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Abstract. Purpose of this paper is to study the evolution of longitudinal strain waves in the walls of an annular
channel filled with a viscous incompressible fluid. The walls of the channel were represented as coaxial shells
with fractional physical nonlinearity. The viscosity of the fluid and its influence on the wave process was taken
into account within the study. Metods. The system of two evolutionary equations, which are generalized Schamel
equations, was obtained by the two-scale asymptotic expansion method. The fractional nonlinearity of the channel
wall material leads to the necessity to use a computational experiment to study the wave dynamics in them. The
computational experiment was conducted based on obtaining new difference schemes for the governing equations.
These schemes are analogous to the Crank–Nicholson scheme for modeling heat propagation. Results. Numerical
simulation showed that over time, the velocity and amplitude of the deformation waves remain unchanged, and the
wave propagation direction concurs with the positive direction of the longitudinal axis. The latter specifies that
the velocity of the waves is supersonic. For a particular case, the coincidence of the computational experiment with
the exact solution is shown. This substantiates the adequacy of the proposed difference scheme for the generalized
Schamel equations. In addition, it was shown that solitary deformation waves in the channel walls are solitons.
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Introduction

The wave technologies of nondestructive testing are increasingly being used in different
industries, for example, for pipeline diagnostics. Papers [1–5] are devoted to various aspects of
wave propagation in rods, plates and shells. In the above papers, the effect on the wave process
in the shell of a viscous liquid located inside it was not studied. The shell–fluid interaction
was studied in [6] outside the consideration of wave processes. On the other hand, in [7] the
wave process in an annular channel is studied considering the fluid inertia forces and cubic
nonlinearity of shells forming the channel. In the cases of shells containing a viscous fluid, the
use of qualitative analysis methods for the analytical study of nonlinear models for deformation
waves causes significant difficulties [7–9]. Consequently, for these cases it is necessary to carry
out computational experiments [10]. In our study, the system of governing equations for wave
processes in two cylindrical shells forming an annular channel are obtained by the perturbations’
method with respect to a small parameter of the problem, as well as considering the fractional
physical nonlinearity of the shell material. This system is two generalized Schamel equations and
allows us to estimate the wiggle of dissipative properties of the fluid on longitudinal strain waves
in the channel walls. For a particular case, an exact solution of this system is found, for the
general case, difference schemes are developed, and its numerical solution is performed.

1. Mathematical statement of the problem

Let us consider an annular channel formed by two cylindrical shells. Further in the paper
we denote by the index 𝑖 = 1 the parameters for the outer shell and 𝑖 = 2 the parameters
for the inner shell. We assume that the Cartesian coordinate system 𝑥𝑦𝑧 associated with the
channel symmetry axis and the corresponding cylindrical coordinate system 𝑟θ𝑥 are introduced.
The 𝑥-axis coincides with the symmetry axis and the 𝑧-axis is directed along the normal to
the unperturbed middle surface of the shells. For the shells material, relationship between the
stress and strain tensors, as well as deformation intensity in the frames of the plasticity theory
of A.A. Ilyushin [11,12] is

σ(𝑖)𝑥 = 𝐸
(︁
µ0𝜀

(𝑖)
θ + 𝜀(𝑖)𝑥

)︁[︂
1 + 𝜀

(𝑖) 1
2

𝑢
𝑚

𝐸

]︂
/
(︀
1− µ20

)︀
,

σ(𝑖)θ = 𝐸
(︁
𝜀
(𝑖)
θ + µ0𝜀(𝑖)𝑥

)︁[︂
1 + 𝜀

(𝑖) 1
2

𝑢
𝑚

𝐸

]︂
/
(︀
1− µ20

)︀
,

𝜀(𝑖)𝑢 = 2
(︁
µ1
(︁
𝜀
(𝑖)2
θ + 𝜀(𝑖)2𝑥

)︁
− µ2𝜀(𝑖)θ 𝜀(𝑖)𝑥

)︁ 1
2
/
√
3,

µ1 =
1

3

[︂
1 +

µ0
(1− µ0)2

]︂
, µ2 =

1

3

[︂
1− 2µ0

(1− µ0)2

]︂
,

(1)

here µ0 is the shell material Poisson’s ratio, 𝐸 is the shell material Young’s modulus, 𝑚 is the
constant determined from tensile-compression experiments [13], σ𝑥, σθ are the normal stresses
along the 𝑥 and θ axes; 𝜀𝑥, 𝜀θ are the tensile-compression strains along the 𝑥 and θ axes; 𝜀𝑢
is the strain intensity. Note that the relation of stresses σ𝑥, σθ with strains 𝜀𝑥, 𝜀θ and strain
intensity 𝜀𝑢 on the basis of the physical law with nonlinearity in the form of power function with
a fractional value of the exponent for the case of incompressible material, i.e. when µ0 = 1/2, is
considered in [5, 14].
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The relationship between the components of the strain tensor and 𝑖-th shell displacements
has the form

