shown that the system (2) demonstrates multistability when attractors of different
types or topologies coexist in the phase space. And finally, in [9], the authors considered and
numerically investigated in detail the case of three-mode interaction in the presence of dissipation
with cubic nonlinearity of a general form1. Using the Lagrange formalism, the authors of [9] wrote
down ordinary differential equations of the second order for real variables. Assuming that the
system is located in the vicinity of resonance, according to the methodology described in [1], a
system was obtained that is a generalization of the Rabinovich model–Fabricant (2) for the case

1Recall that in [1] the authors considered a special case of cubic nonlinearity, which corresponded to a complex
parabolic equation.
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of cubic nonlinearity of the general form:

_x = [p(x2 + z) + q(�y2 + 3z)� 1]y + gx;

_y = [p(�x2 + 3z) + q(y2 + z) + 1]x + gy;

_z = �2z(n + (p + q)xy):

(3)

Here x, y, z — dynamic variables, g and n — parameters identical to the parameters Rabinovich–
Fabrikant model, а p и q — parameters characterizing nonlinear interaction in the system. At the
same time, as shown in [9], the system (3) completely coincides with the system (2), if p = 1:0
and q = 0.

Note that the models (2) and (3) are universal in a certain sense, since they are applicable
to systems of different physical nature in which three-mode interaction takes place in the presence
of cubic nonlinearity. For example, in such as the waves Tollmin –Schlichting in hydrodynamic
currents [12], wind waves on water [13], waves in chemical media with diffusion [14], radio
engineering systems that allow as analog modeling, so is the implementation in a radio engineering
device [8], and etc.

In this paper, a detailed numerical study of the systems (2) and (3) is carried out for the
case when the parameters g and n take negative values. This choice of parameters is due to the
fact that in all the above studies, studies were conducted exclusively for positive values of the
parameters g and n. And since in the equations (1) there are different signs before the terms
specifying dissipation, this means that the main mode has negative dissipation, and the satellites
have positive. In the case of negative values of the parameters g and n, the situation will change to
the opposite: the main mode will have a positive dissipation, and the satellites — negative. Thus,
the sign of the parameters g and n determines at which frequency the energy is pumped, and at
which — its selection. At the same time, it was noted in [3, 4,6] that although the negative values
of the parameters g and n do not have physical meaning in relation to the problem formulated
in [1], for them the Rabinovich–Fabrikant system (2) it will also demonstrate nontrivial dynamics
and a chaotic attractor of a new type.The last one in the work [3] is named as «Gramophon-like
chaotic attractor». On the other hand, the systems (2) and (3) can be considered as reference
models describing complex dynamics and chaos. And, as a consequence, the parameters present in
the equations can take any reasonable values. Thus, it can be expected that the results presented
in this paper will complement the results of the above works, primarily [8, 9], creating a complete
picture of the dynamic behavior of systems (2) and (3).

1. Dynamics of the Rabinovich–Fabrikant system
in the case of negative values

of parameters g and n

First, let’s consider the dynamics of the of the Rabinovich–Fabrikant system (2). Let the
parameters g and n take negative values. Let’s build a dynamic mode map for it and its enlarged
fragments on the parameter plane (n; g) (Fig. 1). Such a map is constructed when scanning the
parameter plane, when the type of the observed mode is numerically determined at each of its
points, which is indicated by the corresponding color. On maps (see Fig. 1) the following modes
are highlighted in color: dark blue corresponds to the equilibrium position, blue — to the limit
cycle of the period 1, yellow — to the cycle of the period 2, red — to the cycle of the period
4, etc., etc., black corresponds to the chaotic mode, and the white color indicates the area of
«escape trajectories to infinity». The specified cycle periods are determined in a standard way
using the Poincare section.
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a b c
Fig. 1. Êàðòà äèíàìè÷åñêèõ ðåæèìîâ ( à) è åå óâåëè÷åííûå ôðàãìåíòû ( b, c) ñèñòåìû Ðàáèíîâè÷à�Ôàáðèêàíòà
(2) íà ïëîñêîñòè ïàðàìåòðîâ (n; g). Íà ôðàãìåíòå à áóêâàìè îáîçíà÷åíû òî÷êè, â êîòîðûõ ïîñòðîåíû
àòòðàêòîðû, ïðåäñòàâëåííûå íà ðèñ. 2. Íà ôðàãìåíòàõ b, c � àòòðàêòîðû, ïðåäñòàâëåííûå íà ðèñ. 3, 5 (öâåò
îíëàéí)

