
Modeling of Global Processes.
Nonlinear Dynamics and Humanities

Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2023;31(5)

Article DOI: 10.18500/0869-6632-003056

Mutual synchronization of oscillations in a system
of coupled evolutionary games

O. S. Vershinina�, M.V. Ivanchenko

National Research Lobachevsky State University of Nizhny Novgorod, Russia
E-mail: � olya.vershinina@itmm.unn.ru, ivanchenko@unn.ru

Received 2.06.2023, accepted 20.07.2023, available online 6.09.2023, published 29.09.2023

Abstract. The purpose of this study is to investigate collective dynamics of coupled communities that evolve
according to the population game «Battle of the Sexes». A separate community includes two interacting populations
of players of opposite sex, where each player has one of two possible competing behavior strategies. It is necessary to
determine the possibility of mutual synchronization of oscillations in the number of players adhering to a particular
strategy, build a synchronization region, and also evaluate the dependence of the properties of oscillations on the
coupling strength. Methods. In this paper, we study the system of evolutionary games «Battle of the Sexes»
interacting through migration. To simulate the evolutionary game dynamics we make use of the stochastic Moran
process, as well as the Monte Carlo method to sample game trajectories. Mutual synchronization is defined by the
appropriately generalized criteria of frequency and phase locking. Results. It is shown that the system of coupled
evolutionary games «Battle of the Sexes» demonstrates mutual synchronization of oscillations under sufficiently
strong coupling. In particular, oscillation frequencies of two communities get adjusted to each other and begin to
coincide at some interaction parameter, while the oscillations themselves become almost identical. A similar result
was also observed for an ensemble of more than two communities. Conclusion. The dependence of the average
frequencies of community oscillations on the coupling strength was determined, the adjustment of oscillations with
an increase in the coupling strength was demonstrated, thereby showing the possibility of mutual synchronization
in the model of coupled evolutionary games «Battle of the Sexes». The region of frequency synchronization was
numerically found.
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Introduction

Synchronization of oscillations is a well-known phenomenon that has been extensively

studied for regular, noisy and chaotic oscillations [1]. It is also ubiquitous in biological systems

and populations, to name synchronization of noisy electrosensitive paddlefish cells [2], between

activity in remote human brain areas [4], between the human cardiovascular and respiratory

systems [3], in the neuronal population model [5], in predator – prey populations [6, 7], and

population synchronization in epidemic models [8].

Here we focus on synchronization of evolutionary game oscillations, with the emphasys

on a specific and yet not well-understood case when the population dynamics is (i) essentially

discrete and oscillations emerge due to discreteness (i.e. the population size is finite, and the

mean-field approximation is invalid), and (ii) metastable (i.e. the game fixation occurs on a finite

time-scale, so that oscillations are only transient). We consider a system of coupled communities

that evolve according to the population game «Battle of the Sexes», where individuals may follow

one of several behavioral strategies [9]. In other words, the game models the competition of two

strategies for choosing a partner and raising offspring in two populations of individuals of the

same species, but of the opposite sex (males and females) [10].

More precisely, individuals from populations of the opposite sex play against each other.

Each player, depending on his strategy and the strategy of its counterpart, receives some payoff

reflecting his total costs and benefits. The evolutionary dynamics consists in repeated rounds of

play between randomly selected males and females. The interaction of players and the update

of the populations composition are described using a stochastic frequency-dependent Moran

process [11,12]. According to this process, the total size of populations is finite and constant, as

a result of which the birth of new individuals and the death of existing ones occur at the same

moment in time.

When the game «Battle of the Sexes» is played by finite populations, asymptotic equilibrium

states are absorbing states (complete dominance of one of the behavioral strategies). Since

mutations are not included in the model, once populations enter the state of absorption, they can

no longer get out of it, and the evolutionary dynamics is completed. Earlier we showed that the

game has a non-trivial transitional dynamics. In particular, it was found that before absorption,

stochastic cyclical fluctuations in the number of players adhering to one or another strategy are

observed in the model.

Here we describe and study a system of two or more coupled communities (evolutionary

games «Battle of the Sexes»). If isolated, such communities generate their own transient oscilla-

tions with a frequency determined by the properties of the subsystem. We introduce migration

between communities, and in the case of more than two connected games, consider two topologies

(chain and ring structures).