𝜀(𝑖)𝑥 =
𝜕𝑈 (𝑖)

𝜕𝑥
− 𝑧

𝜕2𝑊 (𝑖)

𝜕𝑥2
,

𝜀
(𝑖)
θ = −𝑊 (𝑖)

𝑅(𝑖)
− 𝑧

𝑊 (𝑖)

𝑅(𝑖)2
at − ℎ

(𝑖)
0

2
⩽ 𝑧 ⩽

ℎ
(𝑖)
0

2
.

(2)

Here 𝑧 is the local coordinate along the axis normal to the shell middle surface (𝑧 = 0 corresponds
to the shell middle surface), 𝑥 is coordinate along the longitudinal axis of the shell median surface,
𝑊 (𝑖) is the deflection of the 𝑖-th shell, the positive direction of which is taken to the shell curvature
center, 𝑈 (𝑖) is the longitudinal displacement of 𝑖-th shell, 𝑅(𝑖) is the median surface radius of the

𝑖-th shell, ℎ
(𝑖)
0 is the 𝑖-th shell thickness.

The asymptotic analysis carried out in [7] showed that the intensity of deformations in (1),
(2) can be considered on the middle surface (𝑧 = 0) for longitudinal waves. Consequently, forces
acting on the element of the shell middle surface are determined by the formulas

𝑁 (𝑖)
𝑥 =

ℎ
(𝑖)
0 /2∫︁

−ℎ
(𝑖)
0 /2

σ(𝑖)𝑥 𝑑𝑧 =
𝐸ℎ

(𝑖)
0

1− µ20

(︃
𝜕𝑈 (𝑖)

𝜕𝑥
− µ0

𝑊 (𝑖)

𝑅(𝑖)

)︃
×

×

(︃
1 +

𝑚

𝐸

(︂
2√
3

)︂ 1
2

⎡⎣µ1
⎛⎝(︃𝜕𝑈 (𝑖)

𝜕𝑥

)︃2

+

(︃
𝑊 (𝑖)

𝑅(𝑖)

)︃2
⎞⎠+ µ2

𝜕𝑈 (𝑖)

𝜕𝑥

𝑊 (𝑖)

𝑅(𝑖)

⎤⎦ 1
4 )︃

,

𝑁
(𝑖)
θ =

ℎ
(𝑖)
0 /2∫︁

−ℎ
(𝑖)
0 /2

σ(𝑖)θ 𝑑𝑧 =
𝐸ℎ

(𝑖)
0

1− µ20

(︃
µ0

𝜕𝑈 (𝑖)

𝜕𝑥
− 𝑊 (𝑖)

𝑅(𝑖)

)︃
×

×

(︃
1 +

𝑚

𝐸

(︂
2√
3

)︂ 1
2

⎡⎣µ1
⎛⎝(︃𝜕𝑈 (𝑖)

𝜕𝑥

)︃2

+

(︃
𝑊 (𝑖)

𝑅(𝑖)

)︃2
⎞⎠+ µ2

𝜕𝑈 (𝑖)

𝜕𝑥

𝑊 (𝑖)

𝑅(𝑖)

⎤⎦ 1
4 )︃

,

(3)

and the moment is defined as

𝑀 (𝑖)
𝑥 =

ℎ
(𝑖)
0 /2∫︁

−ℎ
(𝑖)
0 /2

σ(𝑖)𝑥 𝑧𝑑𝑧 = − 𝐸ℎ
(𝑖)3
0

12
(︀
1− µ20

)︀ (︃𝜕2𝑊 (𝑖)

𝜕𝑥2
+ µ0

𝑊 (𝑖)

𝑅(𝑖)2

)︃
, (4)

We write the dynamics equations for the 𝑖-th shell

𝜕𝑁
(𝑖)
𝑥

𝜕𝑥
= ρ0ℎ

(𝑖)
0

𝜕2𝑈 (𝑖)

𝜕𝑡2
− 𝑞(𝑖)𝑥

⃒⃒⃒
𝑅(𝑖)

,

𝜕2𝑀
(𝑖)
𝑥

𝜕𝑥2
+

𝜕

𝜕𝑥

(︃
𝜕𝑊 (𝑖)

𝜕𝑥
𝑁 (𝑖)

𝑥

)︃
+

1

𝑅(𝑖)
𝑁

(𝑖)
θ = ρ0ℎ

(𝑖)
0

𝜕2𝑊 (𝑖)

𝜕𝑡2
− (−1)𝑖−1𝑞𝑛

⃒⃒
𝑅(𝑖) .

