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The purpose of this work is to study a computational model of working memory formation based on spiking
neural network with plastic connections and to study the capacity of working memory depending on the time
scales of synaptic facilitation and depression and the background excitation of the network. Methods. The model
imitates working memory formation within synaptic theory: memorized items are stored in form of short-term
potentiated connections in selective population but not in form of persistent activity. Integrate-And-Fire neuron
model in excitable mode are used as network elements. Connections between excitatory neurons demonstrates
the effect of short-term plasticity. Results. It is shown that the working memory capacity increases as calcium
recovery time parameter grow up or the capacity increases with neurotransmitter recovery time parameter becomes
lower. Working memory capacity is found to decrease to zero with decrease of the background excitation as a
result of lower values of both the mean and the variance of the external noise. Conclusion. Working memory
capacity was studied as a function of time scales of synaptic facilitation and depression and background excitation
of the network. Estimated working memory capacity is shown to be possibly larger than classical experimental
estimations of four items. But capacity strongly depends on intrinsic parameters of neural networks.
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Introduction

Working memory (WM) is a system for short-term storage and manipulation of information
[1–3]. WM is capable of handling information on time scales of several seconds up to minute and
plays important role in mental reasoning, planning and, for instance, also calculating [4]. WM
stands at the crossroads between memory, attention, and perception [1, 5].

A simple example of WM task is remembering a sequence of words spoken by your
interlocutor in dialogue. Working memory is also important for performing and holding in
mind a string of new information or a series of movements [6]. In visuospatial working memory,
subject is holding for a short time, for example, locations, color or orientation of presented visual
stimuli [7, 8]. Working memory experiments quantify the precision of memory recall. Typically,
in such experiments, subjects are briefly presented with sensory inputs, which are then removed.
After a delay the subjects are asked to estimate from memory some feature of the input.

Neural circuits of the prefrontal cortex (PFC) of the brain are assumed to be responsible
for WM implementation [9, 10]. In primates, visual WM has been studied in delay tasks, which
require a memory to be held during a brief delay period lasting for several seconds [11]. Recordings
in the monkeys’ PFCs during the delay task showed that some neurons displayed persistent and
stimulus-specific delay-period activity [12–15]. Delay activity is considered the neural correlate
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of WM [10, 16]. This implies that information in WM is represented by self-sustaining activity
states. Delay activity in specific neural ensembles reflects keeping the memorized item «online».

The neural mechanisms of WM remain unclear and discussive. Electrophysiological recordings
of neural activity during WM tasks demonstrate that some PFC neurons remain active during
delay period. This “persistent activity” is hypothesized as neural correlate of memorized stimulus
hold in WM [17–19]. This concept became classical and has its experimental proofs and mathematical
models [20–23].

However, it is important to note that persistent spiking observed in experiments could be
the result of classical approach of averaging spiking over time and across trials. In this case,
persistent activity to be artifact of this averaging, even though, in real time, e.g., on single trials,
recorded spiking of neuronal ensembles is sparse [24].

Other studies, however, find pieces of evidence for a different mechanism to store information
in WM [24, 25]. Some researchers have hypothesized that the information in WM could be
represented in form of complex sequences of different activity patterns, so called transient
trajectories [26–29]. Brief, sparse, bursts of spiking were registered in WM tasks rather than
persistent spiking. Information about memorized items are held between bursts by spiking-
induced changes in synaptic weights, “impressions” left in the network [30,31]. Wang, Goldman-
Rakic, and colleagues showed that spiking in the PFC can produce fast synaptic enhancement
that lasts hundreds of milliseconds [32] In fact, the enhancement depends on sparse, bursty
spiking. Because the time spent by stimulus specific neural population in active state is kept to
a minimum, the WM items are less prone to disruption from, e.g., a new sensory input applied
to another neural population. Multiple items can be simultaneously held in WM in form of silent
but enhanced neural population. Brief reactivations of populations multiplexed in time refreshes
the synaptic enhancements and allows to held items in memory for a longer time [24].

