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Abstract. Purpose of this work is to analyze oscillatory regimes in a system of nonlinear differential equations
describing the competition of three non-antagonistic species in a spatially homogeneous domain. Methods. Using
the theory of cosymmetry, we establish a connection between the destruction of a two-parameter family of equilibria
and the emergence of a continuous family of periodic regimes. With the help of a computational experiment in
MATLAB, a search for limit cycles and an analysis of multistability were carried out. Results. We studied dynamic
scenarios for a system of three competing species for different coefficients of growth and interaction. For several
combinations of parameters in a computational experiment, new continuous families of limit cycles (extreme
multistability) are found. We establish bistability: the coexistence of isolated limit cycles, as well as a stationary
solution and an oscillatory regime. Conclusion. We found two scenarios for locating a family of limit cycles
regarding a plane passing through three equilibria corresponding to the existence of only one species. Besides
cycles lying in this plane, a family is possible with cycles intersecting this plane at two points. We can consider
this case as an example of periodic processes leading to overpopulation and a subsequent decline in numbers.
These results will further serve as the basis for the analysis of systems of competing populations in spatially
heterogeneous areas.
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Introduction

Ecological systems are characterized by scenarios of species interaction leading to oscillatory
processes. Mathematical modeling of such phenomena is carried out using dynamic systems with
continuous and discrete time — flows and cascades [1–5]. For a nonlinear mapping on a segment
(in the case of one type), periodic and chaotic dynamics arise, but for a differential equation
this is impossible. Oscillatory regimes are observed for two antagonistic species (predator-prey,
host-parasite), and only stationary solutions exist for competing populations [6,7]. The question
of oscillatory scenarios for three or more non-antagonistic populations is relevant, in particular,
for a system with a quadratic right-hand side describing the dynamics of three species [8–17]. In
general, this system has eight real parameters (𝑟1 = 1):

𝑢̇1 = 𝑟1𝑢1(1− 𝑢1 − α1𝑢2 − β1𝑢3), (1)

𝑢̇2 = 𝑟2𝑢2(1− β2𝑢1 − 𝑢2 − α2𝑢3), (2)

𝑢̇3 = 𝑟3𝑢3(1− α3𝑢1 − β3𝑢2 − 𝑢3). (3)

Here 𝑢𝑖 — the number of the species 𝑖, 𝑟𝑖 — the growth parameter, the coefficients α𝑖, β𝑖
characterize the influence of other species on the growth of the species 𝑖, and the dot denotes
the differentiation in time 𝑡.

The system (1)–(3) has zero equilibrium 𝐸0 = (0, 0, 0), three equilibria with one non-zero
component

𝐸1 = (1, 0, 0), 𝐸2 = (0, 1, 0), 𝐸3 = (0, 0, 1) (4)

and an equilibrium with three non - zero components:

𝐸* = (𝑝1, 𝑝2, 𝑝3) , 𝑝𝑖 =
𝑧𝑖
𝑧0

, (5)

𝑧1 = α1α2 − α2β3 + β1β3 − α1 − β1 + 1,

𝑧0 = α1α2α3 + β1β2β3 − α1β2 − α2β3 − α3β1 + 1.

In (5), the values 𝑧2 and 𝑧3 are obtained from 𝑧1 by cyclic index permutation: 1 → 2 → 3 → 1.
In a number of works [8–10] the system (1)–(3) was considered with the same growth

parameters 𝑟𝑖 = 1. For the symmetric model (α𝑖 = α, β𝑖 = β, 𝑖 = 1, 2, 3) in [8] it is shown that
for α + β = 2 a family of periodic modes on the plane with neutral stability in tangent to the
plane direction. In the case of various coefficients 0 < α𝑖 < 1 < β𝑖, 𝑖 = 1, 2, 3 in [9], the existence
of a similar family was established at 𝐴 = 𝐵, where

𝐴 =

3∏︁
𝑖=1

(1− α𝑖), 𝐵 =

3∏︁
𝑖=1

(β𝑖 − 1), (6)

In [10], when the conditions α𝑖 < 1 < β𝑖 are violated, while maintaining the equality 𝐴 = 𝐵,
parameter values are found for which there is also a family of periodic modes.