(5)

Here ρ(𝑖)0 is the 𝑖-th shell material density, 𝑞
(𝑖)
𝑥 , 𝑞𝑛 are the shear and normal fluid stresses; 𝑟, 𝑥

are the cylindrical coordinates, 𝑡 is the time.
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Substituting (3), (4) into the shell dynamics equations, we obtain the equations in displacements

𝐸ℎ
(𝑖)
0

1− µ20
𝜕

𝜕𝑥

⟨
𝜕𝑈 (𝑖)

𝜕𝑥
− µ0

𝑊 (𝑖)

𝑅(𝑖)
+

𝑚

𝐸

(︂
2√
3

)︂ 1
2

⎧⎨⎩[
𝜕𝑈 (𝑖)

𝜕𝑥
− µ0

𝑊 (𝑖)

𝑅(𝑖)
]

⎡⎣µ1
⎡⎣(︃𝜕𝑈 (𝑖)

𝜕𝑥

)︃2

+

+

(︃
𝑊 (𝑖)

𝑅(𝑖)

)︃2
⎤⎦+ µ2

𝜕𝑈 (𝑖)

𝜕𝑥

𝑊 (𝑖)

𝑅(𝑖)

⎤⎦ 1
4

⎫⎪⎬⎪⎭
⟩

= ρ0ℎ
(𝑖)
0

𝜕2𝑈 (𝑖)

𝜕𝑡2
−
[︁
𝑞(𝑖)𝑥

]︁
𝑅(𝑖)

,

𝐸ℎ
(𝑖)
0

12
(︀
1− µ20

)︀ 𝜕2

𝜕𝑥2

⟨
−ℎ

(𝑖)2
0

12

(︃
𝜕2𝑊 (𝑖)

𝜕𝑥2
+ µ0

𝑊 (𝑖)

𝑅(𝑖)2

)︃⟩
+

+
𝐸ℎ0
1− µ20

𝜕

𝜕𝑥

⟨
𝜕𝑊 (𝑖)

𝜕𝑥

⎡⎣𝜕𝑈 (𝑖)

𝜕𝑥
− µ0

𝑊 (𝑖)

𝑅(𝑖)
+

𝑚

𝐸

(︂
2√
3

)︂ 1
2

⎧⎨⎩[
𝜕𝑈 (𝑖)

𝜕𝑥
− µ0

𝑊 (𝑖)

𝑅(𝑖)
]

⎡⎣µ1
⎡⎣(︃𝜕𝑈 (𝑖)

𝜕𝑥

)︃2

+

+

(︃
𝑊 (𝑖)

𝑅(𝑖)

)︃2
⎤⎦+ µ2

𝜕𝑈 (𝑖)

𝜕𝑥

𝑊 (𝑖)

𝑅(𝑖)

⎤⎦ 1
4

⎫⎪⎬⎪⎭
⎤⎥⎦⟩+

𝐸ℎ
(𝑖)
0

1− µ20
1

𝑅(𝑖)

⟨
µ0

𝜕𝑈 (𝑖)

𝜕𝑥
− 𝑊 (𝑖)

𝑅(𝑖)
+

+
𝑚

𝐸

(︂
2√
3

)︂ 1
2

⎧⎨⎩
[︃
µ0

𝜕𝑈 (𝑖)

𝜕𝑥
− 𝑊 (𝑖)

𝑅(𝑖)

]︃[︃
µ1

(︃(︂
𝜕𝑈

𝜕𝑥

)︂2

+

(︂
𝑊

𝑅

)︂2
)︃

+ µ2
𝜕𝑈

𝜕𝑥

𝑊

𝑅

]︃ 1
4

⎫⎬⎭
⟩

=

= ρ0ℎ
(𝑖)
0

𝜕2𝑊

𝜕𝑡2
−
[︀
(−1)𝑖−1𝑞𝑛

]︀
𝑅(𝑖) . (6)

2. Analysis of equations for shells containing fluid by perturbation method

To analyze the wave process in the channel walls, we consider a dimensionless axisymmetric
problem and choose small parameters of the problem. Namely, we assume

𝑊 (𝑖) = 𝑤𝑚𝑢
(𝑖)
3 , 𝑈 (𝑖) = 𝑢𝑚𝑢

(𝑖)
1 , 𝑥* =

𝑥

𝑙
,

𝑡* =
𝑐0
𝑙
𝑡, 𝑟* =

𝑟

𝑅(𝑖)
, 𝑤𝑚 = ℎ0, 𝑢𝑚 =

ℎ0𝑙

𝑅(𝑖)
,

(7)

here 𝑐0 =
√︀
𝐸/(ρ0(1− µ20)) is the sound velocity in the shell, 𝑙 is the wavelength, 𝑢𝑚, 𝑤𝑚 are

the characteristic values of elastic shells displacements. Let us make the following assumptions