Another interesting dynamical mechanism of WM formation is proposed in [33]. Gordleeva
et. al. discovered that astrocytes operating at a time scale of a dozen of seconds can successfully
store traces of neuronal activations corresponding to information patterns. In the retrieval stage,
the astrocytic network selectively modulates synaptic connections in the spiking neural networks
leading to successful recall.

It is not clear which dynamical mechanisms actually underlies the neuronal implementation
of WM because both persistent activity and transient dynamics hypothesis have experimental
validation [8]. This fact keeps the WM neural mechanisms as an open problem.

Working memory capacity is severely limited, as we can see from everyday experience,
restricted to just a few items [34], and recall accuracy decay when a set of items to be memorized
is too large [35]. The brain is often hypothesized to possesses a specialized buffer called «focus of
attention», where memory items can be temporarily stored for short periods of time; therefore,
WM capacity corresponds to the size of this buffer [36–38].

WM capacity in the brain is not easy to determine experimentally because multiple mechanisms
retain information. The experiments should be carefully designed to prevent or control processing
strategies (for example, silent rehearsal of items to be memorized or unite multiple items into
single memory item by any mnemonic rule) [1, 36, 39]. Another way to determine WM capacity
in psychological experiment is the running-span procedures, when the participant does not know
when the presented set will end and has to recall as much items from the end of the list as
possible [40]. The experimental estimation of WM capacity is still a problem to be solved [41].

In the mathematical modelling the WM capacity is also a widely discussed. The maximal
capacity of persistent activity WM model depends on the characteristics of the network, but it
does not seem to have the fundamental upper limit [22]. Lisman and Idiart [21] suggested that
the WM capacity is estimated as a ratio of gamma and theta frequencies, which is compatible
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with earlier psychophysical estimates [34]. In the framework of synaptic theory of WM proposed
in [30] the WM capacity was analyzed in terms of basic synaptic parameters of the network [42].

In this paper we develop results of earlier studies in the framework of synaptic theory of WM
[30] and present the results of a study of WM capacity in a spiking neural network as a function
of synaptic plasticity and background excitation parameters. We have performed scrupulous
computational analysis of spiking neural network dynamics and the effect of parameters on
dynamic modes.

1. Materials and Methods

Mongillo et. al. in [30] proposed that memorized object is maintained in the WM by
short-term enhancement of strength of connections between neurons that code for this item.
Information about memorized items are held in WM by changes in synaptic weights, «impressions»
left in the network after stimulus presentation. Because leak of residual calcium that facilitate
synaptic transmission is a relatively slow process, the memory can be held for about one second
without persistent spiking activity. While connections between neurons remains facilitated even
weak stimulus or even noise could reactivate coding neurons and extract memorized item.

Most models of WM formation both persistent and transient use recurrent network architecture.
In the synaptic theory of WM the recurrent neural network consists of excitatory and inhibitory
neurons connected in a probabilistic way. Low probability of connections (about 20%) allows to
form sparsely connected network. Some excitatory neurons are randomly grouped in subnetworks
called clusters that are selective to specific stimulus (Figure 1). Connections between neurons in
one cluster are stronger than connections between different clusters, mimicking the prior neural
circuits formation [43] or dynamic long-term formation of network with adaptive connections [44].
The clusters mimic groups of neurons with, for example, similar receptive fields. Inhibitory
neurons are forming a nonspecific pool connected to the excitatory clusters in a nonstructured
way, resulting in dynamic competition between different selective populations (Figure 1).

The whole network dynamics is formed as a result of interplay between excitation and

Рис. 1. Network architecture: Colored triangles are excitatory neurons that code for different memories. Light
triangles are nonselective excitatory neurons. Black circles are inhibitory neurons with nonstructured connections
to the entire network.
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inhibition. When some neurons of the same cluster emit spikes nearly simultaneously (as a result
of local stimulation or noise-induced spontaneous activity), they excite both other neurons of the
clusters through strong couplings and some of inhibitory neurons, that inhibits activity of other
neurons of the network. When the activity in the excited cluster decays the activity of inhibitory
neurons decays too and «releases» other neurons from suppression.

