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Abstract . The study of the problem of damping vibrations of a solid body mounted on viscoelastic supports is an
urgent task. The paper considers the problem of reducing the level of vibrations on the paws of electric machines
using dynamic vibration dampers. For this purpose, the paw of electric machines is represented in the form of a
subamortized solid body with six degrees of freedom mounted on viscoelastic supports. The aim of the work is
to develop calculation methods and algorithms for studying the oscillations of the resonant amplitudes of a solid
body mounted on viscoelastic supports. Dynamic oscillation (vibration) damping method consists in attaching a
system to the protected object, the reactions of which reduce the scope of vibration of the object at the points of
attachment of this system. Applying the D’Alembert principle, the equations of small vibrations of a solid with
dampers are derived. For practical calculations, a simplified system of equations was obtained that takes into
account only three degrees of freedom. Numerical calculations were carried out on a computer to determine the
amplitude-frequency characteristics of the main body. Numerical experiments were carried out using the Matlab
mathematical package. Considering that a solid body is characterized by vibration, as a rule, in a continuous
and wide frequency range, therefore, dynamic vibration dampers are used to protect a solid body mounted on
viscoelastic supports. It was found that when the damper is set at a frequency of 50 Hz, the vibration level at
the left end of the frequency interval of rotary motion of the rotor-converter, decreases to 37.5 dB, and at the
right end — to 42.5 dB. At a frequency of 50 Hz, the paws do not oscillate. When setting the dampers to a
frequency of 51.5 Hz, the maximum vibration level does not exceed 40 dB. The optimal setting of the dampers is
within the frequency of 50.60...50.70 Hz, and a two-mass extinguisher is 10–15% more efficient than a single-mass
one. Thus, the paper sets the tasks of dynamic damping of vibrations of a solid body mounted on viscoelastic
supports, develops solution methods and an algorithm for determining the dynamic state of a solid body with
passive vibration of the object in question.
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Introduction

The transformation of some types of energy into others in machines and mechanisms,
the transformation of forms of movement, the implementation of work processes are inevitably
associated with the appearance of variable forces that generate vibration [1–3]. Vibration negatively
affects the strength and reliability of machines, load-bearing structures, structures and has a
harmful effect on the physiological state of people [4,5]. During the operation of electric machines,
vibrations are often observed during their operation [6]. The causes of the oscillations may
be disturbing forces of mechanical, electrical and aerodynamic origin. By balancing the rotor,
improving the suspension and the construction of the electric machine, it is not always possible
to reduce the level of vibrations to acceptable standards. Therefore, we have to find additional
means to dampen unwanted vibrations [7, 8]. In order to limit vibration in various fields of
technology, there are requirements and norms for its regulation. In most cases, the norms are set
taking into account all the most important conditions. Since they cannot equally satisfy all the
requirements, they are the result of a compromise solution [9–12].

Dynamic vibration damping consists in attaching a system to the protected object, the
reactions of which reduce the scope of vibration of the object at the points of attachment of this
system.

If the frequency of the disturbing force changes little, then one of the promising methods
requiring the development of ways to reduce the level of vibrations is the use of dynamic dampers
[13, 14]. A dynamic damper schematically represents a mass suspended on a spring and having
the ability to move in one or more directions. It is known that the use of a dampener tuned to
the frequency of the disturbing force makes it possible to reduce the movement of a body with
one degree of freedom at this frequency and reduce the level of vibrations at frequencies close to
it [15–17].

In this paper, the problem of reducing the vibration level on the paws of electric machines
using dynamic vibration dampers is considered.

1. Methods

1.1. Problem statement and basic relations. For a theoretical study of the issue of
reducing the level of vibrations on the paws of an electric machine, we will choose the following
calculation scheme. The body and paws of the electric machine are considered quite rigid, we
neglect the malleability of the rotor and bearings and the gyroscopic effect of the rotor. We will
represent an electric machine in the form of a cushioned solid with six degrees of freedom. On
the body of the electric machine, we will install dynamic dampers with sensitivity axes directed
along the coordinate axes that are connected to the body (Fig. 1).

