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Abstract. The nonlinearity parameter B/A is a characteristic of liquids and soft matter, which gains growing
attention due to its sensibility to the composition of materials. This makes it a prospective indicator for nondestructive
testing applications based on the ultrasound sounding suitable for a variety of applications from physic chemistry
to biomedical studies. At the same time, the thermodynamic definition of the nonlinearity parameter requires
extensive measurements at elevated pressures that are not always available; in addition, there are known certain
contradiction of such data with the data obtained by methods of nonlinear acoustics. Objective. In this work, we
consider a recently proposed approach to the prediction of the speed of sound at high pressures, which uses the
property of invariance of the reduced pressure fluctuations and the data obtained at normal ambient pressure only.
The method generalises the classic Nomoto model, which however gives only a qualitative picture, and results in
the quantitative correspondence to the experimental values within their range of uncertainty. Methods. Analytical
methods of the theory of thermodynamic fluctuations applied to the parameters of equations of nonlinear acoustics
as well as numerical simulation in the COMSOL Multiphysics® environment. Results. Expressions for calculating
the nonlinearity parameter with acceptable accuracy were obtained using thermodynamic data obtained only at
atmospheric pressure. Numerical calculations were performed for toluene. In addition, the discrepancy between
values of the nonlinear parameter obtained via the thermodynamic and nonlinear acoustic routes is analysed based
on the numerical solution of the Westervelt equation; it is revealed that this deviation emerges when the effects
of absorption of finite-amplitude waves were not properly taken into account.
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Introduction

The nonlinearity parameter 𝐵/𝐴 (explicit expressions for the values 𝐴 and 𝐵 through the
parameters of the state of the medium will be given below) as a characteristic of the waveform’s
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distortion for finite amplitude waves in liquids, [1] was introduced in [2] (although it was later
noted [3] that this approach conceptually goes back to Rayleigh’s work on acoustic pressure [4]).

A more general approach, linking the nonlinearity parameter with thermodynamic quantities
that do not require working with powerful ultrasound to determine it, is based on the approach
outlined in the article by R.T. Beyer [5] (because of this, in a number of sources, the parameter
𝐵/𝐴 is called «Beyer’s nonlinearity parameter»). This approach is fundamental in the theory
of nonlinear acoustics and its application to the study of a wide range of problems ranging
from physical chemistry of liquids to biomedical applications. [6–8]. A detailed overview of the
current state of research and the significance of the nonlinear parameter is presented in [9]. The
significant sensitivity of the nonlinearity parameter to the composition and physico-chemical
properties of liquids, colloids and soft media makes it an effective marker in the field of diagnostic
ultrasound and ultrasound tomography [10,11]. In the field of physics and physical chemistry of
liquids, attention has been growing in recent years to the nonlinearity parameter as an important
characteristic of the properties of ionic liquids and deeply eutectic solvents [12, 13]. Due to
the growing interest in their use as media for chemical synthesis and heat transfer fluids at
high pressures, the question arises about the behavior of the nonlinearity parameter under such
conditions, which has not been practically studied experimentally. Accordingly, the question of
the possibility of the predictive calculation of the value of 𝐵/𝐴 as a function of temperature and
pressure from the data obtained under normal pressure conditions is open. In addition, there is
also a fundamental problem of the relationship between the nonlinearity parameter 𝐵/𝐴 and the
coefficients of the differential equations of nonlinear acoustics [14,15].

The first attempt at a theoretical definition of the nonlinearity parameter 𝐵/𝐴, universal
with respect to temperature and pressure, is the work of O. Nomoto [16], performed under
the assumption of the so-called «Rao liquid» (see also the work [17], which presented a deeper
thermodynamic analysis), that is, the medium, for which an empirical power-law relationship
between the density and the speed of sound (the Rao rule) [18] or density and isothermal or
adiabatic compressibility (the Wada rule) is fulfilled [19]. Despite the fact that by now it is quite
clear that the Rao-Wada rules are substantially approximate, they are still used as a practical
method (with the introduction of empirical correction coefficients), see for example [20–24]. At
the same time, the use of the Rao liquid model leads to a constant value of 𝐵/𝐴 = 6, which
does not depend on temperature and pressure, which does not correspond to experiments and,
moreover, the value itself demonstrates only qualitative agreement with reality (for various liquid
and soft media, this value varies from 5 to 12).