ℎ
(𝑖)
0

𝑅(𝑖)
= 𝜀 ≪ 1,

𝑅(𝑖)2

𝑙2
= 𝑂

(︁
𝜀

1
2

)︁
,

𝑤𝑚

ℎ
(𝑖)
0

= 𝑂(1),

𝑢𝑚
𝑙

𝑅(𝑖)

ℎ
(𝑖)
0

= 𝑂(1),
𝑚

𝐸
= 𝑂(1),

(8)

here 𝜀 is the small parameter.
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The method of two-scale expansions is applied and the dependent variables as an asymptotic
expansion are represented

𝑢
(𝑖)
1 = 𝑢

(𝑖)
10 + 𝜀

1
2𝑢

(𝑖)
11 + . . . , 𝑢

(𝑖)
3 = 𝑢

(𝑖)
30 + 𝜀

1
2𝑢

(𝑖)
31 + . . . . (9)

Independent variables are introduced in the form of

ξ = 𝑥* −
√︁

1− µ20𝑡
*, τ = 𝜀

1
2 𝑡*. (10)

Here τ is the slow time.
Substituting (7)–(10) into (5) in the zeroth approximation by 𝜀 gives

𝑢
(𝑖)
30 = µ0

𝜕𝑢
(𝑖)
10

𝜕ξ
,

𝜕2𝑢
(𝑖)
10

𝜕ξ2
− µ0

𝜕𝑢30
𝜕ξ

=
(︀
1− µ20

)︀ 𝜕2𝑢
(𝑖)
10

𝜕ξ2
. (11)

Thus 𝑢
(𝑖)
10 is an arbitrary function. Then the system of equations in the next approximation

with account (11) is we obtain in the form of

𝜕2𝑢
(𝑖)
10

𝜕ξ𝜕τ
+

𝑚

𝐸

(︂
2√
3

)︂ 1
2 3

4

√︁
1− µ20

(︀
µ1 + µ2µ0 + µ1µ20

)︀ 1
4

(︃
𝜕𝑢

(𝑖)
10

𝜕ξ

)︃ 1
2 𝜕2𝑢

(𝑖)
10

𝜕ξ2
+
µ20
√︀
1− µ20
2

𝜕4𝑢
(𝑖)
10

𝜕ξ4
=

= − 1

2
√︀
1− µ20

𝑙

𝜀
3
2ρ0ℎ

(𝑖)
0 𝑐20

[︃(︁
𝑞(𝑖)𝑥

)︁
− µ0𝜀

1
4
𝜕
(︀
(−1)𝑖−1𝑞𝑛

)︀
𝜕ξ

]︃
𝑅(𝑖)

. (12)

The obtained Eqs. (12) are the generalized Schamel equations for
𝜕𝑢

(𝑖)
10

𝜕ξ . If the fluid is
excluded, we will have two homogeneous uncoupled Schamel equations. To determine fluid
stresses in Eqs. (12) it is required to study the fluid motion in the channel.

3. Determination of stresses acting on the shell from the liquid

Two coaxial infinitely long shells forming an annular channel with a viscous fluid whose
density is constant are considered. The width of the slot occupied by the liquid δ = 𝑅1 − 𝑅2,
where 𝑅1 is the inner surface radius of the outer shell and 𝑅2 is the outer surface radius of the
inner shell. The fluid motion equations of creeping flow for the problem under consideration have
the following form [15]

1

ρ
𝜕𝑝

𝜕𝑟
= ν

(︂
𝜕2𝑉𝑟

𝜕𝑟2
+

1

𝑟

𝜕𝑉𝑟

𝜕𝑟
+

𝜕2𝑉𝑟

𝜕𝑥2
− 𝑉𝑟

𝑟2

)︂
,

1

ρ
𝜕𝑝

𝜕𝑥
= ν

(︂
𝜕2𝑉𝑥

𝜕𝑟2
+

1

𝑟

𝜕𝑉𝑥

𝜕𝑟
+

𝜕2𝑉𝑥

𝜕𝑥2

)︂
,

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑉𝑟) +

𝜕𝑉𝑥

𝜕𝑥
= 0.

(13)
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At the boundary of the shells and the liquid, the no-slip conditions of the liquid are
satisfied [15]

𝑉𝑥 =
𝜕𝑈 (𝑖)

𝜕𝑡
, 𝑉𝑟 = −𝜕𝑊 (𝑖)

𝜕𝑡
at 𝑟 = 𝑅𝑖 −𝑊 (𝑖), (14)

here 𝑟, 𝑥 is the cylindrical coordinates, 𝑉𝑥, 𝑉𝑟 are fluid velocity projections on the coordinate
axis, 𝑝 is the fluid pressure; ρ is the fluid density, ν is the kinematic coefficient of fluid viscosity.