1. Methods

1.1. Model of the game «Battle of the Sexes». «Battle of the Sexes» model [10]

describes the process of population reproduction by means of a game-theoretic approach. Denote

the male population as 𝐴 and the female population as 𝐵. Assume that each population consists

of 𝑁 individuals, and this number is constant in time. In each population, there are players

(agents) with one of two behavioral strategies that differ in reproduction and raising offspring.

Male categories are defined as «faithful» and «philanderer», and female – «coy» and «fast».
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The evolutionary dynamics consists in repeated game rounds between the chosen particular male
and female. Interacting with each other, the players receive the following payoffs[︃

𝑎11 = 1; 𝑏11 = −1 𝑎12 = −1; 𝑏12 = 1

𝑎21 = −1; 𝑏21 = 1 𝑎22 = 1; 𝑏22 = −1

]︃
, (1)

where 𝑎𝑠𝑠′ is the payoff for a male with 𝑠 ∈ {1, 2} strategy interacting with a female with
𝑠′ ∈ {1, 2} strategy. Similarly, the values 𝑏𝑠𝑠′ determine payments for females. A negative payoff
means that the cost to the player exceeds the benefit of the interaction.

At each round of the game, the dynamics is described using the stochastic frequency-
dependent Moran process [11, 12], which determines the rules for choosing players and further
updating the composition of populations. The Moran process consists of three steps.

1. In each population, a player is selected randomly with a probability proportional to the
fitness of the strategies.

2. The chosen pair of players gives birth to two offspring (male and female) that inherit the
strategy of the parent of the same gender.

3. Each offspring replaces an randomly dead individual in the corresponding population.

According to the described process, the population size 𝑁 remains constant throughout
the game, so the state of each population after some game round 𝑚 can be described by the
number of players with the first strategy: 𝑖 males and 𝑗 females, where 0 ⩽ 𝑖, 𝑗 ⩽ 𝑁 . Then the
state of the game consisting of two populations is given by a pair of values (𝑖, 𝑗).

As mentioned above, the fitness (reproducibility) of strategies affects the probability of a
player choice. Fitness is determined in terms of average payoffs. The average payoffs of males
with the 𝑠 strategy and females with the 𝑠′ strategy are (2) and (3), respectively

π𝐴𝑠 (𝑗) = 𝑎𝑠1
𝑗

𝑁
+ 𝑎𝑠2

𝑁 − 𝑗

𝑁
, (2)

π𝐵𝑠′(𝑖) = 𝑏1𝑠′
𝑖

𝑁
+ 𝑏2𝑠′

𝑁 − 𝑖

𝑁
. (3)

The average payoffs of the entire population of males or females are given as

π̄𝐴(𝑖, 𝑗) = π𝐴1 (𝑗)
𝑖

𝑁
+ π𝐴2 (𝑗)

𝑁 − 𝑖

𝑁
. (4)

π̄𝐵(𝑖, 𝑗) = π𝐵1 (𝑖)
𝑗

𝑁
+ π𝐵2 (𝑖)

𝑁 − 𝑗

𝑁
. (5)

Then, for example, the frequency-dependent probability to choose for reproduction in the
population of males of the player with the first strategy

𝑃𝐴
1 (𝑖, 𝑗) =

𝑖

𝑁
· 1− 𝑤 + 𝑤π𝐴1 (𝑗)
1− 𝑤 + 𝑤π̄𝐴(𝑖, 𝑗)

, (6)

where 1 − 𝑤 + 𝑤π𝐴𝑠 (𝑗) is the reproductive fitness of male with the first strategy, 1 − 𝑤 is the
baseline fitness, and the small parameter 𝑤 is called the selection strength [13]. When 𝑤 = 0, the
probability of a player choice depends only on the frequency of the strategies. As 𝑤 increases,
the dependence of fitness on average payoffs becomes more and more significant.

Thus, according to the Moran process, an individual with a (currently) more successful
strategy (that is, with a strategy that has a larger average payoff) will most likely be selected
for the game and further reproduction.
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Single game trajectories 𝑖(𝑚), 𝑗(𝑚),𝑚 = 1, 2, 3... are determined by simulating the Moran
process. For multiple simulation of trajectories, the Monte Carlo approach is used. The game
process starts from random initial conditions 𝑖0, 𝑗0 ∈ {1, ..., 𝑁 − 1} and is considered until
absorption or during a limited number of rounds 𝑀 .