Consider the small vibrations of a frictionless system relative to the static equilibrium
position. As independent coordinates, we choose ξ0, η0, ζ0 — absolute displacements of a point
𝐺 of a body taken as a pole, three angles 3,ψ, θ of successive rotations of a solid body about
the axes 𝐺𝑥1 , 𝐺𝑦2 , 𝐺𝑧3 and ξ𝑙, η𝑗 , ζ𝑘 — absolute displacements of the quenchers’ masses ( Fig. 1).
The characteristic of the vibration isolator is the dependence of its reaction on the elongations
△𝑙𝑙(𝑙=1, 2, ..., 𝑁) of the deformable element. The deformable element is considered massless. The
relationship of dynamic stiffness and elongation of the deformable element satisfies the following
integral dependence [18,19]:

𝑐𝑛3(𝑡) = 𝑐0𝑛

[︂
3(𝑡)−

∫︁ 𝑡

−∞
𝑅𝑐𝑛(𝑡− τ)3(τ)𝑑τ

]︂
(1)
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(𝑐𝑛 — operator modulus of elasticity, 3(𝑡) — arbitrary time function, 𝑅𝑐𝑛(𝑡 − τ) — relaxation
kernel, 𝑐0𝑛 — instantaneous modulus of elasticity). The relationship of dynamic stiffness and
elongation of the deformable element satisfies the physical relations for deformable massless
elements of zero volume [18,19]:

𝐹𝑒 = −𝑐𝑒△𝑒 = −𝑐𝑒 [1− Γ𝑐𝑒(ω𝑅)− 𝑖Γ𝑠𝑒(ω𝑅)]△𝑒,

where

Γ𝑐𝑒(ω𝑅) =
∫︁ ∞

0
𝑅λ,𝑚(τ) · cosωτ𝑑τ; Γ𝑠𝑒(ω𝑅) =

∫︁ ∞

0
𝑅λ,𝑚(τ) · sinωτ𝑑τ,

𝐹𝑒 — effort in the 𝑖-th concentrated element, △𝑒 — elongation of this element. Then the
following notation is applied: 𝐸 — instantaneous modulus of elasticity, 𝐴,α and β— dimensionless
parameters. Using the Dalembert principle to derive the equations of motion, we obtain the
following system of equations:

Fig. 1. Rigid body with three degrees of freedom
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(︂
𝑀0 +