The network consists of 𝑁𝐸 excitatory and 𝑁𝐼 inhibitory Integrate-and-Fire neurons. Their
subthreshold dynamics is described by equation (1):

𝜏𝑚𝑉𝑖 = 𝑉𝑟 − 𝑉𝑖 + 𝐼
(𝑟𝑒𝑐)
𝑖 (𝑡) + 𝐼

(𝑒𝑥𝑡)
𝑖 (𝑡), (1)

where 𝑖 = [1, 𝑁𝐸 +𝑁𝐼 ] – is a neuron number, 𝜏𝑚 — refers to membrane time constant, 𝐼(𝑒𝑥𝑡)𝑖 –
is an external current provided by distant brain areas. Membrane resistance has been absorbed
into the definition of the currents. Every time, the membrane potential reaches a fixed threshold
𝜃, neuron emits a spike and becomes refractory for a time 𝜏𝑎𝑟𝑝, after which resumes from sub-
threshold reset potential 𝑉𝑟 [45]. Recurrent current 𝐼

(𝑟𝑒𝑐)
𝑖 (𝑡) is a sum of postsynaptic currents

from all the other neurons connected to neuron 𝑖 is described by equation (2):

𝐼
(𝑟𝑒𝑐)
𝑖 (𝑡) =

∑︁
𝑗

̂︁𝐽𝑖𝑗(𝑡)∑︁
𝑘

𝛿(𝑡− 𝑡
(𝑗)
𝑘 ), (2)

where ̂︁𝐽𝑖𝑗(𝑡) – is the instantaneous efficacy (time dependence is due to short-term synaptic
dynamics) of the synapse connecting neuron 𝑗 to neuron 𝑖; the sum on 𝑘 is over all the emission
times, 𝑡

(𝑗)
𝑘 of presynaptic neuron 𝑗. For simplicity, we neglect rise and decay times of the

postsynaptic currents. In a single neuron case, the dynamics is totally defined by applied external
current 𝐼(𝑒𝑥𝑡). If applied current is relatively weak, membrane potential 𝑉𝑖 in model (1) does not
reach the threshold 𝜃 and spike is not generated. As the external current increases, the membrane
potential 𝑉𝑖 reaches the threshold and a spike is generated. In this case, the generation frequency
increases as the external current increases.

Synapses between excitatory neurons demonstrates the effect of short-term plasticity. There
are two types of short-term plasticity: depression and facilitation. Synaptic depression is caused
by the depletion of neurotransmitters, used for signal transmission on presynaptic neuron, while
facilitation is caused by inflow of calcium ions into axonal terminal right after spike generation
that increase the probability of neurotransmitter release. All excitatory-to-excitatory connections
display facilitating transmission, described by a phenomenological model of short-term plasticity
[46]. Short-term synaptic plasticity is described by equations (3)-(4):

𝑢𝑗(𝑡) =
𝑈 − 𝑢𝑗(𝑡)

𝜏𝐹
+ 𝑈 [1− 𝑢𝑗(𝑡)]

∑︁
𝑘

𝛿(𝑡− 𝑡
(𝑗)
𝑘 ), (3)

𝑥𝑗(𝑡) =
1− 𝑥𝑗(𝑡)

𝜏𝐷
+ 𝑢𝑗(𝑡)𝑥𝑗(𝑡)

∑︁
𝑘

𝛿(𝑡− 𝑡
(𝑗)
𝑘 ), (4)

where 𝑢 – is a fraction of available neurotransmitter to be released during the synaptic transmission,
𝑥 – is an available neurotransmitter resource, 𝜏𝐹 and 𝜏𝐷 – are temporal parameters of short-
term synaptic plasticity. For facilitating synapses 𝜏𝐹 > 𝜏𝐷, and vice-versa 𝜏𝐹 < 𝜏𝐷 for depressing
synapses. In PFC synapses demonstrates facilitation and temporal scale of 𝜏𝐹 is up to several
seconds and for 𝜏𝐷 is about several hundreds of milliseconds [42].

