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Abstract. Purpose of this work is to construct a model of infection spread in the form of a lattice of probabilistic
cellular automata, which takes into account the inertial nature of infection transmission between individuals.
Identification of the relationship between the spatial and temporal dynamics of the model depending on the
probability of migration of individuals. Methods. The numerical simulation of stochastic dynamics of the lattice
of cellular automata by the Monte Carlo method. Results. A modified SIRS+V model of epidemic spread in
the form of a lattice of probabilistic cellular automata is constructed. It differs from standard models by taking
into account the inertial nature of the transmission of infection between individuals of the population, which
is realized by introducing a “carrier agent” into the model, which viruses act as. The similarity and difference
between the dynamics of the cellular automata model and the previously studied mean field model are revealed.
Discussion. The model in the form of cellular automata allows us to study the processes of infection spread in
the population, including in conditions of spatially heterogeneous distribution of the disease. The latter situation
occurs if the probability of migration of individuals is not too high. At the same time, a significant change in the
quantitative characteristics of the processes is possible, as well as the emergence of qualitatively new modes, such
as the regime of undamped oscillations.
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Introduction

The practical application of nonlinear dynamics is based on the construction of mathematical
models of natural phenomena and technical devices that allow predicting their behavior, including
when changing external conditions. One of such tasks is modeling the processes of spreading
epidemics of infectious diseases in biological populations [1–4].

Mathematical modeling of epidemics is carried out by different methods: by analyzing
time series [5], constructing regression [6] and autoregressive [7] models, the use of systems of
ordinary differential equations [8], partial differential equations [9], as well as lattices of cellular
automata [10–13]. The classical approach to modeling is to divide the population into groups of
individuals and determine the rules of interaction for them, from which by means of averaging,
equations are obtained for the observed quantitative characteristics of the disease.

An example of this approach is SIRS, a model proposed in the 1920s by Kermack and
McKendrick [8]. In this model, the population is divided into three classes: healthy and susceptible
(S—Susceptible), sick (I— Infectious) and recovered (R— Recovered) individuals. Interaction
rules are defined for them (occurring during the time interval ∆𝑡):

• a meeting of a susceptible individual (𝑆) with an infected one (𝐼) leads with probability
𝑃1 to infection of a susceptible individual: 𝑆 + 𝐼

𝑃1→ 2𝐼;
• a diseased individual (𝐼) with a probability of 𝑃2 is cured, while acquiring immunity to

subsequent infections (𝑅): 𝐼 𝑃2→ 𝑅;
• an immune individual (𝑅) with a probability of 𝑃3 loses immunity, returning the individual

to a susceptible state (𝑆): 𝑅 𝑃3→ 𝑆.
Thus, in the evolution of each individual, we observe a cyclic chain of transformations between a
discrete and a finite set of states 𝑆 → 𝐼 → 𝑅 → 𝑆. Hence the name of this model — SIRS. In the
SIRS model , the infection rate is determined by the frequency of contacts between susceptible
and infected individuals. This rule was first proposed in the work [14] and was widely used in
the future. However, it does not always adequately describe the actual infection processes that
they can be characterized by both non-locality and inertia. This is typical for respiratory viral
infections, when the virus causing infection can exist outside the host body for a long time.
Therefore, the act of infection can occur in isolation (in time and space) from direct contact
between 𝑆 and 𝐼 individuals. This requires adding additional inertia to the model in the form
of a lagging argument [15–17], or, as it was done in [18], using an additional variable (and,
accordingly, an additional equation).

In the work [18], a modification of the SIRS model was proposed, in which the transmission
of infection occurs indirectly, due to the interaction of a susceptible individual with a carrier
agent, which is viruses. This model will be referred to as the SIRS+V model in the future.
SIRS+V is a model of interaction between two systems: a population of individuals and a
population of viruses, each of which lives according to its own laws. Individuals — these are
isolated individuals whose condition changes in a discrete way. Viruses form, as it were, an
external field affecting on individuals and leading to a change in their condition — infection.