Recently, it has been shown [25] based on the analogy between the analysis of differential
equations of thermodynamics and dynamical systems that a more physically correct picture of
the relationship between the density, the speed of sound and the fluid’s temperature should be
based on the consideration of thermodynamic fluctuations of density and pressure taken in the
complex.

1. The nonlinearity parameter

The nonlinearity parameter 𝐵/𝐴 for sound waves of large amplitude is determined by
the ratio of the expansion coefficients of the pressure change in the medium with respect to
the adiabatic change (at constant entropy, which is further indicated by the index 𝑆 in partial
derivatives) of its density

𝑃 − 𝑃0 =

(︂
𝜕𝑃

𝜕ρ

)︂
𝑆,ρ=ρ0

(ρ− ρ0) +
1

2

(︂
𝜕2𝑃

𝜕ρ2

)︂
𝑆,ρ=ρ0

(ρ− ρ0)2 + ...,
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where the following designations are introduced

𝐴 = ρ0

(︂
𝜕𝑃

𝜕ρ

)︂
𝑆,ρ=ρ0

= ρ0𝑐20, 𝐵 = ρ20

(︂
𝜕2𝑃

𝜕ρ2

)︂
𝑆,ρ=ρ0

.

Here ρ0 and 𝑃0 are the equilibrium (undisturbed) density and pressure, 𝑐0 is the low amplitude
speed of sound (thermodynamic (adiabatic) speed of sound).

Accordingly (hereafter the index 0 refers to derivatives taken with undisturbed parameters
of the thermodynamic state),

𝐵

𝐴
=
ρ0
𝑐20

(︂
𝜕2𝑃

𝜕ρ2

)︂
𝑆,ρ=ρ0

= 2ρ0𝑐0

(︂
𝜕𝑐

𝜕𝑃

)︂
0,𝑆

. (1)

From this definition, it can be seen that the nonlinearity parameter can be found as based on the
thermodynamic relations given by the equation of state of the liquid ρ = ρ(𝑃, 𝑇 ), from a practical
point of view — from the functional relations linking the parameters of the state based on the
regression of equilibrium thermodynamic experimental data. However, it should be noted that the
direct application of the formula (1) is complicated by the fact that the entropy is not a directly
measurable thermodynamic quantity (although there is a special phase-comparison method [26]
that allows determining the adiabatic derivative of the speed of sound in an experiment, achieving
a relative uncertainty of the nonlinearity parameter’s value about 2.2%). Because of this, it is
more practical to represent (1) through isobaric and isothermal derivatives of the speed of sound
using standard relations between thermodynamic derivatives:

𝐵

𝐴
= 2ρ0𝑐0

(︂
𝜕𝑐

𝜕𝑃

)︂
0,𝑇

+
2𝑐0𝑇α𝑃
𝐶𝑃

(︂
𝜕𝑐

𝜕𝑇

)︂
0,𝑃

=

(︂
𝐵

𝐴

)︂′
+

(︂
𝐵

𝐴

)︂′′
, (2)

where α𝑃 = −ρ−1 (𝜕ρ/𝜕𝑇 )𝑃 is the isobaric expansion coefficient and 𝐶𝑃 is the isobaric specific
heat capacity.

At the same time, the use of the expression (2) requires a sufficient amount of data
on the speed of sound measured along the isotherms at elevated pressures, which are not
always available (this is especially important for medical ultrasound diagnostics performed at
atmospheric pressure). Accordingly, the question arises of how to calculate the isothermal derivative
operating only with isobaric data.