1.2. Determining the frequency and phase of oscillations. Stochastic cyclic oscilla-
tions of 𝑖 and 𝑗 are observed in the game «Battle of the Sexes» even that the respective mean field
equations display a stable stationary state [14]. Such oscillations are transient, until a trajectory
hits one of the absorbing boundaries and fixation of strategy happens. At the same time, the
considerable duration of transient oscillations allows for defining their frequency and phase.

The mean oscillation period is defined as

⟨𝑇 ⟩ = 1

𝑅

𝑅∑︁
𝑟=1

⟨𝑇 ⟩𝑟 =
1

𝑅

𝑅∑︁
𝑟=1

𝑚𝑛𝑟 −𝑚1𝑟

𝑛𝑟 − 1
, (7)

where ⟨𝑇 ⟩𝑟 is the mean period of game trajectory 𝑟; 𝑚1𝑟 and 𝑚𝑛𝑟 are the first and last time that
trajectory 𝑟 crossed the secant line 𝑗* = 𝑁/2 from top to bottom; 𝑛𝑟 is the number of returns
of the trajectory 𝑟 to the secant during the observation time 𝑀 = 500𝑁 ; 𝑅 is the number of
stochastic trajectories taken for averaging.

The mean oscillation frequency is then calculated as

⟨Ω⟩ = 2π
⟨𝑇 ⟩

. (8)

The instantaneous phase of oscillations of one game trajectory is determined as

Φ(𝑚) = 2π
𝑚−𝑚𝑘

𝑚𝑘+1 −𝑚𝑘
+ 2π𝑘, (9)

where 𝑚𝑘 ⩽ 𝑚 < 𝑚𝑘+1, 𝑘 = 1, 2, ... and 𝑚𝑘 is the time of the 𝑘-th top-down crossing of the
secant line 𝑗* = 𝑁/2.

1.3. System of coupled evolutionary games. We consider a system of coupled com-
munities «Battle of the Sexes» located in the neighboring, but spacially distinct regions and
interacting with each other through the migration of players. Now a single round of the game
consists of two steps. In the first step, the birth-death Moran process is carried out independently
in each community. At the second step, random players migrate between communities.

The coupling strength 0 ⩽ 𝑝 ⩽ 1 between communities determines probability of player
migration. If 𝑝 = 0, then there is no migration and the communities evolve independently. When
𝑝 = 1, then the migration of players between communities occurs on each game round.

At each round, with probability 𝑝, only one player can migrate from the population of one
community to the corresponding population of another community. We impose an additional
condition to keep the population size constant throughout the game: if some player migrates
from community 𝐶1 to community 𝐶2, then some player from community 𝐶2 must migrate to
community 𝐶1.

Both males and females migrate with the same probability 𝑝. However, since the migration
process is random, for some game round, migration can happen to for one of the populations
(males or females only).

We consider non-identical migration-related communities 𝐶1 and 𝐶2 with the same popula-
tion size 𝑁 but different selection strength 𝑤, and explore 1:1 synchronization. The presence of
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mutual synchronization is identified by two criteria [1]. First, the region of frequency locking is
determined when the difference between the frequencies of two communities is close to zero

⟨Ω1⟩ − ⟨Ω2⟩ ≈ 0. (10)

Second criterion, the phase locking condition is checked

|3(𝑚)| = |Φ1(𝑚)−Φ2(𝑚)| < const, (11)

where 3(𝑚) is the phase difference (relative phase).
In a stochastic system, the phase difference fluctuates, therefore, the existence of phase

synchronization in a statistical sense is indicated by the appearance of a peak in the distribution
of the cyclic relative phase

Ψ(𝑚) = 3(𝑚) mod 2π. (12)

Synchronization can also be characterized by other quantitative measures [15]. Here we
calculate the first Fourier mode of the distribution (12):

γ =
√︀
⟨cosΨ(𝑚)⟩2 + ⟨sinΨ(𝑚)⟩2, (13)

where brackets denote averaging over time and over game trajectories. If the phases are not
synchronized, then γ = 0, and in the case of complete synchronization in a system without noise,
γ = 1. In stochastic systems, γ remains close to 1 in the synchronization regime and decreases
with loss of synchronization.