Instant synaptic efficacy ̂︁𝐽𝑖𝑗(𝑡) in equation (2), also known as synaptic weight, is described
by equation (5): ̂︁𝐽𝑖𝑗(𝑡) = 𝐽𝑖𝑗𝑢𝑗(𝑡)𝑥𝑗(𝑡), (5)
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Parameters of neurons Excitatory Inhibitory
𝜃 – spike threshold 20 mV 20 mV
𝑉𝑟 – reset potential 16 mV 13 mV
𝜏 – membrane time constant 15 ms 10 ms
𝜏𝑎𝑟𝑝 – absolute refractory period 2 ms 2 ms
𝑁 – number of neurons 800 200

Parameters of short-term synaptic dynamics
𝑈 – baseline utilization factor 0.1

𝐽𝐼𝐸 – synaptic efficacy 𝐼 → 𝐸 −0.6 mV
𝐽𝐸𝐼 – synaptic efficacy 𝐸 → 𝐼 0.2 mV
𝐽𝐼𝐼 – synaptic efficacy 𝐼 → 𝐼 −0.6 mV
𝐽𝑏 – baseline level of 𝐸 → 𝐸 synapses 0.02 mV
𝐽𝑝 – potentiated level of 𝐸 → 𝐸 synapses 2.7 mV

Таблица 1. Model parameters.

where 𝐽𝑖𝑗 – is absolute synaptic efficacy of connection between neurons 𝑗 and 𝑖.
All the other synapses between inhibitory and excitatory and inhibitory neurons demonstrates

linear synaptic transmission i.e. ̂︁𝐽𝑖𝑗(𝑡) = 𝐽𝑖𝑗 .
External currents are modelled as Gaussian white noise (6):

𝐼
(𝑒𝑥𝑡)
𝑖 (𝑡) = 𝜇𝑒𝑥𝑡 + 𝜎𝑒𝑥𝑡𝜂𝑖(𝑡) (6)

with < 𝜂𝑖(𝑡) >= 0, < 𝜂𝑖(𝑡)𝜂𝑗(𝑡
′) >= 𝛿𝑖𝑗𝛿(𝑡− 𝑡′), so that 𝜇𝑒𝑥𝑡 and 𝜎2

𝑒𝑥𝑡 are respectively the
mean and the variance of the external currents.

Network dynamics are fully described by equations (1) – (6). Numerical simulations have
been conducted using Euler-Maruyama scheme. The biologically relevant values of the neuron
parameters are the same as in the paper [42]. Model parameters are presented in Table 1.

We have also observed the network with overlapping populations. In such network some
neurons from one selective population have strong (on potentiated level) connections with another
selective population.

We have modeled neural network of 1000 neurons. Network contains 8 selective populations
of 70 excitatory neurons (neurons 1-560), 200 neurons are inhibitory (neurons 801-1000) and the
rest 240 neurons are excitatory non-selective. Probability of connection between any two neurons
is 20%.

After 5 seconds of spontaneous activity from start of simulation every selective population
(or cluster) is consequently stimulated by external current of 30 mV for 0.3 seconds. This external
stimulation represents a process of loading 8 items into memory. The dynamics of the network
is shown on raster plot (Figure 2), where every dot represents a spike.

The population activity increases for the duration of the selective input, changing the
internal state of the synaptic connections. The connections demonstrate both depression (reduced
resource 𝑥) and facilitation (increased sensitivity 𝑢), with depression dominant on the shorter
time scale of 𝜏𝐷 and facilitation dominant on longer time scale of 𝜏𝐹 . As long as the intracluster
connections remain facilitated, the object can be recalled from WM by reactivation of cluster
activity in response on presentation of a weak nonspecific excitatory input to the whole network
or by the internal noise activity, even though the neural activity is at the spontaneous level [30].
Reactivation of cluster activity is expressed as a population spike (PS), where almost every
neuron in the population fires a spike within a short interval of time.