In [18] SIRS+V, the model was investigated using the ODE system (that is, in the mean
field approximation) and demonstrated a qualitative correspondence with the dynamics of real
epidemic processes. However, the approximation of the mean field is a very crude idealization for
epidemic processes, since spatial heterogeneity can be a determining factor for them. Therefore,
in this study, we decided to investigate this model using the probabilistic cellular automata
(PCA) method, which allow us to simulate processes infection/recovery at the level of individual
individuals, taking into account their probabilistic nature, as well as to investigate emerging
spatial structures.

A cellular automaton (CA) is a system (cell) that has a finite set of states. Switching
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between them occurs discretely in time according to a given law [19, 20]. If the law of change
of cell states is a stochastic Markov process, then such CA is called probabilistic, otherwise
— deterministic. Cellular automata are combined into networks (lattices). Lattices of cellular
automata (LCA) are a powerful tool for modeling physical processes in distributed systems, they
allow us to obtain their temporal and spatial dynamics [21]. Oscillatory and wave phenomena
characteristic of dynamical systems are observed in them : periodic, quasi-periodic and chaotic
oscillations [22,23], propagation of waves and wave fronts [24].

PCA models have an advantage over ODE, since they allow us to consider spatially
heterogeneous disease processes and allow us to investigate the role of migration processes on
the course of the disease. For example, in the works [10,25] it was shown that the use of medium
field models is justified only with high migration of individuals, when there is a strong mixing
of infected individuals in space. With weak migration, when the infection is of a focal nature,
the predictions of the ODE and PCA models differ greatly. Subsequently, this conclusion was
confirmed in [12]. In [11], the PCA method was used to assess the role of vaccination on the
epidemic development processes. In all these works , modeling was carried out on the basis of
the classical SIRS algorithm. In this study, the method of probabilistic cellular automata is used
for the modified SIRS+V algorithm.

1. SIRS+V model of the spread of infectious diseases

In the standard SIRS model, the act of infection is described as the result of local contact
of 𝑆 and 𝐼 individuals: 𝑆 + 𝐼 → 2𝐼. However, in practice, infection can also occur indirectly,
without direct interaction of individuals. In the modified system , exactly such an infection scheme
is proposed, based on the interaction of individuals with viral particles, hereinafter referred to
as 𝑉 . In this scheme, a sick individual (𝐼) acts as a generator of viruses (𝑉 ), which , due to

diffusion, spread in space, infecting susceptible individuals (𝑆) : 𝑆
𝑃1(𝑣)→ 𝐼.

Thus, instead of the standard SIRS model, a two-component (individuals + viruses) model

will be used: 𝑆
𝑃1(𝑣)→ 𝐼

𝑃2→ 𝑅
𝑃3→ 𝑆. It takes into account that the probability of infection 𝑃1

depends on the concentration of viruses (𝑣) at the location of the individual. The function
𝑃1(𝑣), following [18], selected as: 𝑃1(𝑣) = 1− exp (−α𝑣), where α > 0 is a factor characterizing
the infecting ability of viruses. The probabilities 𝑃2 and 𝑃3 are constants, the values of which
characterize the average duration of illness and loss of immunity (measured in the number of
elementary intervals ∆𝑡): τ2 = 𝑃−1

2 — the average duration of the disease (the so-called «infection
period»), τ3 = 𝑃−1

3 — the average duration of immunity.
In the SIRS+V model, the dynamics of viral particles is fundamentally different from the

behavior of individuals in the population. The latter are particles with a discrete set of states
{𝑆, 𝐼,𝑅}. Transitions between them are random events and are characterized by their probability
values (𝑃𝑘, 𝑘 = 1, 2, 3). We believe that each of the individuals requires a certain habitat (let’s
call it unit cell). As a result, the number of individuals in a finite region is limited by the number
of elementary cells 𝑁 . In contrast due to this, viral particles can accumulate at every point in
space. Therefore, their number can take arbitrary non-negative values1.

The transformations that occurred in each elementary cell of space during the time ∆𝑡 are

1The discrete nature of the number of viruses can be neglected, since it is incomparably huge compared to the
number of individuals.
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represented as the following scheme:

𝑆
𝑃 (𝑣)→ 𝐼

𝐼
𝑃2→ 𝑅 (1)

𝑅
𝑃3→ 𝑆

𝐼 → 𝐼 + σ𝑉 (2)
𝑉 → (1− µ)𝑉,

where the first three reactions describe the modified SIRS scheme, and the last two define the
law of virus change:

• an infected individual (𝐼) generates σ of virus particles (𝑉 );
• part of viruses (µ) is inactivated.