At 𝑟𝑖 ̸= 1, the system (1)–(3) was investigated in [11–17]. So, in [11], the results on
calculating the limit cycles for 𝑟1 = 2 and α + β > 2 ( α𝑖 = α, β𝑖 = β). In [12], using the
theorems [13, 14], it is proved that when the condition 𝐴 = 𝐵 is met, there is a family of
periodic modes for growth parameters 𝑟𝑖, which are expressed in terms of interaction coefficients

𝑟1 = 1, 𝑟2 =
α1 − 1

1− β2
, 𝑟3 =

1− β1
α3 − 1

. (7)
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In the case of identical growth parameters in [15, 16], a classification of the dynamics of the
system (1)–(3) is given. It is shown that there are 37 topological classes defined by the relations
between the coefficients α𝑖, β𝑖.

In [17] for the system (1)–(3), based on the cosymmetric approach [18], conditions are
found under which families of equilibria arise, and oscillatory modes are calculated for parameter
values corresponding to the neutral stability of the equilibrium (5). The dynamics under violation
of symmetry conditions is analyzed.

The purpose of this work is to analyze the oscillatory modes of the (1)–(3) system and
search for families of periodic modes with neutral stability in one direction. In this case, it is
assumed that each mode from the family belongs to the corresponding two-dimensional manifold,
on which it is the only isolated limit cycle. Thus, this set of periodic modes can be considered
a new object - a family of limit cycles. In this paper, a computational experiment is carried out
for the system parameters, periods and multipliers of limit cycles are calculated.

1. Investigation of a four-parameter model

[18] describes a scenario for the destruction of a one-parameter family of equilibria of a
cosymmetric system, leading to the occurrence of a limit cycle. Let us analyze the possibility of
the appearance of a one-parameter family of periodic regimes (limit cycles) with the destruction of
a two-parameter family of equilibria. Such a family exists for the system (1)–(3) with α𝑖 = β𝑖 = 1
and arbitrary values of growth parameters.

Consider the case of a four- parameter model with coefficients α𝑖 = α, β𝑖 = β, 𝑟2, 𝑟3.
Differential equations (1)–(3) for α𝑖 = β𝑖 = 1 can be written in vector form:

𝑈̇ = 𝐹, 𝑈 = [𝑢1, 𝑢2, 𝑢3]
T, 𝐹 = 𝑃 [𝑢1, 𝑟2𝑢2, 𝑟3𝑢3]

T, 𝑃 = 1−
3∑︁

𝑖=1

𝑢𝑖. (8)

The (8) system has a two-parameter family of equilibria

𝑢1 = 1− 𝑢2 − 𝑢3, 0 ⩽ 𝑢2 + 𝑢3 ⩽ 1, (9)

lying in the plane
𝑢1 + 𝑢2 + 𝑢3 = 1. (10)

The stability spectrum of the equilibrium of the family has two zero values σ1 = σ2 = 0,
corresponding to neutral directions along the plane (10), and the value σ3 = (1 − 𝑟2)𝑢2 + (1 −
𝑟3)𝑢3 − 1, responsible for stability in the direction transversal to the plane. For any positive
values of 𝑟2, 𝑟3, the value of σ3 < 0, that is, the whole family consists of stable equilibria. For
𝑟2 = 𝑟3 = 1, the spectrum σ1 = σ2 = 0, σ3 = −1 is identical for all equilibria, which corresponds
to the symmetry of the problem, and for 𝑟2 ̸= 1, 𝑟3 ̸= 1, each equilibrium has an individual
spectrum, which is typical for co - symmetric systems [19].

According to the definition introduced in [19], a cosymmetry is a vector field orthogonal to
the field of the problem in the entire space. The two-parameter family corresponds to multicosymmetry,
that is, the existence of two different cosymmetries orthogonal to the vector of the right part.
The cosymmetries of the (8) system are the vectors introduced in [17]:

𝐿1 = (𝑟2𝑢2,−𝑢1, 0)
T, (11)

𝐿2 = (−𝑟3𝑢3, 0, 𝑢1)
T, (12)

𝐿3 = (0, 𝑟3𝑢3,−𝑟2𝑢2)
T. (13)
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This is checked directly by calculating the scalar product of the 𝐿𝑖 cosymmetry and the right
side of the system 𝐹 .