2. Nomoto Model

The classical simple predictive model of the nonlinearity parameter referred to physico-
chemical properties of a liquid is the Nomoto model [16] based on assumptions(︂

𝜕𝑐

𝜕𝑇

)︂
𝑃

=
3𝑐

2ρ

(︂
𝜕ρ
𝜕𝑇

)︂
𝑃

, (3)(︂
𝜕𝑐

𝜕𝑃

)︂
𝑇

=
3𝑐

2ρ

(︂
𝜕ρ
𝜕𝑃

)︂
𝑇

, (4)

which follow from the so-called Rao rule

𝑀

ρ
𝑐1/3 = 𝑅𝑤, (5)
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where 𝑀 is the molar mass, and 𝑅𝑤 is a substance-specific constant (the molecular speed of
sound), which can be calculated with acceptable accuracy by the method of group contributions
respectively to interatomic chemical bonds or submolecular chemical groups either directly or
through the compressibility of the liquid [19–21,27].

However, this model leads to the constant value

𝐵

𝐴
= 6, (6)

which is not true for most liquids (with the exception of water, which has a weakly varying
nonlinearity parameter [8] close in magnitude; it should be noted that for water, the value of 𝑅𝑤

really weakly depends on both pressure and temperature [28]).
The quantitative and qualitative difference between Nomoto’s result and the experimentally

observed situation for the vast majority of molecular and ionic liquids can be attributed primarily
to the violation of the condition of independence of the Rao parameter 𝑅𝑤 from the choice of a
thermodynamic path (isobaric or isothermal), which was discussed in the context of the study of
the dependence of the speed of sound on the density along isotherms and along isobars [29, 30].
Thus, there is an emerging challenge of choosing a combination of thermodynamic parameters
that satisfies the required invariance property with greater accuracy.

3. Fluctuation model

As the invariant mentioned above, which makes it possible to map the isobaric derivative
of the speed of sound to the isothermal one, it was proposed in the work [25] to consider the
squared thermodynamic pressure fluctuations in a liquid

⟨(∆𝑃 )2⟩ = 𝑅𝑇

𝑀
ρ2

1

ρκ𝑆
, (7)

directly related to the speed of sound, by virtue of the expression of the latter 𝑐 = (ρκ𝑆)
−1/2 via

the adiabatic compressibility κ𝑆 = ρ−1 (𝜕ρ/𝜕𝑃 )𝑆 , included in (7).
The used dimensionless value of the reduced pressure fluctuations is defined as the ratio of

the actual value of the pressure fluctuations to the value of the pressure squared in a hypothetical
medium having the properties of an ideal gas at the same density as the liquid in question
(𝑃𝑖𝑔 = ρ𝑅𝑇/𝑀)

ν𝑠 ≡
⟨(∆𝑃 )2⟩

𝑃 2
𝑖𝑔

=
𝑀

𝑅

1

𝑇ρκ𝑠
≡ 𝑀

𝑅

𝑐2

𝑇
.

In the work [25], the power-law dependence of the parameter of the reduced adiabatic
fluctuations ν𝑠 on the density was shown for a wide range of liquid hydrocarbons and their
mixtures:

ν𝑠 ≡
𝑀𝑐2

𝑅𝑇
= Λρλ, (8)

where 𝑀/𝑅, Λ, λ — constants (𝑅 — gas constant).
Let’s do a procedure similar to the one that was performed when deriving the Nomoto

model, and consider the combination

𝑀𝑐2

𝑅𝑇𝑛
= Λρλ,
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in which an artificial exponent of 𝑛 is introduced in order to explicitly trace the differences
between the Nomoto model (for which 𝑛 = 0, λ = 6, see (5)) and the fluctuation model for which
𝑛 = 1 and λ is determined by regression of the expression (8) along the isobar of normal pressure.