The parameters σ and µ set the rates of virus production and removal. The first of them is
determined by the ability of viruses to multiply inside the host organism, and the value inverse
to µ determines the characteristic time of existence of the virus outside the body of an infected
individual.

When considering the spread of the epidemic, the main interest is not the dynamics of
individual individuals, but the change in their number 𝑁𝑘 (𝑘 ∈ {𝑆, 𝐼,𝑅}). When studying the
model , it is convenient to use their relative values instead of the values 𝑁𝑘: 𝑠 = 𝑁𝑆/𝑁 , 𝑖 =
𝑁𝐼/𝑁 , 𝑟 = 𝑁𝑅/𝑁 , which we will call densities (concentrations) of the corresponding groups of
individuals. Due to the immutability of the total population, the sum of 𝑠+ 𝑖+ 𝑟 is a constant
value — the population density of the population, hereinafter referred to as 𝐶.

In addition to reactions that change the number of individuals and viruses, processes that
change their distribution in space- migration - play an important role. By migration we mean
random changes of individuals in their spatial coordinates (similar to the diffusion of Brownian
particles). As a result , each of the individuals, regardless of its state {𝑆, 𝐼,𝑅} , moves in an
arbitrary direction and at an arbitrary distance. Migration does not directly affect the values of
𝑁𝑘. However, it can affect on them indirectly, through a change in the spatial distribution of
individuals. The migration process leads to a gradual mixing of individuals of different species
in space. For viruses, migration is defined as local diffusion, in which there is a « virus current»
from places with a high concentration to neighboring areas with a lower concentration.

2. SIRS+V model in the form of a lattice of cellular automata

The evolution of a single individual, which is set by the system (1), (5), is a ready-made set
of rules for the functioning of a probabilistic cellular automaton. The population of individuals
can be described as an ensemble of such automata. Let’s define an ensemble in the form of a
square lattice (matrix) 𝑀̂ , with the size of 𝐿×𝐿 cells. Each cell corresponds to an elementary cell
of the population. A cell can take one of the values {𝑆, 𝐼,𝑅,𝐸}. The first three values correspond
to the state of the individual occupied by it. Last value (Empty) corresponds to an empty cell.
Total number of cells 𝑁 = 𝐿2 defines the maximum capacity of the population. The relative
number of «non-empty» cells determines the previously entered parameter 𝐶. The position of
the cell in the lattice is identified by two indexes: 𝑖 — row number and 𝑗 — column number of
the matrix, which are associated with spatial coordinates. Thus, the state of the lattice cells 𝑀𝑖,𝑗

(𝑖, 𝑗 = 1, . . . , 𝐿) defines the spatial distribution of the population.
The evolution of the lattice of cellular automata takes place from the initial state 𝑀̂0
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during a sequence of iterations

𝑀̂(𝑡+ 1) = 𝐹 (𝑀̂(𝑡), 𝑉 (𝑡)) (3)

with discrete time 𝑡, where 𝐹 is a stochastic operator implementing schemes (1), (5), 𝑉 — matrix
𝐿×𝐿, specifying the spatial distribution of viruses. The equation (3) must be supplemented with
the equation for 𝑉 (𝑡). Let ’s write it down as a lattice of diffusionally connected maps

𝑉𝑖,𝑗(𝑡+ 1) = 𝑔𝑖,𝑗(𝑡) +
γ
4

(︁
𝑔𝑖−1,𝑗(𝑡) + 𝑔𝑖+1,𝑗(𝑡) + 𝑔𝑖,𝑗−1(𝑡) + 𝑔𝑖,𝑗+1(𝑡)− 4𝑔𝑖,𝑗(𝑡)

)︁
, (4)

where 𝑔𝑖,𝑗 is a function describing the reactions of the scheme (2) at each point in space

𝑔𝑖,𝑗 = 𝑉𝑖,𝑗 − µ𝑉𝑖,𝑗 + σℎ(𝑀𝑖,𝑗),

ℎ(𝑀𝑖,𝑗) =

{︃
1, 𝑀𝑖,𝑗 = 𝐼,

0, 𝑀𝑖,𝑗 ̸= 𝐼;

the term in parentheses is a discrete analogue of the two-dimensional operator ∇ ( [27, 28]);
γ ∈ [0 : 0.8]— diffusion coupling coefficient.