Since the linear combination of two vectors from (11)–(13) allows you to get a third one
(for example, −𝑢1𝐿3 = 𝑟3𝑢3𝐿1 + 𝑟2𝑢2𝐿2), a pair of cosymmetries can be obtained using the
orthogonalization procedure Gram–Schmidt. The resulting vectors will be orthogonal to each
other and to the vector of the right side 𝐹 .

Consider the perturbation of the (8) system with the following choice of interaction coefficients
for the original model (1)–(3)

α𝑖 = 1− 𝑠, β𝑖 = 1 + ℎ𝑠. (14)

The method based on the calculation of the cosymmetric defect and the selective function
[18] allows analyzing the solutions implemented as a result of the destruction of the family. Scalar
products of cosymmetries and vectors of the right side of the system (1)–(3) give cosymmetric
defects

𝒟1 = (𝐹,𝐿1) = ((𝑢1 − 𝑢3)ℎ+ 𝑢2 − 𝑢3) 𝑠𝑟2𝑢1𝑢2, (15)

𝒟2 = (𝐹,𝐿2) = − ((𝑢2 − 𝑢3)ℎ− 𝑢1 + 𝑢2) 𝑠𝑟3𝑢1𝑢3, (16)

𝒟3 = (𝐹,𝐿3) = − ((𝑢1 − 𝑢2)ℎ+ 𝑢1 − 𝑢3) 𝑠𝑟2𝑟3𝑢2𝑢3. (17)

It can be seen that 𝒟𝑖 vanish for the equilibria 𝐸𝑖(4), as well as for the equilibrium 𝐸*(5),
which has three identical coordinates 𝑝𝑖 = [3 + (ℎ − 1)𝑠]−1. Thus, when (14) is perturbed, four
equilibria from the two-parameter family are preserved. Let’s analyze what happens to the other
members of the (9) family. To do this, we substitute in (15)–(17) expressions for the segment
of elements (9). As a result, selection (selective) functions are obtained. For example, for the
segment (𝑢1, 𝑢1, 1− 2𝑢1), where 0 < 𝑢1 <

1
3 , we have:

𝒮1 = (3𝑢1 − 1) (ℎ+ 1) 𝑠𝑟2𝑢
2
1, (18)

𝒮2 = (3𝑢1 − 1) (−1 + 2𝑢1)ℎ𝑠𝑟3𝑢1, (19)

𝒮3 = (3𝑢1 − 1) (−1 + 2𝑢1) 𝑠𝑟2𝑟3𝑢1. (20)

It can be seen that 𝑆𝑖(𝑢1) ̸= 0 for any 𝑢1 ∈ (0, 13). Consequently, when the system (8) is
perturbed, only the endpoints remain from the equilibria (9) corresponding to the values 𝑢1∈[0,
1
3 ] . Similarly, it turns out for other segments that go from the point 𝐸* to the boundary of the
family of equilibria. In this case, according to [18], limit cycles may appear.

In [8] it is shown that for a symmetric model (𝑟𝑖 = 1), a family of limit cycles is obtained
at α+ β = 2, which corresponds to the value of ℎ = 1. The cycles are located on the plane (10)
and form a system of concentric closed curves around the equilibrium (5) with three non-zero
components:

𝐸* =

(︂
1

3
,
1

3
,
1

3

)︂
. (21)

Let’s analyze the properties of these modes for two sets of coefficients: α = 0.8, β = 1.2 and
α = 0.6, β = 1.4. In Fig. 1 shows the results of calculations of cycle periods from the family. To
do this, the algorithm described in Appendix A is used. In Fig. 1, a circles indicate the starting
points for calculating periods and multipliers of periodic modes. The trajectory of each mode is
determined by the starting point on the plane (10) and does not depend on α, β. The periods of
cycles and the values of their multipliers are given in Table. 1. Denote by 𝑑 the distance from
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Fig. 1. Family of limit cycles: a — trajectories, b — dependence of period 𝑇 on the distance from the starting
point to equilibrium (21), c and d — graphs dependence of periods of limit cycles on the value of β − 1 (color
online)

the starting point to the equilibrium (21). It can be seen that with an increase in 𝑑, the cycle
periods grow (рис. 1, b).