The fluid stresses 𝑞
(𝑖)
𝑥 and 𝑞𝑛 are determined at 𝑟 = 𝑅(𝑖)

𝑞𝑛 = −𝑝+ 2ρν
𝜕𝑉𝑟

𝜕𝑟
, 𝑞(𝑖)𝑥 = −ρν

(︂
𝜕𝑉𝑥

𝜕𝑟
+

𝜕𝑉𝑟

𝜕𝑥

)︂
. (15)

Dimensionless variables and parameters are introduced

𝑉𝑟 = ℎ
(𝑖)
0

𝑐0
𝑙
𝑣𝑟, 𝑉𝑥 = ℎ

(𝑖)
0

𝑐0
δ
ν𝑥, 𝑟* =

𝑟 −𝑅(2)

δ
, 𝑡* =

𝑐0
𝑙
𝑡, 𝑥* =

𝑥

𝑙
, 𝑝 =

ρν𝑐0𝑙ℎ
(𝑖)
0

δ3
𝑃,

ψ =
δ

𝑅(2)
= 𝜀

1
2 , λ =

ℎ
(𝑖)
0

δ
= 𝜀

1
2 ,

ℎ
(𝑖)
0

𝑅(𝑖)
= 𝜀,

ℎ
(𝑖)
0

𝑙
= 𝜀

5
4 ,

δ
𝑙
= 𝜀

3
4 , Re =

δ
𝑙

δ𝑐0
ν

= 𝜀.

(16)

The variables (16) are substituted into Eqs. (13), (14), (15), and the following decompositions

𝑃 = 𝑃 0 + 𝜀
1
2𝑃 1 + . . . 𝑣𝑟 = 𝑣0𝑟 + 𝜀

1
2 𝑣1𝑟 + . . . , 𝑣𝑥 = 𝑣0𝑥 + 𝜀

1
2 𝑣1𝑥 + . . . (17)

are taken into account. After that, for the first terms of expansion (17) are obtained dynamics
equations of the thin fluid layer for creeping flow [7,15]

𝜕𝑃 0

𝜕𝑟*
= 0,

𝜕𝑃 0

𝜕𝑥*
=

𝜕2𝑣0𝑥
𝜕𝑟*2

,
𝜕𝑣0𝑥
𝜕𝑥*

+
𝜕𝑣0𝑟
𝜕𝑟*

= 0 (18)

with boundary conditions

𝑣0𝑟 = −𝜕𝑢
(1)
3

𝜕𝑡*
, 𝑣0𝑥 = 0 at 𝑟* = 1, 𝑣0𝑟 = −𝜕𝑢

(2)
3

𝜕𝑡*
, 𝑣0𝑥 = 0 at 𝑟* = 0 (19)

as well as with the accuracy to ψ, 𝜀
1
2 from (15) are obtained, too

𝑞(1)𝑥 ≈ −ρνℎ
(1)
0 𝑐0
δ2

𝜕𝑣0*𝑥
𝜕𝑟*

at 𝑟* = 1, 𝑞(2)𝑥 ≈ −ρνℎ
(2)
0 𝑐0
δ2

𝜕𝑣0*

𝜕𝑟*
at 𝑟* = 0, 𝑞𝑛 ≈ −ρν𝑐0𝑙ℎ

(𝑖)
0

δ3
𝑃 0.

(20)

Solving the problem (18), (19) we obtain

𝑃 0 = 12

∫︁ [︃∫︁ (︃
𝜕𝑢

(2)
3

𝜕𝑡*
− 𝜕𝑢

(1)
3

𝜕𝑡*

)︃
𝑑𝑥*

]︃
𝑑𝑥*,

𝜕𝑣0𝑥
𝜕𝑡*

= 6
(︀
𝑟*2 − 𝑟*

)︀ ∫︁ (︃𝜕2𝑢
(2)
3

𝜕𝑡*2
− 𝜕2𝑢

(1)
3

𝜕𝑡*2

)︃
𝑑𝑥*.

(21)

Bearing in mind (9), the new variables ξ, τ (10) and with the accuracy to 𝜀
1
2 we write (21)

as

𝑃 0 = 12
√︁
1− µ20

∫︁ (︁
𝑢
(1)
30 − 𝑢

(2)
30

)︁
𝑑ξ,

𝜕𝑣0𝑥
𝜕𝑟*

= 6
√︁
1− µ20 (2𝑟

* − 1)
(︁
𝑢
(1)
30 − 𝑢

(2)
30

)︁
, (22)
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and then

𝜕𝑃 0

𝜕ξ
= 12

√︁
1− µ20

(︁
𝑢
(1)
30 − 𝑢

(2)
30

)︁
,

𝜕𝑣0𝑥
𝜕𝑟*

⃒⃒⃒⃒
𝑟*=1

= 6
√︁
1− µ20

(︁
𝑢
(1)
30 − 𝑢

(2)
30

)︁
,

𝜕𝑣0𝑥
𝜕𝑟*

⃒⃒⃒⃒*
𝑟=0

= − 𝜕𝑣0𝑥
𝜕𝑟*

⃒⃒⃒⃒
𝑟*=1

.