We also consider spatially ordered ensembles of more than two coupled «Battle of the
Sexes» communities, taking chains with open and periodic boundary conditions. In both cases,
the same coupling strength 𝑝 is established between the communities. Synchronization is assessed
through the dependences of the mean frequencies on the coupling strength, more precisely, when
they start coinciding.

2. Results

The transitional dynamics of the game «Battle of the Sexes» demonstrates stochastic
cyclical oscillations in the number of players with the first strategy around the Nash equilibrium
state [14]. An example of oscillations in the game with a population size of 𝑁 = 200 is shown
in Fig. 1, a, b. Within the framework of evolutionary game theory, the Nash equilibrium can be
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Fig 1. Transitional dynamics in the game «Battle of the Sexes»: a — change in the number of players with the
first strategy in the male (𝑖) and female (𝑗) populations over time (𝑚 is the number of the game round), the dot
denotes the exit of the system to the absorbing boundary; b — the game trajectory on the plane of quantities
(𝑖, 𝑗); c — quasi-stationary probability density distribution 𝑑(𝑖, 𝑗); parameters: 𝑁 = 200, 𝑤 = 0.3, 𝑅 = 105
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Fig 2. Dependence of the mean oscillation frequency on
the value of the selection strength in the game «Battle of
the Sexes»; parameters: 𝑁 = 200, 𝑅 = 103

interpreted as a potential stable point of a
dynamic game process [16]. For the considered
model, given by the payoff bimatrix (1), the
Nash equilibrium state is (0.5, 0.5). In this
case the number of players that stick to the
first and second strategies is the same in both
populations (males and females) and equals
(𝑁2 ,

𝑁
2 ).
Fig. 1, c shows the quasi-stationary

probability density distribution 𝑑(𝑖, 𝑗), refering
to the transient dynamics of the game. The
distribution is obtained by multiple sampling
of stochastic game trajectories that start from
a random point and are simulated during
𝑀 = 500𝑁 rounds. The distribution is non-
unimodal and crater-shaped, centered about
the Nash equilibrium.

Amplitude, frequency, and lifetime of oscillations depend on the populations size 𝑁 and
the selection strength 𝑤. The oscillation frequency increases as the selection strength increases
(Fig. 2), for example, in a game with a population size 𝑁 = 200 the mean frequency for 𝑤 = 0.3
is ⟨Ω⟩ = 0.002, and for 𝑤 = 0.4 is ⟨Ω⟩ = 0.003. The lifetime of oscillations (the number of
oscillation periods before absorption) also increases with selection strength.

Next, we address a system of migration-coupled communities that evolve according to the
rules of the «Battle of the Sexes» game. We consider two non-identical communities 𝐶1 and
𝐶2 with the same population size (𝑁1 = 𝑁2 = 200) but different selection strength (𝑤1 = 0.3,
𝑤2 varies), which is equivalent to different natural oscillation frequencies. To determine mutual
synchronization, we calculated the mean observed frequencies of communities ⟨Ω1⟩ and ⟨Ω2⟩,
and also investigated the difference in instantaneous phases 3(𝑚) = Φ1(𝑚)−Φ2(𝑚).

The resulting relative frequency difference (⟨Ω1⟩ − ⟨Ω2⟩)/⟨Ω1⟩ versus 𝑤2 for different
values of the coupling strength 𝑝 are shown in Fig. 3, a. Its approach to zero corresponds to
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Fig 3. Frequency synchronization observed in the system of two coupled communities «Battle of the
Sexes» 𝐶1 and 𝐶2: a — the relative difference of the frequencies of 𝐶1 and 𝐶2 as a function of 𝑤2 for a fixed value
of 𝑤1 = 0.3; b — the synchronization region (Arnold tongue); parameters: 𝑁 = 200, 𝑅 = 103 (color online)
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Fig 4. The distribution of phase difference between two coupled communities «Battle of the Sexes»: a — 𝑝 = 0.005;
b — 𝑝 = 0.1; c — 𝑝 = 0.5; parameters: 𝑁 = 200, 𝑤1 = 0.3, 𝑤2 = 0.32, 𝑅 = 103

synchronization (frequency locking). Fig. 3, b shows the synchronization region (Arnold tongue),
the absolute value of relative frequency difference is color coded. Much as for the classical
synchronization, the frequency locking region increases with the coupling strength.