In a computational experiment, it was found that with an increase in the difference β−1, the

Table 1. Periods (𝑇 ) and multipliers (ρ𝑖) of limit cycles for α+ β = 2, 𝑟𝑖 = 1

Interaction coefficients 𝑑 Period ρ1 ρ2, ρ3

α𝑖 = 0.8, β𝑖 = 1.2

0.05 54.55 1.3× 10−16 1.0, 1.0
0.31 59.25 −1.0× 10−16 1.0 ± 𝑖0.0002

0.51 68.87 −1.1× 10−16 1.0 ± 𝑖0.0003

α𝑖 = 0.6, β𝑖 = 1.4

0.05 27.28 1.4× 10−12 1.0, 0.99999
0.31 29.62 1.4× 10−13 1.0 ± 𝑖6.7× 10−5

0.51 34.43 1.1× 10−15 1.0 ± 𝑖0.0008

320
Nguyen B.H., Tsibulin V.G.

Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2023;31(3)



periods of limit cycles decrease. This is illustrated by Fig. 1, c, where the results of calculating the
periods of cycles 𝑇 for two starting points are presented: 𝑃1 = (0.3, 0.4, 0.3) и 𝑃2 = (0.6, 0.1, 0.3).
In Fig. 1, d the dependencies on β− 1 of the product 𝑇 (β− 1) are given. Thus, it turns out that
the cycle period is inversely proportional to the difference β− 1, that is, 𝑇 = 𝐾(β− 1)−1, where
𝐾 is determined by the choice of the starting point.

The analysis of equilibrium stability and the conducted computational experiment showed
that for values other than one 𝑟𝑖 on the plane of parameters α𝑖 = α, β𝑖 = β it turns out a map of
modes similar to the one given in [8] (fig. 2). For α, β > 1, there is multistability: the equilibria
𝐸𝑖 (4) are stable, and the implementation of a particular equilibrium depends on the choice of
the starting point.

The triangle bounded by the segments α = 0, β = 0, α+β = 2 defines the stability region of
the equilibrium 𝐸*(21) at 𝑟2 = 𝑟3 = 1. With a change in 𝑟𝑖, the straight line α+β = 2 turns into
a concave curve, so that the stability region of the equilibrium 𝐸* includes a triangle resulting
at 𝑟𝑖 = 1. In this case, the boundary of the deformed region contains a point with coordinates
α = β = 1, for these values, the system (8) has a two-parameter family of equilibria (9) and
cosymmetry (11)–(13).

At values α and β outside the stability region of the equilibrium 𝐸* and the multistability
zone (stability of the equilibria 𝐸𝑖), a stable heteroclinic cycle [8] is obtained, formed from curves
«connecting» the equilibria 𝐸1, 𝐸2 and 𝐸3. The equilibrium data at α𝑖 < β𝑖 have one stable and
one unstable moustache each, which belong to the planes corresponding to the absence of one of
the types (𝑢1 = 0, 𝑢2 = 0 или 𝑢3 = 0).

In addition, for the four-parameter model (α𝑖 = α, β𝑖 = β, 𝑟𝑖), there is a range of values
α, β, at which bistability is realized: the equilibrium 𝐸* and the heteroclinic cycle are stable,
separated by an unstable saddle limit cycle. In Fig. 2 this region is adjacent to the concave curves
— the boundary of the equilibrium stability region 𝐸*.