Fig. 1. Chart of dynamical regimes ( a) and its enlarged fragments (b, c) of the Rabinovich �Fabrikant model (2) at
(n; g) parameter plane. On fragment a, the letters indicate the points where the attractors shown in Fig. 2 are
plotted. On fragments b, c, the letters indicate the points where the attractors shown in Fig. 3 and Fig. 5 are
plotted (color online)

Fig. 2. à � Çàâèñèìîñòü ïîêàçàòåëåé Ëÿïóíîâà ñèñòåìû Ðàáèíîâè÷à�Ôàáðèêàíòà (2) îò ïàðàìåòðà n äëÿ
g = � 3:8. b� f � Àòòðàêòîðû ñèñòåìû Ðàáèíîâè÷à�Ôàáðèêàíòà (2), ïîñòðîåííûå äëÿ ñëåäóþùèõ çíà÷åíèé
ïàðàìåòðîâ: g = � 3:8 è n = � 2:9 (b), n = � 2:2 (c), n = � 2:0 (d), n = � 1:8 (e) è n = � 1:5 (f ). Òî÷êè, â êîòîðûõ
ïîñòðîåíû àòòðàêòîðû, îòìå÷åíû íà ðèñ. 1, a ñîîòâåòñòâóþùèìè áóêâàìè

Fig. 2. a � Graphs of Lyapunov exponents of the Rabinovich �Fabrikant system (2) on the parameter n at g = � 3:8.
b� f � Attractors of the Rabinovich�Fabrikant system (2) at g = � 3:8 and n = � 2:9 (b), n = � 2:2 (c), n = � 2:0
(d), n = � 1:8 (e) and n = � 1:5 (f ). In Fig. 1, a the points at which the attractors plotted are marked by the
corresponding letters
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On the map (Fig. 1, a), two areas can be distinguished that di�er in their device. The
�rst one is located at the bottom of the map (parameter g < � 1:5). Various areas of periodic
regimes and chaos are observed here. For a better understanding of the dynamics observed in the
speci�ed area for the system Rabinovich�Fabrikant (2) dependences of Lyapunov exponents on
the parameter n and attractors at several points of the parameter space are constructed (ðèñ. 2).
It follows from the �gure that if you �x the value of the parameter g, for exampleg = � 3:8, and
change the value of the parametern, moving along the parameter plane from left to right, then
�rst, with large modulo negative values of the parametern, all three Lyapunov exponents are
negative (Fig. 2, a), and in the phase space of the system under consideration, two symmetrically
arranged and transitioning into each other with simultaneous replacement ofx ! � x and y ! � y
equilibrium positions are observed (Fig. 2,b). Note that the systems (2) and (3) have the property
of symmetry with respect to the simultaneous replacement of variables

x ! � x;
y ! � y:

(4)

This property leads to the fact that in the phase space of the systems under consideration, either a
symmetrically located pair of attractors will be observed (when one attractor passes into another
when replaced (4)), or one symmetric attractor (which, when replaced (4), passes into itself)2.
When the parametern increases (the modulus of the parametern decreases), the senior Lyapunov
exponent becomes zero, and the two remaining exponents are still negative. This corresponds to
the fact that a symmetric pair of limit cycles of the period 1 is born in the system (Fig. 2, c). If
the parameter n is further increased, a sequence of period doubling bifurcations will be observed
(Fig. 2, d, e), until, �nally, the senior Lyapunov exponent becomes positive (see Fig. 2,a) and
there will be no symmetric pair of chaotic attractors in the system (Fig. 2, f ). The points at
which the attractors are constructed are marked in Fig. 1,a with the corresponding letters.

Thus, for su�ciently large negative values of the parameter g the dynamics of the of the
Rabinovich�Fabrikant system qualitatively the same as was observed for her in the case when
the parametersg and n were positive, and the parameterg > 0:8 [8]. However, if in the case of
positive values of the parametersg and n, the width of the regions of periodic and chaotic modes
decreased with the growth of the parameterg, now it increases (see Fig. 1,a).

The second area is located at small, modulo, values of the parametersg and n and is
presented in more detail in enlarged fragments (Fig. 1,b, c). There are several regions of the limit
cycle of the period1, within which there is a transition to chaos through a sequence of period
doubling bifurcations. All these regions, as will be shown below, di�er in the topology of the
period limit cycle observed inside them1.