Next, we investigate the dynamics of phases. The distributions of phase difference between
communities are presented in Fig. 4. When the coupling strength is low, the distribution is broad
and close to uniform (Fig. 4, a), typical of desynchronization. With an increase in the coupling
strength (Fig. 4, b, c), it manifests a peak, which indicates phase locking.

To quantify phase synchronization, we calculated the first Fourier mode γ of the distribution
of the cyclic phase difference. Different curves in Fig. 5 correspond to different pairs of coupled
communities. Index γ is greater for communities with closer values of the selection strength
(𝑤1 = 0.3, 𝑤2 = 0.32, red curve), hence closer natural oscillation frequencies. Nevertheless,
greater coupling strength (𝑝 > 0.3) provides a sufficiently high synchronization index (γ > 0.7)
for more different communities (𝑤1 = 0.3, 𝑤2 = 0.22 and 𝑤1 = 0.3, 𝑤2 = 0.38).

Fig. 6 shows examples of oscillations in the number of males with the first strategy in
two coupled communities with 𝑤1 = 0.3 and 𝑤2 = 0.32. It can be seen that with an increase
in the coupling strength between the communities, the oscillations begin to adjust, and with a
sufficiently large strength, almost complete synchronization occurs.

1.0

0.8

0.6

0.4

0.2

0
0 0.1 0.2 0.3 0.4 0.5

�

p

Fig 5. Dependence of the quantitative measure of
phase synchronization (the first Fourier mode of the
distribution of the cyclic phase difference) on the coupling
strength between two communities «Battle of the Sexes»;
parameters: 𝑁 = 200, 𝑤1 = 0.3, 𝑅 = 103 (color online)

While the phase and frequency effects
are quite in line with the classical results,
the amplitude and lifetime dependences
on coupling and synchronization represent
the features, specific to the finite size
evolutionary game. As specific trajectories
demonstrate, the amplitude of oscillations
decreases with increasing coupling and the
onset of synchronization.

Whereas an analytical description this
phenomenon is yet unclear, the numerical
results can elucidate it in detail. We const-
ructed quasi-stationary probability density
distributions on the set of game states (𝑖, 𝑗)
for a number of coupling strengthes and show
its sections at 𝑑

(︀
𝑁
2 , 𝑗

)︀
in Fig. 7 for two coupled

communities with 𝑤1 = 0.3 and 𝑤2 = 0.32.
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Fig 6. Change in the number of males with the first strategy in two coupled communities «Battle of the Sexes»
over time (𝑚 is the number of the game round): a — 𝑝 = 0.005; b — 𝑝 = 0.1; c — 𝑝 = 0.5; parameters: 𝑁 = 200,
𝑤1 = 0.3, 𝑤2 = 0.32 (color online)

First, one observes that the well in the distribution becomes more shallow as the coupling
strength increases to 𝑝 = 0.005, although synchronization is not reached yet (cf. also Fig. 6, a).
The onset of synchronization at greater 𝑝 lead to (i) the two distributions becoming almost
identical, and (ii) their radius decreases, indicative of a decrease in the oscillation amplitude.

The effect on the lifetime of oscillations is even more dramatic, as it increases in more that
an order of magnitude (Fig. 8). Even a low coupling strength (𝑝 = 0.01), at which synchronization
is not yet observed, increases the lifetime of the transient dynamics by about 6 times compared to
a system without coupling (𝑝 = 0). Thus, the spatial migration of individuals protects populations
from extinction. It should also be noted that the lifetime depends on the selection strength 𝑤, and
synchronization effectively favors the quicker fixating community to keep on oscillating longer.
Even, if extinction would occur in one of the communities, due to its persistence in the other
community both strategies of behavior can coexist for longer time.