In Figure 2, seven of eight populations demonstrate spontaneous reactivations that corresponds
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to seven items maintained in network memory. Every population spike refreshes the memorized
item by increasing the facilitation 𝑢 of synapses in the population.

The number of items that could be simultaneously stored in working memory refers its
capacity. In the studied model, the working memory capacity is determined as a number of
clusters that emit population spikes in 5 seconds after external stimulation stopping and after
1 second for every cluster stimulus to avoid transient processes. Moreover, the neural network
should not have spontaneous population spikes before external stimulation. For instance, network
simulated in Figure 2 has capacity of seven items. Results of 10 simulations for a fixed set of
parameters have been averaged to estimate the working memory capacity.

2. Results

Let us show the role of the network parameters in working memory formation and its
capacity. The model (1)-(6) has a huge number of parameters: synaptic weights, time scales of
synaptic facilitation and depression, mean and the variance of the external currents, network and
cluster sizes etc. All these parameters play significant role in network dynamics and respectively,
in working memory formation. For example, the balance of network excitation and inhibition
is crucial for population spikes formation and concurrency between different clusters. We have
studied the role of temporal parameters of short-term synaptic plasticity 𝜏𝐹 and 𝜏𝐷 and the total
network activity defined by mean and the variance of nonspecific external currents applied to
every neuron in network.

2.1. Role of synaptic parameters. We have studied the role of synaptic parameters on
working memory capacity in spiking neural network model. Capacity of the network’s memory
was estimated for different temporal parameters of short-term synaptic plasticity 𝜏𝐹 and 𝜏𝐷 and

Рис. 2. An example of network simulation, demonstrating a pre-stimulus spontaneous activity and consequent
loading eight items into WM. Each dot represents a spike of one of 1, 000 neurons arranged in order such that
the first 560 neurons are encoding eight items stored in the network. For each cluster, graphs of changes in the
average values of synaptic efficiency 𝑢 in clusters are shown in blue, and changes in the average values of synaptic
resource 𝑥 in clusters are shown in red. Parameters are as follows: 𝐽𝑝 = 2.7, 𝜇𝑒𝑥𝑡 = 10, 𝜎2

𝑒𝑥𝑡 = 0.12, 𝜏𝐹 = 3.6,
𝜏𝐷 = 0.1.
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synaptic weight of connections between excitatory neurons belonging to same cluster. It should
be noted, that the existence of population spikes and concurrency between different clusters are
possible only with a balance of synaptic weight parameters and external excitation. Sufficient
deviation from the balance of the parameters can lead to a lack of population spikes, appearance
of global asynchronous activity in the network or the appearance of population spikes prior
to memory load by items presentation. Working memory capacity as a function of 𝜏𝐹 and 𝜏𝐷
obtained with numerical simulations of equations (1) – (6) are presented in Figure 3 for two
values of potentiated intracluster synaptic weights 𝐽𝑝 = 2.3 (Figure 3а) and 𝐽𝑝 = 2.7 (Figure
3b).

We found, that working memory capacity increases as synaptic facilitation timescale 𝜏𝐹
grow up. Synaptic depression timescale 𝜏𝐷 shows opposite role in our simulations: for a fixed 𝜏𝐹
the capacity increases with 𝜏𝐷 becomes lower. These results partly contradict to the estimations
obtained by Mi et. al., as they noted that “surprisingly, even though the WM trace in the model
is maintained by synaptic facilitation, the derived expression shows that WM capacity is chiefly
increasing with the time constant of synaptic depression and only weakly increasing with the
time constant of facilitation” [42]. This contradiction looks surprising, but the decrease of time
constant of synaptic depression allows cluster to generate next population spike earlier that
refreshes the memory trace of this cluster. Population spikes rate grows up and memory traces
remain on higher levels increasing the capacity.