(23)

Given that according (11) 𝑢
(𝑖)
30 = µ0𝜕𝑢

(𝑖)
10/𝜕ξ submiting (22), (23) into (20) and assuming

𝑅(1) = 𝑅(2) = 𝑅, ℎ
(1)
0 = ℎ

(2)
0 = ℎ0 due to smallness ψ, λ the right-hand side of the first equation

(𝑖 = 1) of system (12) was obtained as

−6µ20
ρ𝑙
ρ0ℎ0

ν

𝑅𝑐0𝜀
1
2

(︂
𝑅

δ

)︂3(︃𝜕𝑢
(1)
10

𝜕ξ
− 𝜕𝑢

(2)
10

𝜕ξ

)︃
, (24)

and the right-hand side of the second equation (𝑖 = 2) of system (12) was obtained in the form of

−6µ20
ρ𝑙
ρ0ℎ0

ν

𝑅𝑐0𝜀
1
2

(︂
𝑅

δ

)︂3(︃𝜕𝑢
(2)
10

𝜕ξ
− 𝜕𝑢

(1)
10

𝜕ξ

)︃
. (25)

4. Governing equations of deformation waves

Taking into account the found right-hand parts of Eqs. (24) and (25), the system of
Eqs. (12) is rewritten as

𝜕2𝑢
(1)
10

𝜕ξ𝜕τ
+

𝑚

𝐸

3

4

√︁
1− µ20

(︂
2√
3

)︂1
2 (︀
µ1 + µ2µ0 + µ1µ20

)︀ 1
4

(︃
𝜕𝑢

(1)
10

𝜕ξ

)︃1
2 𝜕2𝑢

(1)
10

𝜕ξ2
+
µ20
√︀

1− µ20
2

𝜕4𝑢
(1)
10

𝜕ξ4
=

= −6µ20
ρ𝑙
ρ0ℎ0

ν
𝑅𝑐0𝜀

(︂
𝑅

δ

)︂3(︃𝜕𝑢
(1)
10

𝜕ξ
− 𝜕𝑢

(2)
10

𝜕ξ

)︃
,

𝜕2𝑢
(2)
10

𝜕ξ𝜕τ
+

𝑚

𝐸

3

4

√︁
1− µ20

(︂
2√
3

)︂1
2 (︀
µ1 + µ2µ0 + µ1µ20

)︀ 1
4

(︃
𝜕𝑢

(2)
10

𝜕ξ

)︃1
2 𝜕2𝑢

(2)
10

𝜕ξ2
+
µ20
√︀

1− µ20
2

𝜕4𝑢
(2)
10

𝜕ξ4
=

= −6µ20
ρ𝑙
ρ0ℎ0

ν
𝑅𝑐0𝜀

(︂
𝑅

δ

)︂3(︃𝜕𝑢
(2)
10

𝜕ξ
− 𝜕𝑢

(1)
10

𝜕ξ

)︃
.

(26)
The following notations are introduced

𝜕𝑢
(1)
10 /𝜕ξ = 𝑐3φ(1), 𝜕𝑢

(2)
10 /𝜕ξ = 𝑐3φ(2), η = 𝑐1ξ, 𝑡 = 𝑐2τ,

𝑐2 = 6µ20
ρ
ρ0𝜀2

ν

δ𝑐0𝜀
3
4

, 𝑐1 =

(︂
2𝑐2/

(︂
µ20

√︁
1− µ20

)︂)︂ 1
3

,

𝑐3 =

⎡⎣6𝑐2
𝑐1

𝐸

𝑚

4

3
√︀

1− µ20(2/
√
3)

1
2

(︀
µ1 + µ2µ0 + µ1µ20

)︀ 1
4

⎤⎦2

.

(27)
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Considering (27) in (26) the system of governing equations for the study of longitudinal
deformation waves in the walls of the annular channel is obtained

𝜕φ(1)

𝜕𝑡
+ 6φ(1)

1
2 𝜕φ(1)

𝜕η
+

𝜕3φ(1)

𝜕η3
+ φ(1) − φ(2) = 0,

𝜕φ(2)

𝜕𝑡
+ 6φ(2)

1
2 𝜕φ(2)

𝜕η
+

𝜕3φ(2)

𝜕η3
+ φ(2) − φ(1) = 0.