3. Numerical simulation algorithm

To find the trajectory 𝑀̂(𝑡), 𝑡 = 0, 1, . . ., it is necessary to find a numerical solution of the
system (3), (4). The map (4)is solved by direct integration. To find the dynamics of the LCA
(3) the following method is used: at each step of the discrete time 𝑡, the current states of all 𝑁
elements of the lattice 𝑀𝑖,𝑗 are determined. Then they are transformed according to the rules of
the reactions of the scheme (1).
(a) If 𝑀𝑖,𝑗 = 𝑆, the state of the original cell with probability 𝑃1(𝑣𝑖,𝑗) is transformed into 𝐼.

This is how a random infection event is implemented.
(b) If 𝑀𝑖,𝑗 = 𝐼, the state of the original cell with probability 𝑃2 is transformed into 𝑅, that is,

a cure event is realized.
(c) If 𝑀𝑖,𝑗 = 𝑅, the state of the original cell with probability 𝑃3 is transformed into 𝑆, that

is, there is a loss of immunity and a return to the original state.
Transformations (a)–(c) are performed in random order and implement modeling of processes
related to the disease.

There is migration in the dynamics of the LCA — a random change in the spatial coordinates
of individuals. The result of such a displacement can be represented as a global diffusion reaction,
in which two particles occupying different cells change places

𝑋
𝑃𝑚↔ 𝑌. (5)

Here 𝑋 and 𝑌 are individuals of any kind, including «vacancy», that is, an empty cell; 𝑃𝑚 —
probability.

We implement the described algorithm step by step and get the evolution of the lattice
PCA in the form of a time dependence of the matrix 𝑀̂ . In Fig. 1 is an example of simultaneous
«snapshots» matrices 𝑀̂ and 𝑉 for parameter values: α = 1, 𝑃2 = 0.1, 𝑃3 = 0.0033, σ = 0.7,
µ = 0.3, γ = 0.82 and 𝑃𝑚 = 0.0001. Here we observe a high correlation in the distribution of sick

2These parameter values will be used further.
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individuals and the distribution of viruses, which persists in other cases. Due to the probabilistic
For cellular automata, the dependencies 𝑀̂(𝑡) and 𝑉 (𝑡) are random functions of time. However,
after averaging over an ensemble of cells with a large 𝑁 , the relative concentrations of individuals
of each species

𝑘 =
𝑁𝐾

𝑁
(6)

(𝐾 ∈ {𝑆, 𝐼,𝑅}) will represent deterministic quantities. They are considered in the study.

4. Comparison of the PCA lattice with the mean field model

In the SIRS+V mean field approximation, the model (1) is described by a system of
ordinary differential equations governing the change in concentrations of individuals (𝑖 = 𝑁𝐼/𝑁 ,
𝑟 = 𝑁𝑅/𝑁) and viruses (𝑣 = 𝑁𝑉 /𝑁):

𝑖̇ = 𝑃 (𝑣) (𝐶 − 𝑖− 𝑟)− 𝑃2𝑖, (7)
𝑟̇ = 𝑃2𝑖− 𝑃3𝑟,

𝑣̇ = σ𝑖− µ𝑣.

A study conducted in [18] showed that the only attractor of the phase space (7) is an equilibrium
state of the stable focus type. Therefore , the development The epidemic tends over time to a
stationary state, which at typical parameter values corresponds to a low level of the relative
number of cases 𝐶𝑖 = 𝑖/𝐶. However, at the initial stage of the disease, fluctuations of 𝐶𝑖(𝑡) of
a large amplitude are observed, during which the number of cases reaches values comparable to
the total population. As far as the results obtained for ODE, will they be observed in the PCA
model?