(I)

(II)

�

�

2

1

0
0                              1                              2

1

2
3

Fig. 2. The stability regions of the equilibria 𝐸* (I) and 𝐸𝑖 (II) of the (1)–(3) system for α𝑖 = α, β𝑖 = β. Region
boundary (I) at 𝑟2 = 𝑟3 = 1 (1), at 𝑟2 = 0.5, 𝑟3 = 2.5 (2), at 𝑟2 = 2, 𝑟3 = 0.2 (3)
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Fig. 3. Dependence curves of 𝑟3 on 𝑟2, which ensure the fulfillment of the condition (23); the numbers correspond
to the rows in Table 2 (color online)

2. Computational experiment

To find the limit cycles of the system (1)–(3) with eight parameters, we will analyze
the stability of the equilibrium 𝐸*(5), which is determined by the roots of the characteristic
polynomial:

σ3 + 𝐶2σ2 + 𝐶1σ+ 𝐶0 = 0, (22)

where

𝐶2 = 𝑝1 + 𝑝2𝑟2 + 𝑝3𝑟3,

𝐶1 = 𝑟2𝑟3𝑝2𝑝3 (1− α2β3) + 𝑟2𝑝1𝑝2 (1− α1β2) + 𝑟3𝑝1𝑝3 (1− α3β1) ,

𝐶0 = 𝑟2𝑟3𝑝1𝑝2𝑝3 (1− α1β2 − α2β3 − α3β1 + α1α2α3 + β1β2β3)

In the work [12] it is shown that an unstable limit cycle exists when the conditions 𝐶2𝐶1 > 𝐶0,
𝐴 < 𝐵 are met, and a stable limit cycle is — at 𝐶2𝐶1 < 𝐶0, 𝐴 > 𝐵, here 𝐴 and 𝐵 are determined
by the formulas (6). We will look for parameter values for which the polynomial (22) has a pair
of imaginary roots, that is, it is executed

𝐶2𝐶1 = 𝐶0. (23)

The equality (23) contains all eight parameters of the system (1)–(3). In the table. 2 for a
number of values of the coefficients α𝑖, β𝑖, ensuring the equality 𝐴 = 𝐵, the values of the growth
parameters 𝑟𝑖 are given, for which the existence of families of limit cycles [9, 12] is established.
These values of 𝑟𝑖 in Fig. 3 correspond to the points through which the curves corresponding to
(23). For different variants of α𝑖, β𝑖, the curves intersect at a common point 𝑟2 = 𝑟3 = 1. Thus,
for six sets of interaction coefficients (cases 1–6 from Table. 2) there are families of limit cycles
for the growth parameters specified in Table. 2, and for 𝑟2 = 𝑟3 = 1. There are also values of
the interaction coefficients for which the curve on the plane 𝑟2, 𝑟3 is contracted to a single point.
Such a case is given in the last line of the table. 2.

In Fig. 4, a presents limit cycles from two families calculated at α𝑖 = 0.8, β1 = 1.1, β2 = 1.2,
β3 = 1.4, 𝑟2 = 1 for the values of 𝑟3 = 1 (blue curves) and 𝑟3 = 0.5 (red dashed). The starting
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Table 2. Combinations of parameters for which there are families of limit cycles
under the conditions (23) and 𝐴 = 𝐵 (see fig. 3)

α1 α2 α3 β1 β2 β3 𝑟2 𝑟3 Кривая

0.8 0.8 0.8

1.1 1.2 1.4 1 0.5 1
1.1 1.4 1.2 0.5 0.5 2
1.4 1.2 1.1 1 2 3
1.4 1.1 1.2 2 2 4
1.2 1.4 1.1 0.5 1 5
1.2 1.1 1.4 2 1 6

0.6 0.8 0.9
1.1 1.2 1.4 2 1 7
1.1 1.4 1.2 1 1

points and the entire family corresponding to the value 𝑟3 = 0.5 lie in the plane (10). The limit
cycles for the case 𝑟3 = 1 intersect the plane (10). As the starting point moves away from 𝐸*,
the oscillation amplitude becomes larger. This characterizes Fig. 4, b, where graphs of the time
variation of the sum of the species are presented 𝑆(𝑡) =

∑︀3
𝑖=1 𝑢𝑖(𝑡).