Let's �rst consider the area shown in Fig. 1, c. In Fig. 3 presents a graph of the dependence
of the Lyapunov exponents of the system (2) on the parameterg and its attractors constructed
at some points, which are marked in Fig. 1,c with the corresponding letters. Initially, inside
this area, the system (2) demonstrates a symmetric limit cycle of the period1, which turns into
itself when replacingx ! � x or y ! � y (Fig. 3, b). Note that earlier this type of symmetry
was not observed either in the Rabinovich�Fabricant system or in its generalized model. When
the parameter g decreases (the modulus of the parameterg increases), this cycle undergoes a
symmetry loss bifurcation and becomes unstable, and instead a symmetric pair of limit cycles
of the period 1 is born (Fig. 3, c). These changes are especially noticeable on the projections
of these cycles on the plane (x, y), (x, z) and (y, z), which are shown in Fig. 4,a, b. For the
convenience of perception, the cycles passing into each other, in Fig. 3, 4 and similar drawings
are depicted in red and blue colors. In the future, based on each of the cycles of the period1,

2In the future, when describing the attractors observed in the systems under consideration, we will use the
expressions ¾symmetric pair...¿ or ¾symmetrical...¿ implying the symmetry given by the formula (4).
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Fig. 3. à � Çàâèñèìîñòü ïîêàçàòåëåé Ëÿïóíîâà ñèñòåìû Ðàáèíîâè÷à�Ôàáðèêàíòà (2) îò ïàðàìåòðà g äëÿ n =
� 0:15.
b� f � Àòòðàêòîðû ñèñòåìû Ðàáèíîâè÷à�Ôàáðèêàíòà (2), ïîñòðîåííûå äëÿ ñëåäóþùèõ çíà÷åíèé
ïàðàìåòðîâ: n = � 0:15 è g = � 0:24 (b), g = � 0:29 (c), g = � 0:307 (d), g = � 0:313 (e) è g = � 0:32 (f ). Òî÷êè, â
êîòîðûõ ïîñòðîåíû àòòðàêòîðû, îòìå÷åíû íà ðèñ. 1, c ñîîòâåòñòâóþùèìè áóêâàìè (öâåò îíëàéí)

Fig. 3. a � Graphs of Lyapunov exponents of the Rabinovich �Fabrikant system (2) on the parameter g at n = � 0:15.
b� f � Attractors of the Rabinovich�Fabrikant system (2) at n = � 0:15 and g = � 0:24 (b), g = � 0:29 (c),
g = � 0:307 (d), g = � 0:313 (e) and g = � 0:32 (f ). In Fig. 1, c the points at which the attractors plotted are
marked by the corresponding letters (color online)

shown in Fig. 3, c, a cascade of period doubling bifurcations will be observed, the corresponding
cycles of the period2 are shown in Fig. 3,d, until a chaotic attractor appears in the system
(Fig. 3, e, f ). At the same time, at �rst it will have the same topology as the limit cycle of the
period 1 (compare Fig. 3, c and 3, e, as well as �g. 4, b and 4, c), and then as a result of
the crisis, the topology of the chaotic attractor will change (see Fig. 3,f ).Note that a chaotic
attractor of this type, as shown in Fig. 3, f, previously in the Rabinovich�Fabricant system or its
generalized model was not observed. In the work [3], the attractors of this con�guration were
called ¾Gramophon-like chaotic attractor¿. The choice of the name is obviously due to the type
of projection of the attractor on the plane (x, y) (Fig. 4, d).

Now consider the lower part of the �gure. 1, b of the dynamic mode map fragment of
the Rabinovich�Fabrikant system (2). There are several period cycle structures observed here 1.
On �g. 5 periodic and chaotic attractors constructed for some of these structures are presented.
The points at which they are built are marked in Fig. 1, b with the corresponding letters.
On �g. 4, e� j the projections of some of these attractors on the plane are presented (x, y), (x,
z) è (y, z). In the leftmost structure, the system (2) demonstrates a symmetric limit cycle of
period 1 (Fig. 5, a, �g. 4, e). As in the case described above, it �rst loses symmetry, generating
a symmetric pair of limit cycles of period 1 (�g. 5, b, �g. 4, f ). These cycles subsequently
undergo a cascade of period doubling bifurcations, as a result of which a chaotic attractor
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