After taking partial derivatives at constant pressure and temperature,(︂
𝜕

𝜕𝑇

(︂
𝑀𝑐2

𝑅𝑇𝑛

)︂)︂
𝑃

=

(︂
𝜕

𝜕𝑇

(︁
Λρλ

)︁)︂
𝑃

,

(︂
𝜕

𝜕𝑃

(︂
𝑀𝑐2

𝑅𝑇𝑛

)︂)︂
𝑇

=

(︂
𝜕

𝜕𝑃

(︁
Λρλ

)︁)︂
𝑇

,

we get the following expressions:(︂
𝜕𝑐

𝜕𝑇

)︂
𝑃

=
λ𝑐
2ρ

(︂
𝜕ρ
𝜕𝑇

)︂
𝑃

+
𝑛𝑐

2𝑇
, (9)(︂

𝜕𝑐

𝜕𝑃

)︂
𝑇

=
λ𝑐
2ρ

(︂
𝜕ρ
𝜕𝑃

)︂
𝑇

. (10)

It can be seen that for 𝑛 = 1 in equality (9) there is an additional additive term in
comparison to (3), which leads to a change in the value of the isobaric derivative compared
to the Nomoto model; equality (10) retains the same functional form, which and (4) for the
isothermal derivative.

Based on the definition of the nonlinearity parameter (1), revealing the adiabatic derivative(︂
𝜕𝑐

𝜕𝑃

)︂
𝑆

=

(︂
𝜕𝑐

𝜕𝑃

)︂
𝑇

+

(︂
𝜕𝑐

𝜕𝑇

)︂
𝑃

(︂
𝜕𝑇

𝜕𝑃

)︂
𝑆

, (11)

and substituting the expressions (9), (10) into (11), we get(︂
𝜕𝑐

𝜕𝑃

)︂
𝑆

=
λ𝑐
2ρ

(︂
𝜕ρ
𝜕𝑃

)︂
𝑇

+
λ𝑐
2ρ

(︂
𝜕ρ
𝜕𝑇

)︂
𝑃

+
𝑛𝑐

2𝑇

(︂
𝜕𝑇

𝜕𝑃

)︂
𝑆

=
λ𝑐
2ρ

(︂
𝜕ρ
𝜕𝑃

)︂
𝑆

+
𝑛𝑐

2𝑇

(︂
𝜕𝑇

𝜕𝑃

)︂
𝑆

. (12)

Taking into account the definition of the speed of sound, (𝜕ρ/𝜕𝑃 )𝑆 = 𝑐−1,

𝐵

𝐴
= λ+

𝑛ρ0𝑐20
𝑇

(︂
𝜕𝑇

𝜕𝑃

)︂
𝑆

, (13)

and as (︂
𝜕𝑇

𝜕𝑃

)︂
𝑆

=
𝑇

𝐶𝑃

(︂
𝜕𝑉0

𝜕𝑇

)︂
𝑃

≡ 𝑉 𝑇α𝑃
𝐶𝑃

, (14)

then substituting (14) into (13), taking into account that the density is the inverse of the specific
volume 𝑉0, that is ρ0𝑉0 = 1, and reducing the temperature in the numerator and denominator,
we get

𝐵

𝐴
= λ+ 𝑛

𝑐2α𝑃
𝐶𝑃

. (15)

For 𝑛 = 0, that is, for «Rao liquid», the expression (15) reduces to the well-known Nomoto
formula (6) for the corresponding λ = 6, and when the power-law density scaling of fluctuations
is fulfilled, 𝑛 = 1, to the desired expression

𝐵

𝐴
= λ+

𝑐2α𝑃
𝐶𝑃

. (16)

Thus, it can be seen that the assumption of invariant power-law density scaling not of the
speed of sound itself, but of the reduced fluctuations associated with it leads to the appearance
in (16) of an additional term depending on the thermodynamic state of the liquid.
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4. Results for the nonlinearity parameter in toluene