The potentiated intracluster synaptic weights 𝐽𝑝 play scaling role for working memory
capacity as a function of 𝜏𝐹 and 𝜏𝐷: as 𝐽𝑝 decrease from 2.7 (Figure 3b) to 2.3 (Figure 3a) the
capacity diagram scales down but overall dependence on 𝜏𝐹 and 𝜏𝐷 remains the same.

2.2. Role of background excitation. We have studied the role of background excitation
parameters on WM capacity. Background excitation is nonspecific input applied to every neuron
in the network modeled as Gaussian white noise with mean 𝜇𝑒𝑥𝑡 and variance 𝜎2

𝑒𝑥𝑡. WM capacity
is estimated for different combinations of mean and variance of white noise (Figure 4).

Working memory capacity is found to decrease to zero with decrease of global network
activity as a result of lower values of both the mean 𝜇𝑒𝑥𝑡 and the variance 𝜎2

𝑒𝑥𝑡 of the noise. The
variance seems to play more significant role for the capacity. The level of background excitation
enables the WM to be efficiently «tuned» to the desired capacity; in particular, reducing the
background below the critical value make neural network unable to produce population spikes,
hence, removes memorized items from WM to make room for new inputs [42].

a b
Рис. 3. Working memory capacity as a function of 𝜏𝐹 and 𝜏𝐷 obtained with numerical simulations of equations
(1) –(6) for two values of potentiated intracluster synaptic weights 𝐽𝑝 = 2.3 (a) and 𝐽𝑝 = 2.7 (b). 𝜇𝑒𝑥𝑡 = 10,
𝜎2
𝑒𝑥𝑡 = 0.12.
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2.3. Working memory in a network with overlapping clusters. Another unrealistic
feature of the model concerns the absence of overlaps between representations of different memory
items. The model was modified to make some excitatory neurons have potentiated connections
with neurons of several clusters i.e., memory representations are overlapping. Network dynamics
in a case of two items memorized in the network is shown in Figure 5.

The network in Figure 5 contains two clusters of excitatory neurons that have 4 neurons
belonging to both clusters (1, 4% of cluster size). For each cluster averaged values of short-
term synaptic plasticity variables 𝑢 and 𝑥 are shown in blue and red respectively. After 5
seconds of spontaneous activity from start of simulation every cluster is consequently stimulated
by external current of 30 mV for 0.3 seconds. After loading two items into working memory,
they are represented as a temporal facilitation of connections in clusters and population spikes.
Despite the presence of overlapping in clusters, the distinction between clusters is preserved,
and population spikes of one cluster does not activate the neurons of another cluster through
overlapping connections.

We have added 5, 5% overlapping of clusters into model with eight items loaded into

Рис. 4. . Working memory capacity as a function of background excitation parameters 𝜇𝑒𝑥𝑡 and 𝜎2
𝑒𝑥𝑡 for 𝜏𝐹 = 3.6,

𝜏𝐷 = 0.1.

Рис. 5. An example of network with overlapping clusters simulation, including spontaneous activity and WM
triggered by loading two stimuli. Spikes of 600 neurons are shown as dots; neurons are arranged in order such
that the first 560 neurons are encoding two items stored in the network. Grey shaded area marks the 4 neurons
belonging to both clusters. Parameters are as follows: 𝐽𝑝 = 2.3, 𝜇𝑒𝑥𝑡 = 9.63, 𝜎2

𝑒𝑥𝑡 = 0.12, 𝜏𝐹 = 3, 𝜏𝐷 = 0.6.
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working memory and studied its capacity. Estimated capacity as a function of 𝜏𝐹 and 𝜏𝐷 is
obtained for overlapping clusters with 𝐽𝑝 = 2.3 (Figure 6).

Working memory capacity for overlapping clusters is very similar to estimations obtained
without overlapping (Figure 3). Thus, the observed model is robust and does not require rigid
delimitation of clusters. Therefore, all the results for non-overlapping memory representations
could be adapted to overlapping ones.