The mean field model is constructed under the assumption of a uniform spatial distribution
of viruses and individuals. This is achieved under conditions of strong mixing of viruses and
individuals. Therefore, for 𝑃𝑚 ≃ 1 , both models should presumably give similar results. To
test this assumption, let’s compare the trajectories 𝐶𝑖(𝑡) of both models starting from the

80

60

40

20

j

20           40           60           80 i

80

60

40

20

j

20 40 60 80 i
a b

Fig. 1. Spatial distribution on the grid: a — of individuals (the state of the individual is marked with the color:
«𝑆» — red, «𝐼» — black, «𝑅» — blue) and b — viruses (the concentration of viruses is marked with shades of
gray: the darker the color, the higher the concentration) (color online)
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Fig. 2. Time dependence of the relative concentration of the diseased in the mean field (ODE) and cellular
automata (CAN) models at 𝑃𝑚 = 1 (color online)

same initial conditions and with equal values of all parameters. In the PCA model, we will
use a complete mixing of individuals (𝑃𝑚 = 1). As calculations show, both models give similar
results, examples of which are shown in Fig. 2. Here we see an almost complete coincidence
of the time dependencies of 𝐶𝑖(𝑡). A similar correspondence is observed for other values of the
system parameters (7). With a high population migration, the average field model adequately
describes the dynamics of the disease and there is no need to involve a more complex model of
PCA. However, with less migration (or its absence), the condition of spatial uniformity of the
distribution of viruses and individuals ceases to be fulfilled. This should lead to a discrepancy in
behavior both models. As shown below, with incomplete mixing, there is a qualitative similarity
of the dynamics of both models with their quantitative divergence. In the absence of mixing,
the existence of qualitatively new modes is possible. Let’s take a closer look at what effects are
observed in a spatially inhomogeneous environment.

5. The dynamics of the disease during migration changes

We will investigate how the dynamics in the PCA model changes when the probability of
migration of individuals decreases from 𝑃𝑚 = 1 to 𝑃𝑚 = 0. This corresponds to the departure
from the condition of uniform distribution of individuals in space. As initial conditions, we will
choose the infection of a healthy population when one infected individual enters it. In the PCA
model, this corresponds to a lattice filled with 𝑆 cells with a given concentration 𝐶, in the center
of which is placed one 𝐼-cell. In the course of modeling LCA, we will calculate time realizations
for relative concentrations infected individuals 𝐶𝑖(𝑡). At the same time, both the dynamics of
the transient process and the steady-state mode at 𝑡 → ∞ are of interest.

The dependences of 𝐶𝑖(𝑡) obtained as a result of numerical study are shown in Fig. 3, a.
As can be seen from the graphs, when 𝑃𝑚 > 0 the development of the epidemic follows the
same qualitative scenario as in the mean field model, that is, through a sequence of decreasing
«waves of infection» and transition to a stationary state: 𝑖𝑠 = lim𝑡→∞ 𝑖(𝑡). At the same time,
the final stationary value of 𝑖𝑠 does not depend on the intensity of migration and coincides with
the coordinates of the equilibrium state in the mean field model (7).

However, the value of 𝑃𝑚 affects the characteristics of the transition process to a stationary
state. As can be seen from Fig. 3, a, a decrease in migration leads to a significant decrease in
the amplitude of the first « infection wave» from 𝐶

(1)
𝑖 ≃ 0.5 (𝐶(𝑚)

𝑖 — the maximum relative level
of cases during the 𝑚th wave of infection) at 𝑃𝑚 ≃ 1 to 𝐶

(1)
𝑖 ≃ 0.1 at 𝑃𝑚 ≃ 0.001. At the same
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Fig. 3. Dynamics of the PCA model for different values of the migration parameter (a) and at the absence of
migration (b) (color online)

time, there is no significant change in the amplitude of the second and subsequent «infection
waves».

Dependency graphs 𝐶
(1)
𝑖 (𝑃𝑚) and 𝐶

(2)
𝑖 (𝑃𝑚) are shown in Fig. 4, a. Here we see that the

amplitude of the first wave increases with an increase in 𝑃𝑚 almost logarithmically, up to 𝑃𝑚 ≃
0.4. Then it stabilizes at a constant level. The amplitude of the second wave is almost independent
of the magnitude of the migration. The growth of 𝑃𝑚, in addition to affecting the amplitude,
leads to a change in the time characteristics of the transient process: «narrowing» of the first wave
with ∆𝑡(1) ≃ 100 up to ∆𝑡(1) ≃ 16 and to a decrease in the average interval between consecutive
waves of infection from ∆𝑡1−2 ≃ 470 up to ∆𝑡1−2 ≃ 140 (Fig. 4, b).