In the conducted computational experiment, it was found that a family of limit cycles exists
for 𝑟2, 𝑟3, which differ from those described in [9,12]. In Fig. 5 for the values α𝑖, β𝑖 corresponding
to the cases 1 and 4 from Table. 2, the curve of dependence of 𝑟3 on 𝑟2 satisfying the equality
(23) is given. Isolated limit cycles are observed for the values 𝑟2, 𝑟3 lying between this curve
(blue solid) and the calculated boundary (red dashed). These modes are located between the
heteroclinic cycle and the equilibrium 𝐸*. The points 𝑇𝑗 correspond to the values 𝑟2, 𝑟3, at
which families of limit cycles are obtained. For example, in the case of 1, in addition to the
points 𝑇1 (𝑟2 = 𝑟3 = 1) [9] and 𝑇2 (𝑟2 = 1, 𝑟3 = 0.5) [12], a family of limit cycles is obtained for

Fig. 4. The family of limit cycles for 𝑟2 = 1, 𝑟3 = 1 (solid blue lines) and 𝑟2 = 1, 𝑟3 = 0.5 (red dashed): a —
trajectories in phase space, b — time dependence of the sum of species 𝑆; α𝑖 = 0.8, β1 = 1.1, β2 = 1.2, β3 = 1.4
(color online)
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Table 3. Period and cycle multipliers for different values of 𝑟2, 𝑟3;
α𝑖 = 0.8, β1 = 1.1, β2 = 1.2, β3 = 1.4

𝑟2, 𝑟3 Период ρ1 ρ2, ρ3

1, 1
58.84 −9.1× 10−17 1.0 ± 𝑖2.4× 10−5

74.77 6.6× 10−16 1.0 ± 𝑖0.0002

1, 0.5
75.11 9.2× 10−18 1.0 ± 𝑖0.0004

95.4 −1.4× 10−16 1.0 ± 𝑖0.0001

0.9834636477, 0.8335
59.35 −8.6× 10−17 1.0 ± 𝑖0.0003

77.31 1.1× 10−16 1.0 ± 𝑖6.6× 10−5

𝑟2 = 0.9834636477, 𝑟3 = 0.8335 (point 𝑇3), see fig. 5, a. Note that the points 𝑇𝑗 correspond to
the intersections of the solid (blue) and dashed (red) curves. From Fig. 5, b it can be seen that
the range of values 𝑟2, 𝑟3, for which there are isolated limit cycles, can be very small.

Multipliers were calculated for the limit cycles of the family, see Table. 3. It can be seen
that the modules of the multipliers ρ2, ρ3 are close to one. Under the conditions of the degeneracy
of the problem, this can be considered as a good approximation for a two-fold unit, one of which
corresponds to the direction along the orbit of the cycle, and the other to the neutral direction
for the continuum family.

In Fig. 6 the trajectories of several cycles from the new family are presented (𝑟2 =

0.9834636477, 𝑟3 = 0.8335, the point 𝑇3 in Fig. 5, a) and convergence of Lyapunov exponents
for one cycle from the family.

If the parameters satisfy the condition (23), but at the same time 𝐴 ̸= 𝐵, then the family of
limit cycles degenerates and a slow dynamics is obtained, with a very small increase or decrease
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Fig. 6. The family of limit cycles for 𝑟2 = 0.9834636477, 𝑟3 = 0.8335: a — trajectories in the phase space, b —
Lyapunov exponents; α𝑖 = 0.8, β1 = 1.1, β2 = 1.2, β3 = 1.4 (color online)

Table 4. Period and multipliers of limit cycles for 𝐴 ̸= 𝐵; α𝑖 = 0.8,
β1 = 1.1, β2 = 1.2

β3 𝑟2, 𝑟3 Период ρ1 ρ2, ρ3
1.45 1.2, 0.22620179898 108.76 −5.8× 10−18 1.0, 1.0043

1.35 1.587661492, 3.5 37.8 −1.1× 10−16 1.0, 0.99625

in the amplitude of the oscillations. Fragments of such trajectories from a large number of
revolutions are presented further in Fig. 7. In this case, it is possible to implement isolated limit
cycles. Let’s fix the values of five parameters: α𝑖 = 0.8, β1 = 1.1, β2 = 1.2. Then with β3 = 1.45

it turns out 𝐴 < 𝐵, and with β3 = 1.35 — 𝐴 > 𝐵. In the table. 4 the multipliers of the calculated
limit cycles are presented for different values of 𝑟2, 𝑟3. The first line corresponds to an unstable
limit cycle (ρ3 > 1), and the second line corresponds to a stable limit cycle (ρ3 < 1).