Toluene, which is a well-studied standard reference liquid [31], for which the Span-Wagner
equation of state is known in the form of a multiparametric expression for the Helmholtz free
energy with coefficients obtained by regression of the entire available set of critically evaluated
experimental data in a wide range of state parameters. This makes it possible to use the
corresponding analytical derivatives of free energy (using ThermoData Engine (TDE) — NIST
[32]) to find all thermodynamic quantities required to calculate the nonlinearity parameter 𝐵/𝐴
by the formula (2). Relative uncertainties of the thermodynamic parameters obtained in this
way, according to [31] and comparison with direct experimental data by TDE: 0.05% for the
density, 0.5% for theisobaric heat capacity, 1% for the speed of sound, 2% for the isothermal
compressibility, 1% for the isobaric coefficient of expansion. The corresponding values of the
nonlinearity parameter are shown in Fig. 1 with markers – circles indicating the standard
uncertainty interval 𝑢𝑟(𝐵/𝐴) = 0.05, found using the NIST Uncertainty Machine [33].

In addition, from the point of view of nonlinear wave dynamics, it is essential that the
value of the nonlinearity parameter known for toluene, was determined not only by the indirect
thermodynamic calculations, but also directly via the ratio of the amplitudes of the second and
first harmonics for waves of finite amplitude [34]; the corresponding value is shown in Fig. 1 as
an asterisk equipped with an uncertainty interval (of the order of 10% according to the cited
experimental work).

The results of the model calculation (16) are shown in Fig. 1 with markers–squares. It can
be noticed that at low temperatures they demonstrate a certain overestimation of the nonlinearity
parameter value respectively to the value obtained on the basis of thermodynamic calculation;
the difference reaches one and a half units, which exceeds the range of uncertainty intervals
(although such a difference is still one and a half times less than for the Nomoto model). At
temperatures above 263.15 K, the uncertainty intervals of the calculated and thermodynamic

200 250 300 350 400
8.5

9.0

9.5

10.0

10.5

11.0

11.5

Thermodynamic
Finite Amplitude
Fluctuational
Fluctuational-Rao

Fig. 1. Dependences of the nonlinearity parameter in toluene on temperature at atmospheric pressure, where
“Thermodynamic” is calculated according to (2) from thermodynamic data; “Finite amplitude” is determined
from the experiment directly using finite amplitude waves [34]; “Fluctuational” is calculated according to the
equation (16); “Fluctuational-Rao” follows from a combined calculations, which uses the Rao rule along the isobar
and the fluctuational model for isothermal derivatives
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data begin to overlap further, up to the boiling point, they differ within these limits. At the
same time, the trends of temperature dependence differ, although it should be remembered
that the corresponding expressions (2) and (16) include derived thermodynamic quantities, the
accuracy of which is significantly lower than that of the initial thermodynamic quantities.

It should also be noted that the experimental value obtained directly for finite amplitude
waves lies very precisely on a line that can be drawn through the markers of data points obtained
from the fluctuation model.

Let’s consider the possible reasons for the deviation of the calculation by the formula (16)
from thermodynamic expressions in more detail. Fig. 2 shows a scale dependency test for the
expression (8) and for the Rao rule (5). The use of logarithmic coordinates serves as a linearizing
transformation, with the slope of straight lines approximating the experimental data shown by
markers corresponding to the scale indicator λ: λ = 9.1 (Fig. 2, a), and λ = 6.0 (fig. 2, b)
corresponding to the Rao rule.

However, despite the acceptable linearity of both graphs, it can be noted that the deviations
of the markers from the straight line in Fig. 2, b is clearly smaller. Hence the question arises
about the reproducibility of the individual components of the nonlinearity parameter in the
formula (2), for which the derivatives should mainly be considered (9), (10), the graphical
representation of which is shown in Fig. 3. From Fig. 3, a it can be seen that the fluctuation
expression gives a curve substantially closer to the experimental one than the one obtained from
the assumption 𝑅𝑤 = const for the isothermal derivative. At the same time, for the isobaric
dependence (Fig. 3, b), it follows that the Rao dependence (5) is fulfilled quantitatively over
almost the entire temperature range, while the fluctuation dependence leads to a qualitatively
incorrect temperature dependence. The latter is a consequence of only approximate linearity in
Fig. 2, a, which affects the behavior of the derivative of the speed of sound.