(28)

System of Eqs. (28) has exact partial solution

3(1) = 3(2) =
25

4
𝑘4
(︀
1 + ch 𝑘

(︀
η− 4𝑘2𝑡

)︀)︀−2
, (29)

but the general case requires a numerical solution to this system. By implementing a numerical
solution to equations (28), the initial conditions at 𝑡 = 0 in the form of solutions (29) can be
used

3(1)(0, η) = 3(2)(0, η) =
25

4
𝑘4(1 + ch 𝑘η)−2 (30)

or

3(1)(0, η) =
25

4
𝑘4(1 + ch 𝑘η)−2, 3(2)(0, η) = 0. (31)

5. Computational experiment results

The computational experiment was carried out similarly to [7], but taking into account the
fractional nonlinearity. The desired difference scheme for the numerical solution of the system of
equations (28) was obtained using the Gröbner basis technique in the Maple computer algebra
system. The resulting difference scheme is similar to the Crank–Nicholson scheme for the heat
equation [16] and has the form

𝑢(1)
𝑛+1
𝑗 − 𝑢(1)

𝑛
𝑗

τ
+ 4

(︁
𝑢(1)

3/2 𝑛+1

𝑗+1 − 𝑢(1)
3/2 𝑛+1

𝑗−1

)︁
+
(︁
𝑢(1)

3/2 𝑛

𝑗+1 − 𝑢(1)
3/2 𝑛

𝑗−1

)︁
4ℎ

+

+

(︁
𝑢(1)

𝑛+1
𝑗+2 − 2𝑢(1)

𝑛+1
𝑗+1 + 2𝑢(1)

𝑛+1
𝑗−1 − 𝑢(1)

𝑛+1
𝑗−2

)︁
4ℎ3

+

(︁
𝑢(1)

𝑛
𝑗+2 − 2𝑢(1)

𝑛
𝑗+1 + 2𝑢(1)

𝑛
𝑗−1 − 𝑢(1)

𝑛
𝑗−2

)︁
4ℎ3

+

+
𝑢(1)

𝑛+1
𝑗 + 𝑢(1)

𝑛
𝑗

2
−

𝑢(2)
𝑛+1
𝑗 + 𝑢(2)

𝑛
𝑗

2
= 0,

𝑢(2)
𝑛+1
𝑗 − 𝑢(2)

𝑛
𝑗

τ
+ 4

(︁
𝑢(2)

3/2 𝑛+1

𝑗+1 − 𝑢(2)
3/2 𝑛+1

𝑗−1

)︁
+
(︁
𝑢(2)

3/2 𝑛

𝑗+1 − 𝑢(2)
3/2 𝑛

𝑗−1

)︁
4ℎ

+

+

(︁
𝑢(2)

𝑛+1
𝑗+2 − 2𝑢(2)

𝑛+1
𝑗+1 + 2𝑢(2)

𝑛+1
𝑗−1 − 𝑢(2)

𝑛+1
𝑗−2

)︁
4ℎ3

+

(︁
𝑢(2)

𝑛
𝑗+2 − 2𝑢(2)

𝑛
𝑗+1 + 2𝑢(2)

𝑛
𝑗−1 − 𝑢(2)

𝑛
𝑗−2

)︁
4ℎ3

+

+
𝑢(2)

𝑛+1
𝑗 + 𝑢(2)

𝑛
𝑗

2
−

𝑢(1)
𝑛+1
𝑗 + 𝑢(1)

𝑛
𝑗

2
= 0.

(32)
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Within this scheme, terms with fractional nonlinearity for the next time step are linearized as

ν3/2𝑘+1 = ν
3/2
𝑘+1 − ν

3/2
𝑘 + ν3/2𝑘 =

(︁
ν1/2𝑘+1 − ν

1/2
𝑘

)︁(︁
ν𝑘+1 + 𝑣

1/2
𝑘+1ν

1/2
𝑘 + ν𝑘

)︁
+ ν3/2𝑘 =

=
(︁
ν1/2𝑘+1 − ν

1/2
𝑘

)︁ ν1/2𝑘+1 + ν
1/2
𝑘

ν1/2𝑘+1 + ν
1/2
𝑘

(︁
ν𝑘+1 + ν

1/2
𝑘+1ν

1/2
𝑘 + ν𝑘

)︁
+ ν3/2𝑘 ≈ (ν𝑘+1 − ν𝑘)

3

2
ν1/2𝑘 − 2ν3/2𝑘 =

=
3

2
ν1/2𝑘 ν𝑘+1 −

1

2
ν3/2𝑘 . (33)

Models (28), (30) and (28), (31) were numerically studied by using this difference scheme.
We consider the initial condition (30) with 𝑘 = 0.2, the numerical simulation results of the wave
process are shown in Fig. 1.