3. Discussion

We studied a computational model of working memory formation based on spiking neural
network. The model imitates working memory formation within synaptic theory: memorized
items are stored in form of short-term potentiated connections in selective population but not
in form of persistent activity. Short-term potentiation of connections modelled as short-term
synaptic plasticity. The recurrent neural network consists of excitatory and inhibitory neurons
connected in a probabilistic way. Some excitatory neurons are randomly connected in clusters
selective to specific stimulus. Connections between the neurons in cluster are stronger than
connections between different clusters, mimicking the prior neural circuits formation or dynamic
long-term formation of network with adaptive connections [44]. Inhibitory neurons are forming a
nonspecific pool connected to the excitatory clusters in a nonstructured way, resulting in dynamic
competition between different selective populations. As long as the intracluster connections
remain facilitated, the object can be recalled from WM by reactivation of cluster activity in
response on presentation of a weak nonspecific excitatory input to the whole network or by the
internal noise activity, even though the neural activity is at the spontaneous level. Reactivation
of cluster activity is expressed as a population spike (PS), where almost every neuron in the
population fires a spike within a short interval of time.

The number of items that could be simultaneously stored in working memory refers its
capacity. In the studied model, the working memory capacity is determined as a number of
clusters that emit population spikes after external stimulation stopping. These population activity
is the same activity recorded in electrophysiological experiments in PFC that hypothesized to be
neural basis of WM [20,25].

We have studied the working memory capacity as a function of time scales of synaptic

Рис. 6. Working memory capacity in a network with overlapping clusters as a function of 𝜏𝐹 and 𝜏𝐷 obtained
with numerical simulations of equations (1)–(6) for 𝐽𝑝 = 2.3 and 𝜇𝑒𝑥𝑡 = 10 and 𝜎2

𝑒𝑥𝑡 = 0.12.
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facilitation and depression and background excitation of the network. These parameters are the
basic parameters of cortical networks.

We found, that working memory capacity increases as synaptic facilitation timescale 𝜏𝐹
grow up. Synaptic depression timescale 𝜏𝐷 shows opposite role in our simulations: for a fixed 𝜏𝐹
the capacity increases with 𝜏𝐷 becomes lower. This result partly contradicts conclusions of Mi
et. al. [42] as “WM capacity is chiefly increasing with the time constant of synaptic depression”
but “increasing the time constant of synaptic depression above a certain value brings the network
to the regime where no PSs are possible and, hence, WM breaks down”. Our results show that
there is no such a controversy in the role of synaptic depression time scale.

We have also showed that WM capacity decreases to zero with decrease of global network
activity as a result of lower values of both the mean 𝜇𝑒𝑥𝑡 and the variance𝜎2

𝑒𝑥𝑡 of the background
noisy excitation. The variance seems to play more significant role for the capacity. This is
interesting, because demonstrates possible significant role of nonidentities and non-idealities in
neural network dynamics and should be taken into account in mathematical modelling of neural
networks. The dependence of WM capacity on the background excitation enables the system to
be efficiently «tuned» to the desired capacity.

Estimated WM capacity is shown to be possibly larger than classical experimental estimations
of four items [39,47]. But capacity strongly depends on parameters of neural networks that can’t
be significantly improved by simple training. Such strong dependence of the capacity on intrinsic
parameters of neural network could be the reason of individual differences in experimental studies.
These parameters could also be one of the reasons of WM dysfunction in schizophrenia [48, 49].
All the results on WM capacity dependence on neural network parameters could be useful in
clinical research of memory impairments associated with neurological disorders.

Conclusions

This paper presents a detailed study of the role of time scales of synaptic facilitation
and depression and background excitation of the neural network on working memory capacity.
Working memory capacity strongly depends on many parameters and is shown to be possibly
larger than classical experimental estimations. Our results demonstrate possibility of synaptic
theory of working memory to imitate various experimental estimations of WM capacity by
individual differences in synaptic plasticity parameters. The model could be improved to imitate
different experimental protocols of memory load.
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