The presented figures clearly show that significant changes in the dynamics of the disease
occur in the range of changes in the migration parameter 0 < 𝑃𝑚 < 0.4. After crossing the
threshold value of 𝑃𝑚 ≃ 0.4, marked with a dotted line, the increase in migration has almost no
effect on epidemic processes.

Migration of individuals does not change the final level of cases in the population, but
dramatically increases it at the initial stage and at the same time reduces the duration of the
transition process. The analysis of dynamics at the initial level also indicates a change in the
shape of 𝐶𝑖(𝑡) with a change in 𝑃𝑚.

To illustrate this effect, we present graphs of 𝐶𝑖(𝑡) at the stage of monotonous increase
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Fig. 4. a — — Dependence of the maximum level of the first (𝐶(1)
𝑖 ) and the second (𝐶(2)

𝑖 ) infection waves on 𝑃𝑚;
b — dependence of the duration of the first infection wave (∆𝑡(1)) and the interval between the first and the second
waves of infection (∆𝑡1−2) from 𝑃𝑚 (color online)
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in the number of infected during the «first wave» from 𝐶𝑖(0) ≃ 0 to the maximum value 𝐶
(1)
𝑖

(Fig. 5). From the graphs we see that with 𝑃𝑚 = 1 we have an «explosive», that is, an almost
exponential increase in the number of cases. And at 𝑃𝑚 ≪ 1, the increase occurs more smoothly.
At the same time, the smaller the migration, the more smoothly the disease increases.

Quantitatively, the rate of increase of 𝐶𝑖(𝑡) can be estimated using a polynomial approximation.
As the calculations showed, the graphs in Fig. 5 are well approximated by power dependencies
𝐶𝑖(𝑡) = 𝐴𝑡𝑞, where the order of 𝑞 is determined by the value 𝑃𝑚. At the same time, the minimum
degree of the polynomial is sufficient to approximate the experimental dependence. It can serve
as a quantitative characteristic of the rate of infection growth at the initial stage. For example,
to approximate the curve «𝑃𝑚 = 1» , it turned out to be sufficient to use a polynomial of
the seventh degree, for 𝑃𝑚 = 0.1 — fifth, etc. The smaller 𝑃𝑚, the lower the order of the
approximating polynomial. In the absence of migration (𝑃𝑚 = 0), the increase in the number of
cases at the initial stage occurs according to a law close to to the quadratic parabola.

At 0 < 𝑃𝑚 ⩽ 1, the dynamics of the PCA lattice qualitatively corresponds to the ODE
model, although it differs quantitatively. As it was shown in [18], in the medium field model,
the transition process from initial infection to a stationary state corresponds to the «winding»
trajectory to a stable focus. We see a similar picture in the LCA. At the same time, the «decay
decrement» of the transient process decreases with a decrease in the probability of migration. If
the migration is completely «turned off» (𝑃𝑚 = 0), then «attenuation» will also disappear, and
there will be continuous fluctuations in the system. Their example is shown in Fig. 3, b. The
oscillation mode — is new in relation to the ODE model, in which it is not implemented. Thus,
for 𝑃𝑚 = 0, there is also a qualitative discrepancy between the dynamics of the ODE and the
PCA.

6. Spatial distribution of cases in the PCA model

In the previous section, it was shown that the value of the migration parameter significantly
affects the temporal dynamics of the disease. The reason for this should be the spatial heterogeneity
of the distribution of cases, which increases with a decrease in migration. Let’s consider the spatial
distribution of infected people at different stages of the epidemic, starting from the moment of
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and their approximating functions 𝐶𝑖(𝑡) = 𝐴𝑡𝑞, which are shown by dashed lines; the order of the approximating
function is indicated near the corresponding curve (color online)

Shabunin A.V.
Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2023;31(3) 279



initial infection at 𝑡 = 0. To do this, let’s build a sequence of snapshots 𝑉 (𝑖, 𝑗)3 for increasing
moments of time at different values of 𝑃𝑚. The values of the remaining parameters and the initial
conditions will remain the same as in the previous section.