The results illustrating the existence of limit cycles are presented in Fig. 7 for a number of
values of growth parameters. Calculations were carried out from various initial data (black stars
in the figure) at time intervals, allowing to verify the growth or attenuation of the oscillation
amplitude (colored stripes in the figure). The end states are marked with blue dots. For β3 =
1.45, there are pools of initial data from which the equilibrium 𝐸* and the heteroclinic cycle
based on the equilibria 𝐸𝑖 are realized (Fig. 7, a). In this case, there is an unstable limit cycle (a
thin curve). For β3 = 1.35, the equilibrium 𝐸* and the heteroclinic cycle are unstable and there
is an isolated limit cycle (Fig. 7, b). This cycle is obtained for small intervals of values of growth
parameters 𝑟2, 𝑟3.

In addition, other dynamic scenarios were discovered. For example, with β3 = 1.45, 𝑟2 =
1.6, 𝑟3 = 0.195 and β3 = 1.35, 𝑟2 = 1.6, 𝑟3 = 3.62, there are two isolated (stable and unstable)
limit cycles (Fig. 7, c, d). This means bistability in the form of the coexistence of a heteroclinic
cycle and an isolated stable limit cycle, as well as equilibrium (stationary solution) and an isolated
stable limit cycle. In a computational experiment with fixed interaction coefficients, regions of
values of growth parameters are found at which transitions from stable equilibrium with nonzero

Nguyen B.H., Tsibulin V.G.
Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2023;31(3) 325



1

1

1

0.8

0.8

0.8

u1 u1

u2 u2

u3u3

a b

1

1

1

0.6

0.6

0.6

u1
u1

u2 u2

u3 u3

c d

Fig. 7. Oscillations with varying amplitude (color bars) and isolated limit cycles (thin curves) at β3 = 1.45 (left)
and at β3 = 1.35 (right): a — 𝑟2 = 1.2, 𝑟3 = 0.22620179898, b — 𝑟2 = 1.587661492, 𝑟3 = 3.5, c — 𝑟2 = 1.6,
𝑟3 = 0.195, d — 𝑟2 = 1.6, 𝑟3 = 3.62; initial conditions are black stars, final states are blue dots (color online)

components 𝐸* to a stable heteroclinic cycle are realized. For example, for fixed coefficients
α𝑖 = 0.8 (𝑖 = 1, 2, 3), 𝑏𝑒𝑡𝑎1 = 1.1, β2 = 1.2, β3 = 1.35 at 𝑟2 = 1.6, the equilibrium of 𝐸* is
stable from 𝑟3 ≈ 3.7 to 𝑟3 ≈ 3.6. For 𝑟3 ≈ 3.62, stable and unstable limit cycles are born "out
of thin air which, with a decrease in the parameter 𝑟3, get into the heteroclinic cycle and the
equilibrium 𝐸*, respectively, so that at 𝑟3 = 3.35, only the heteroclinic cycle is stable. At values
of 0.3 < 𝑟3 < 0.4, the transition from a stable equilibrium of 𝐸* to a stable heteroclinic cycle
occurs with an increase in 𝑟3. A similar scenario is implemented for the values of 𝑟2 close to the
considered case 𝑟2 = 1.6.

Conclusion

This work is devoted to the study of a relatively simple system of nonlinear ordinary
differential equations describing the competition of three non-antagonistic species in a spatially
homogeneous area. Oscillatory scenarios of the interaction of species and the emergence of families
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of limit cycles are considered. Using the theory of symmetry, a connection is established between
the destruction of a two-parameter family of stationary solutions (equilibria) and the emergence
of a continuous family of periodic regimes. Earlier in [20, 21] for a system of two predators and
prey, a scenario was found for the emergence of a one-parameter family of limit cycles that branch
off from the equilibria that make up the one-parameter family. In [22], two-parameter families of
equilibria and limit cycles (a consequence of multicosymmetry) were found for a system of two
predators and two victims.