Ensembles of more than two coupled communities «Battle of the Sexes» have also been
investigated. Arrays with two types of boundary conditions were considered, giving a chain and
a ring. In the case of a chain structure, each community (except the first and last) is interacted
with two nearest neighbors. The first and last communities are connected to only one neighbor.
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Fig 7. Quasi-stationary probability density distributions
for two coupled communities «Battle of the Sexes»;
parameters: 𝑁=200, 𝑤1=0.3, 𝑤2=0.32, 𝑅=105
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Fig 8. The lifetime of transient oscillations in the
system of two coupled communities «Battle of the
Sexes» depending on the coupling strength; parameters:
𝑁=200, 𝑤1=0.3, 𝑤2=0.32, 𝑅=103

Vershinina O. S., Ivanchenko M.V.

Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2023;31(5) 617



4.0

3.5

3.0

2.5

2.0

1.5

1.0

×10-3

0 0.1 0.2 0.3 0.4 0.5 
p

4.0

3.5

3.0

2.5

2.0

1.5

1.0

×10-3

0 0.1 0.2 0.3 0.4 0.5 
p

a b

Fig 9. Dependence of the observed mean frequency of oscillations in the system of four coupled communities
«Battle of the Sexes» on the coupling strength: a — chain structure; b — ring structure; parameters: 𝑁 = 200,
𝑤1 = 0.28, 𝑤2 = 0.3, 𝑤3 = 0.32, 𝑤4 = 0.34, 𝑅 = 103 (color online)

In the ring structure, one realizes periodic boundary conditions by an additional coupling between
the first and the last community.

The results for an ensemble of four communities (𝐶1 with 𝑤1 = 0.28, 𝐶2 with 𝑤2 = 0.3, 𝐶3

with 𝑤3 = 0.32 and 𝐶4 with 𝑤4 = 0.34) are shown in Fig. 9. The figure illustrates the dependence
of the mean observed frequencies of communities on the coupling strength, which is the same
between each pair of communities.

Notably, even the strongest coupling strength (𝑝 = 0.5) cannot synchronize all four com-
munities in the chain (Fig. 9, a). In a particular system, a slight coupling allowed communities 𝐶3

and 𝐶4 to adjust their rhythms. A further increase in the coupling value led to the synchronization
of the three subsystems (𝐶2, 𝐶3 and 𝐶4), but the oscillation frequency of community 𝐶1 remained
different.

Converting it to the ring structure makes it possible to overcome this feature (Fig. 9, b).
In this case, an increase in the coupling strength leads to synchronization of all four communities,
despite their initial frequency detunings.

With an increase in the coupling strength in both structures, the phenomenon of cluster
synchronization is observed. For example, in a ring structure, four communities are divided into
two subgroups, called clusters, so that the communities within one cluster oscillate at the same
frequency, but the frequencies of the two clusters differ. In a specific example, clusters 𝐶1 and
𝐶2 are formed, as well as 𝐶3 and 𝐶4. However, an even greater increase in the coupling strength
leads to almost complete synchronization of communities.

Conclusions

We investigated the mutual synchronization of transient oscillations in the system of
discrete population evolutionary games, coupled through migration. Beside classical manifesta-
tions of synchronization, we demonstrated marked alterations in quasi-stationary distributions,
amplitude and lifetime effects.

In particular, for a system of two coupled communities, the frequency and phase locking
region was determined. The great coupling strength allows even considerably different communi-
ties to be synchronized. A similar result was obtained for an ensemble of more than two coupled
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subsystems. With an increase in the coupling strength in the ring of mutually connected communi-
ties, we observed a transition from cluster synchronization to an almost complete synchronization.
Adjustment of rhythms also took place in the chain of coupled communities, however, even the
strong coupling strength did not allow all subsystems to oscillate synchronously.

A concluding remark concerns the other types of player migration, that we also addressed in
numerics. In particular, we considered the case when the players with a less successful strategy are
more likely to migrate. There an increase in the coupling strength between communities leads
to a more rapid absorption, leading to the cessation of transient oscillations. In the opposite
case, when players with a more successful strategy are more likely to migrate, the results a more
similar to those reported in the manuscript for the random player migration. However, it should
be noted that the synchronization region, as well as the lifetime of oscillations, become larger
than for random migration.

The interaction of population communities through spatial migration can be important
from an ecological point of view. Even if, due to random fluctuations, a population from a
certain community is on the verge of extinction, the processes of migration and synchronization
support the disappearing population. Thus, our results show that synchronization is important
for maintaining the stability and coexistence of all phenotypes (game strategies). The conclusions
obtained can be used in the study of biological rhythms of real world populations.
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