According to Fig. 1, it can be seen that the waves propagate to the right without changing
the speed and amplitude (supersonic speed). The numerical solution coincides with the analytic
solution (29). Then the initial conditions (31) are consider with 𝑘 = 0.2 and the calculation
results are shown in Fig. 2.

According to Fig. 2, it can be seen that in the presence of a disturbance in the outer
shell and its absence in the inner shell at the initial moment of time, the wave amplitude in the
outer shell decreases with time, while in the opposing shell it increases. The wave amplitudes are
equalized, which indicates the transfer of energy through the liquid layer between the shells.

Let us consider the case when at the initial moment a perturbation is given in the form of
two waves (30) with different amplitudes and speeds assuming 𝑘 = 0.225 for the first wave and
𝑘 = 0.2 for the second wave. The numerical simulation results are presented in Fig. 3.

Fig. 1. Results of numerical solution of equations (28) with initial conditions (30) (color online)

Fig. 2. Results of numerical solution of equations (28) with initial conditions (31) (color online)
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Fig. 3. Results of numerical solution of equations (28) with two initial conditions (30) for 𝑘=0.225 and 𝑘=0.2
(color online)

It follows from Fig. 3 that there is an elastic interaction of waves as particles. This means
that deformation waves are solitons.

Summary and conclusion

The numerical simulation of nonlinear wave process in the walls of an annular channel
indicates the need of accounting the presence of viscous fluid in the channel in the study of
longitudinal deformation waves propagation. Excitation of the strain wave in the outer shell at
the initial moment of time leads to the appearance of the strain wave in the opposite shell. In
other words, energy transfer from one shell to the other occurs via the liquid. This process is
accompanied by a decrease in the amplitude of the wave in the outer shell, which leads to a
decrease in the rate of propagation of the deformation wave in this shell. At the same time,
the amplitude of the wave in the opposite shell increases. Due to fluctuations in amplitudes
and velocities, their amplitudes be come equal in cause of time. In addition, for the case where
a solitary strain wave is excited in each shell at the initial moment of time, calculations have
shown that these waves are solitons. The results obtained can be used for the development of
non-destructive methods of control of pipelines with viscous liquids used in devices, machines
and units, as well as the control of working processes.

References

1. Nariboli GA. Nonlinear longitudinal dispersive waves in elastic rods. J. Math. Phys. Sci.
1970;
4:64–73.

2. Nariboli GA, Sedov A. Burgers’s-Korteweg-De Vries equation for viscoelastic rods and
plates. J. Math. Anal. Appl. 1970;32(3):661–677. DOI: 10.1016/0022-247X(70)90290-8.

3. Erofeev VI, Klyueva NV. Solitons and nonlinear periodic strain waves in rods, plates, and
shells (a review). Acoustical Physics. 2002;48(6):643–655. DOI: 10.1134/1.1522030.

4. Zemlyanukhin AI, Mogilevich LI. Nonlinear waves in inhomogeneous cylindrical shells: A
new evolution equation. Acoustical Physics. 2001;47(3):303–307. DOI: 10.1007/BF03353584.

5. Zemlyanukhin AI, Andrianov IV, Bochkarev AV, Mogilevich LI. The generalized Schamel
equation in nonlinear wave dynamics of cylindrical shells. Nonlinear Dynamics. 2019;98(1):
185–194. DOI: 10.1007/s11071-019-05181-5.

6. Bochkarev SA, Matveenko VP. Stability of coaxial cylindrical shells containing a rotating
fluid. Computational Continuum Mechanics. 2013;6(1):94–102. DOI: 10.7242/1999-6691/
2013.6.1.12.

374
Mogilevich L. I., Popova E.V.

Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2023;31(3)

https://doi.org/10.1016/0022-247X(70)90290-8
https://doi.org/10.1134/1.1522030
https://doi.org/10.1007/BF03353584
https://doi.org/10.1007/s11071-019-05181-5
https://doi.org/10.7242/1999-6691/2013.6.1.12
https://doi.org/10.7242/1999-6691/2013.6.1.12


7. Mogilevich L, Ivanov S. Longitudinal waves in two coaxial elastic shells with hard cubic
nonlinearity and filled with a viscous incompressible fluid. In: Dolinina O, Bessmertny I,
Brovko A, Kreinovich V, Pechenkin V, Lvov A, Zhmud V, editors. Recent Research in
Control Engineering and Decision Making. ICIT 2020. Vol. 337 of Studies in Systems,
Decision and Control. Cham: Springer; 2021. P. 14–26. DOI: 10.1007/978-3-030-65283-8_2.
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