The analysis made it possible to find new cases of extreme multistability — the emergence
of a continuous family of limit cycles with additional ratios on the system parameters. When
these ratios are violated, long-term modes of adjustment to isolated periodic modes, including
the heteroclinic cycle, are implemented. Such dynamics is associated with the destruction of a
symmetric family of limit cycles.

The results obtained can be useful for analyzing the competition of species taking into
account stochastic effects. Practice shows [23–25] that a preliminary study of a deterministic
system with the allocation of bifurcation intervals for parameters is useful for interpreting the
results taking into account noise. The results shown in Fig. 7, show that for different values
of the growth parameters, the phase pattern is significantly changed by small deviations of the
coefficient β3 from the value at which the existence of families of cycles is possible.

Next, it is proposed to study oscillatory modes for spatially distributed systems of competing
populations. With β𝑖 = 0 in [26], a problem for three types is considered, taking into account
spatial effects and lag. The analysis of the competition of the two types, taking into account
spatial effects, showed that the typical scenario is the establishment of [27] to stationary distributions.
With additional relations between the parameters of the systems, co-symmetries and multistable
solutions in the form of families of stationary distributions are possible [28, 29].

Application

Calculation of limit cycle multipliers

The system of autonomous differential equations (1)–(3) is written as

𝑢̇ = 𝑓(𝑢), 𝑢 ∈ R𝑛, 𝑢 = (𝑢1, 𝑢2, 𝑢3), 𝑛 = 3. (24)

Its periodic solution having a period 𝑇 > 0 satisfies the condition

𝑢(𝑡+ 𝑇 ) = 𝑢(𝑡). (25)

The stability of the periodic solution is determined by the eigenvalues of the monodromy matrix
[30, 31], which always has a single eigenvalue ρ1 = 1. If the remaining eigenvalues lie inside the
unit circle, then the periodic solution is stable. The solution is unstable if there is at least one
eigenvalue outside the unit circle.

In the calculations, an asymptotically stable periodic regime was obtained as a result of the
establishment, while the value of the period 𝑇 was estimated. To calculate the periodic solution
of the (24) system, it was assumed that in (25) 𝑡 = 0. After 𝑈𝑡(𝑥), the shift operator along the
trajectory of the system is further denoted (24) from the point 𝑢(0) = 𝑥 in time 𝑡. The task of
finding the limit cycle was reduced to finding the fixed point of the operator 𝑈𝑡(𝑥), that is, the
point 𝑥 satisfying the condition 𝑥 = 𝑈𝑇 (𝑥). The resulting system consisted of 𝑛 equations with
𝑛+ 1 unknowns (coordinates of the point 𝑥 and the period 𝑇 ).

𝑔(𝑥) = 𝑥− 𝑈𝑇 (𝑥) = 0, (26)
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One of the coordinates was fixed in the calculations 𝑥 (𝑥3 ≡ 𝑢3). Newton’s method was used to
solve the equation (26)

𝑥(𝑚+1) = 𝑥(𝑚) −𝑀−1(𝑥(𝑚))𝑔(𝑥(𝑚)) (27)

Here 𝑀 is the Jacobi matrix of the system (26). Together with the solution of the Cauchy problem
for (24), problems were solved in variations for which the initial data were the orts of the phase
space: (1, 0, 0), (0, 1, 0), (0, 0, 1). At each step of the Newton method (27), the Cauchy problem
for the system 𝑛(𝑛 + 1)𝑤𝑎𝑠𝑠𝑜𝑙𝑣𝑒𝑑 ordinary differential equations. To calculate the limit cycles,
various variants of the Runge–Kutta method were used, implemented in MATLAB (functions
ode45 and ode89), calculations were performed with absolute and relative accuracy control. In
the calculations, the values were used to estimate the convergence of Newton’s method 10−5 and
10−7, and when calculating by the method Runge–Kutta values were used 10−7 and 10−9.
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