Thus, it becomes possible to refine the computational model as follows: the isothermal part
(𝐵/𝐴)′ of the formula (2) is calculated using the formula (10) with a scale indicator λ obtained by
linear regression of the parameter defying the reduced pressure fluctuations (note that the latter

800 900 1000
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10

12

14

16

18

a b
Fig. 2. Plots of the dependences of the parameter of reduced density fluctuations (a) and the relation expressing
Rao’s rule (b) in logarithmic coordinates as functions of the density along the isobar of normal atmospheric
pressure
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Fig. 3. The isothermal (a) and isobaric (b) derivatives of the sound speed in toluene at normal atmospheric pressure
obtained from the experimental data (circles), the fluctuation model (squares), and the Rao rule (triangles)

corresponds to a successful predictive model for calculating the speed of sound along isotherms at
high pressures, discussed in [25]), and isobaric (𝐵/𝐴)” — according to the Rao–Nomoto formula
(4). The result of this combination is shown in Fig. 1 triangles. In this case, it can be seen that
the change in the nonlinearity parameter as a whole as a function of temperature becomes small,
which is typical for organic liquids, and despite some overestimation of the value of 𝐵/𝐴 (the
average absolute deviation is 4.7%, which is consistent with the uncertainty of the data), the
result indicates the possibility of estimating the nonlinearity parameter of ultrasonic waves in a
liquid based on data of thermodynamic and acoustic values of small amplitude measured only
at atmospheric pressure.

5. The difference in the magnitude of the nonlinearity parameter by nonlinear

acoustic and thermodynamic changes

As shown above, there is a definite difference between the nonlinearity parameter in toluene
determined by the stationary thermodynamic properties of the liquid and based on analysis of the
attenuation of harmonics of a finite amplitude acoustic signal [34]. The technique implemented
in the latter approach is based on the fact that the distortion of the wave directly depends on the
nonlinearity parameter 𝐵/𝐴. The amplitude of the second harmonic (𝑃2) at a distance from the
source 𝑥2 = 𝑋 < 𝑥sh (𝑥sh is the distance of the shock wave formation) is calculated according
to the expression

𝑃2 =
𝑛+ 1

4

(︂
𝑃 2
1

𝑋ω
ρ0𝑐30

)︂
, (17)

where 𝑃1 is the amplitude of the first harmonic near the sound source (measured at the distance of
𝑥1), ω is the frequency of the signal, parameter 𝑛 = 𝐵/𝐴+1, from which the desired nonlinearity
parameter 𝐵/𝐴 is determined.

To reproduce the conditions of this experiment, we will use numerical modeling simulating
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the corresponding conditions of the measurement data using COMSOL Multiphysics®. The
main standard equation of nonlinear acoustics [35], modeling the propagation and evolution of
the sound wave form in the approximation of moderate (quadratic) nonlinearity, is the Westervelt
equation, which is implemented in the model COMSOL Multiphysics® [36] in the form [37]

1

ρ0𝑐20

𝜕2𝑝

𝜕𝑡2
−∇

(︂
1

ρ0

(︂
∇𝑝+

δ
𝑐20

𝜕(∇𝑝)

𝜕𝑡

)︂)︂
=
β
ρ20𝑐

4
0

𝜕2𝑝2

𝜕𝑡2
, (18)

where 𝑐0 is the low-intensity sound velocity; ρ0 is the density of undisturbed liquid; β = 1 +
𝐵/(2𝐴) is the coefficient taking into account the nonlinearity of the wave expressed in terms
of the nonlinearity parameter; the coefficient taking into account relaxation phenomena (sound
diffusion coefficient — sound diffusivity) has the from

δ =
1

ρ0

[︂(︂
4

2
µ+ ζ

)︂
+ κ

(︂
1

𝐶𝑉
− 1

𝐶𝑃

)︂]︂
(19)

(µ and ζ are the shear and bulk viscosity coefficients, 𝐶𝑃 and 𝐶𝑉 are isobaric and isochoric
specific heat capacities, κ is the thermal conductivity coefficient).