In the absence of migration (𝑃𝑚 = 0), the temporary implementations of 𝑖(𝑡) and 𝑟(𝑡)
represent a repetitive oscillatory process (Fig. 3, b). Suppose at time 𝑡 = 0 one infected individual
has penetrated into the population, which is localized in the center of the lattice. In this case, the
initial distribution is a point that, due to diffusion, transforms into a small spot in the center of
the lattice during the time ∆𝑡 = 50 (Fig. 6, a). Further, during the development of the epidemic,
by the time 𝑡 = 100 (Fig. 6, b), this zone is gradually transformed into a ring area, which as 𝑡
increases, it gradually spreads from the center to the periphery. This zone is the main focus of
the epidemic, in the thickness of which most of the new infections occur. Inside the ring zone,
the overwhelming number of individuals have already been ill and are immune. Outside there
is an area susceptible to infection, which serves as a breeding ground for further infections. As
the epidemic develops, the ring of infections gradually expands, covering more and more of the
grid. At the same time, the rate of its expansion remains almost constant (see the curve «∘» in
fig. 7). Step by step, the infection ring expands more and more, captures almost the entire grid
(Fig. 6, c), reaches its border (Fig. 6, d). Then the epidemic is on the wane. At the moment of
𝑡 ≃ 500, the infection level becomes almost zero (Fig. 6, e). However, by this time the immunity
in the central area of the lattice has disappeared. The remaining pinpoint foci of infection there
become active centers for the following «infection rings» (Fig. 6, f ). There is a second wave of
infection that spreads in the absence of immunity and almost repeats the first one. The process
is reproduced cyclically, creating almost periodic fluctuations in the level of infections.

3The distribution of viruses corresponds to the distribution of sick individuals, but it is more convenient to
display.
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Fig. 6. Spatial distribution of viruses at different time moments at the absence of migration (𝑃𝑚 = 0)
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If there is even a small migration (𝑃𝑚 = 0.01), the infection picture changes dramatically.
Already at the initial stage , secondary foci «bud off» from the initial focus (Fig. 8, a), each
of which is the source of its «ring of infections» (Fig. 8, b) and creates new foci of infection
(Fig. 8, c). As a result, the growth of infection occurs simultaneously over the entire area of
the grid. Already at 𝑡 = 100, the maximum of the disease is reached when almost the entire
lattice is covered with infection (Fig. 8, d). Then the wave is on the decline. By 𝑡 ≃ 250, the
disease stops, with the exception of the remaining single foci of infection. Subsequently, on their
basis, according to the same scenario, a second wave of infection occurs. Since immunity in the
population is still preserved by this time, the second wave grows slower than the first and reaches
a much smaller value (Fig. 8, f ). Subsequent waves are even less pronounced and gradually the
disease reaches a stationary level. With more intensive migration, the qualitative picture does
not change, but the infection processes accelerate: «explosive» is observed the growth of the
disease, in which foci of infection appear simultaneously on the entire grid and the population
very quickly becomes evenly infected. This case corresponds to an almost exponential increase
in infection and its very high level at the peak of the disease.

Conclusion

The cellular SIRS+V model of the development of epidemic processes allows us to consider
the temporal and spatial dynamics of the development of diseases, taking into account the
spread of viruses and individuals in space due to diffusion and migration. The study showed
that the spatial distribution of infection plays a decisive role in the development of the epidemic,
changing the quantitative characteristics of the observed processes and leading to qualitatively
new regimes. In the presence of a small migration in the PCA model, as well as in the ODE, there
is transition to a stationary state through a sequence of fading «infection waves». However, the
amplitude and duration of these waves turn out to be significantly dependent on the intensity of
migrations: with increasing migration, the amplitude of the first wave of infection increases
logarithmically, at the same time there is an «acceleration» of the transition process to a
stationary state. The level of infections in the stationary state turns out to be the same as
in the ODE model, and does not depend on migration. In the complete absence of migration of
individuals in the cell model, there may be a mode of undamped oscillations, absent in the ODE
model.
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Fig. 8. Spatial distribution of viruses at different moments of time for small migration (𝑃𝑚 = 0.01)
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