It should be noted that the possibility of using the Westervelt equation is currently being
actively investigated not only for modeling the propagation of sound waves of finite amplitude,
but also directly for finding the nonlinearity parameter of a liquid medium by comparing numerical
solutions with the recorded signals. [15, 38].

In our case, the parameters for modeling were chosen as close as possible to the experimental
ones [34, 39], namely: the emitter intensity 𝐼 = 288 W/m2, the emitter excitation frequency
𝑓 ≡ ω/(2π) = 1.5 MHz, 𝑇 = 20∘C. Thermodynamic parameters [31]: ρ0 = 866.89 kg/m3,
𝑐0 = 1324.3 m/s; the next one is the «thermodynamic coefficient of nonlinearity» β = 5.8 (for
(𝐵/𝐴)therm = 9.6); viscosity coefficients [40] µ = 5.8714·10−4 Pa·s, ζ = 0.0076 Pa·s; the term (19),
which depends on thermal conductivity, is neglected due to the smallness of the coefficient [41]
κ = (0.13088± 0.00085) W/m/K and large values of the heat capacity.

Oscillation generation in the medium is produced by a flat radiator oscillating at a speed
of 𝑢(𝑡) = 𝑢0 sinω𝑡 with an amplitude of 𝑢0 = 0.0224 m/s, given by the equality 𝑢0 = 𝑝0/(ρ0𝑐0).

The modeling interval was taken as 0 ⩽ 𝑥 ⩽ 4.5𝑥sh. The radiation source with the
amplitude 𝑝0 =

√
2𝐼ρ0𝑐0 = 25715 Pa is located at the point 𝑥 = 0, the point 𝑥 = 4.5𝑥sh is

terminated to exclude the signal’s reflection. The distance of the shock wave formation

𝑥sh =
𝑐20
ωβ𝑢0

(20)

in this case , it is equal to 1.43 m.
The pressure dependence 𝑝(𝑡) near the radiator was fixed at a distance 𝑥1 = 1 cm, the

point farthest from the emitter was considered 𝑥2 = 20 cm, that is, at a distance much smaller
than the distance of the shock wave formation. For the signals obtained by the numerical solution
of the equation (18) at the corresponding points by means of a fast Fourier transform, spectra
were obtained, the graphs of which are shown in Fig. 4.

The amplitude of the first harmonic near the emitter was 𝑃1 = 21825.2 Pa, the amplitude
of the second harmonic at a distance from the emitter was 𝑃2 = 1355.6 Pa. Their substitution in
the expression (17) leads to the value of the nonlinearity parameter 𝐵/𝐴 = 10.2, which practically
coincides with the results given in [34], where the value 𝐵/𝐴 = 10.4 was obtained during the
experiment. At the same time, this value is obviously overestimated in comparison with the
«thermodynamic» value (𝐵/𝐴)therm = 9.6 used as a parameter of the equation to be solved (18).
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Thus, it can be concluded that the value given in [34] is due to the method of measuring and
processing the data obtained.

In fact, the expression (17) is based on the simultaneous fulfillment of two assumptions:
the smallness of the attenuation of the sound wave and the smallness of the distance from the
source to the measurement point of the second harmonic, which can be shown analytically.
Regarding the first assumption, the solution of the Westervelt equation for σ = 𝑥/𝑥sh ⩽ 1 can
be represented [8] in the form of a series of Fubini solutions

𝑝(𝑥, 𝑡) = 𝑝0

∞∑︁
𝑛=1

𝐵𝑛(σ) sin
(︁
𝑛ω

(︁
𝑡− 𝑥

𝑐

)︁)︁
, (21)

where

𝐵𝑛(σ) =
2

𝑛σ
𝐽𝑛(𝑛σ). (22)

Substituting 𝑃1 = 𝑝0𝐵1(σ1) and 𝑃2 = 𝑝0𝐵2(σ2), where σ1 = 𝑥1/𝑥sh and σ2 = 𝑥2/𝑥sh
are the dimensionless distances from the emitter at which measurements are made, in (17), and
leaving only the first term of the expansion of Bessel functions into the Taylor series (𝐽1(σ) ≈ σ,
𝐽2(2σ) ≈ σ2/2), that is, applying the second assumption mentioned above, we come to the
identity.

The used value σ2 = 0.14 can no longer be considered as small, as illustrated in Fig. 5,
however, the deviation from the initial value of the nonlinearity parameter detected at 𝑥1 →
0, 𝑥2 → 0 is within one percent. More significant is the effect of the attenuation coefficient
of nonlinear waves in a real liquid. This effect manifests itself as in the piston region for the
fundamental harmonic, see a significantly lower value of the spectral peak at 𝑥1 compared to
the corresponding peak of the Fubini solution in Fig. 4, and at a distance of 𝑥2 for the second
harmonic. Since 𝑃1 is squared by the formula when calculating the nonlinearity parameter and
is in the denominator, this makes a significant contribution to the overestimation of the value of
𝐵/𝐴. In addition, comparing Fig. 5 and fig. 4, it should be noted that the realistic value of the
amplitude of the first harmonic of the acoustic signal is noticeably lower at a distance of 𝑥2 than
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Fig. 4. Spectra of signals near the wave source and at a distance from the transmitter according to numerical
simulations and from the Fubini solution (color online)
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at a distance of 𝑥1, which indicates the contribution of attenuation in toluene at such distances,
in contrast to the ideal medium corresponding to the Fubini solution, for which the reduction of
the first harmonic only for the account of the development of the second can be neglected.

Thus, it can be concluded that the initial experimental data obtained in [34] themselves
have a sufficiently high accuracy to find the nonlinearity parameter. However, their correct
processing should not refer to the formula (17), but to the numerical solution of the nonlinear
equation (18), which significantly depends on the magnitude of absorption and the position of
experimental acoustic pressure sensors, with different sets of the parameter β included in the
equation, followed by the identification of its numerical value, which best matches the harmonics
of the numerical solution with the experimental ones.

Conclusion

The main message of this work is the conclusion that the parameter expressing the magnitude
of the reduced density fluctuations allows us to estimate with acceptable accuracy not only the
speed of sound as a function of changing pressure (that is, the first adiabatic derivative of density),
as it is currently shown in practical application to various types of liquid media [25,42], but also
the nonlinearity parameter associated with the second derivative, which is significantly more
sensitive to the course of the original differentiable functions.

In addition, it is revealed that the contradiction existing in various sources regarding the
value of the nonlinearity parameter determined during thermodynamic and nonlinear acoustic
measurements is based on an oversimplified analytical approximation to the solution of the
nonlinear Westervelt equation modeling the propagation of a nonlinear wave of large amplitude.
At the same time, the agreement of the numerical solution with the measurable values of the

Fig. 5. The coefficients 𝐵1(σ) and 𝐵2(σ) in the series representing the Fubini solution (21), (22) shown with solid
and dashed lines, respectively (upper panel), and the nonlinearity parameter according to the formula (17) for
the Fubini solution measured at different initial and end points (lower panel)
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amplitudes of the first and second harmonics of the nonlinear wave makes it possible in principle
to find the nonlinearity parameter included in the original differential equation consistent with
the thermodynamic value of the nonlinearity parameter.
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