𝑛2∑︀
1
𝑚𝑗 +

𝑛3∑︀
1
𝑚𝑘

)︂
ξ̈0 +

(︂
𝑀0𝑧𝑜𝑦𝑡 +

𝑛2∑︀
1
𝑚𝑗𝑧𝑗 +

𝑛3∑︀
1
𝑚𝑘𝑧𝑘

)︂
ψ̈−

−
(︂
𝑀0𝑌𝑜𝑦𝑡 +

𝑛2∑︀
1
𝑚𝑗𝑌𝑗 +

𝑛3∑︀
1
𝑚𝑘𝑌𝑘

)︂
θ̈+

𝑟1∑︀
1
𝑐𝑙 (ξ0 − 𝑌𝑎𝑙θ+ 𝑧𝑎𝑙ψ)+

+
𝑛1∑︀
1
𝑘𝑙 (ξ0 − 𝑌𝑙θ+ 𝑧𝑙ψ− ξ𝑙) =

𝑠1∑︀
1
𝐹𝑙 sin(𝑝𝑙𝑡+ ν𝑙),(︂

𝑀0 +
𝑛2∑︀
1
𝑚𝑙 +

𝑛3∑︀
1
𝑚𝑙

)︂
η̈0 +

(︂
𝑀0𝑥𝑜𝑦𝑡 +

𝑛2∑︀
1
𝑚𝑙𝑥𝑙 +

𝑛3∑︀
1
𝑚𝑘𝑥𝑘

)︂
θ−

−
(︂
𝑀0𝑧𝑜𝑦𝑡 +

𝑛2∑︀
1
𝑚𝑙𝑧𝑙 +

𝑛3∑︀
1
𝑚𝑘𝑧𝑘

)︂
3̈+

𝑛1∑︀
1
𝑐𝑗 (η0 + 𝑥𝑎𝑗θ− 𝑧𝑎𝑗3)+

+
𝑛1∑︀
1
𝑘𝑗 (η0 + 𝑥𝑗θ− 𝑧𝑗3− η𝑗) =

𝑠2∑︀
1
𝐹𝑙 sin(𝑝𝑙𝑡+ ν𝑙),(︂

𝑀0 +
𝑛2∑︀
1
𝑚𝑗 +

𝑛3∑︀
1
𝑚𝑘

)︂
ξ̈0 +

(︂
𝑀0𝑧𝑜𝑦𝑡 +

𝑛2∑︀
1
𝑚𝑗𝑧𝑗 +

𝑛3∑︀
1
𝑚𝑘𝑧𝑘

)︂
ψ̈−

−
(︂
𝑀0𝑌𝑜𝑦𝑡 +

𝑛2∑︀
1
𝑚𝑗𝑌𝑗 +

𝑛3∑︀
1
𝑚𝑘𝑌𝑘

)︂
θ̈+

𝑛1∑︀
1
𝑐𝑙 (ξ0 − 𝑌𝑎𝑙θ+ 𝑧𝑎𝑙ψ)+

+
𝑛1∑︀
1
𝑘𝑙 (ξ0 − 𝑌𝑙θ+ 𝑧𝑙ψ− ξ𝑙) =

𝑠1∑︀
1
𝐹𝑙 sin(𝑝𝑙𝑡+ ν𝑙),[︁

𝐽0𝑥 +
𝑛1∑︀
1
𝑚𝑙(𝑌

2
𝑙 + 𝑧2𝑙 ) +

𝑛2∑︀
1
𝑚𝑗𝑌

2
𝑗 +

𝑛2∑︀
1
𝑚𝑘𝑧

2
𝑘

]︁
3̈−

[︁
𝐽0𝑥𝑦 +

𝑛1∑︀
1
𝑚𝑙𝑥𝑙𝑦𝑙 +

𝑛2∑︀
1
𝑚𝑗𝑥𝑗𝑦𝑗

]︁
ψ̈−

−
[︁
𝐽0𝑥𝑧 +

𝑛1∑︀
1
𝑚𝑙𝑥𝑙𝑧𝑙 +

𝑛2∑︀
1
𝑚𝑘𝑥𝑘𝑧𝑘

]︁
θ̈+

[︁
𝑀0𝑌0𝑦𝑡 +

𝑛1∑︀
1
𝑚𝑙𝑌𝑙 +

𝑛2∑︀
1
𝑚𝑗𝑌𝑗

]︁
ζ̈0−

−
[︁
𝑀0𝑧0𝑦𝑡 +

𝑛1∑︀
1
𝑚𝑙𝑧𝑙 +

𝑛2∑︀
1
𝑚𝑘𝑥𝑘

]︁
η̈0 + 𝑐𝑥3−

−
𝑟2∑︀
1
𝑐𝑗(η0 + 𝑥𝑎𝑗θ− 𝑧𝑎𝑗3)𝑧α𝑗 +

𝑟3∑︀
1
𝑐𝑘(ζ0 − 𝑥𝑎𝑘θ+ 𝑌α𝑘3)𝑌𝑎𝑘 −

𝑛2∑︀
1
𝑘𝑗(η0 + 𝑥𝑗θ− 𝑧𝑗3− η𝑗)𝑧𝑗−

−
𝑛3∑︀
1
𝑘𝑘(ζ0 + 𝑥𝑘ψ− 𝑌𝑘3− ζ𝑗)𝑌𝑘 = 𝑀𝑥 −

𝑠2∑︀
1
𝐹𝑗𝑧𝐹𝑗 sin(ω𝑗𝑡+ ν𝑗) +

𝑠2∑︀
1
𝐹𝑘𝑌𝐹𝑗 sin(𝑝𝑘𝑡+ ν𝑘),

[︁
𝐽𝑐𝑦 +

𝑛2∑︀
1
𝑚𝑗(𝑥

2
𝑗 + 𝑧2𝑗 ) +

𝑛1∑︀
1
𝑚𝑙𝑥

2
𝑙 +

𝑛3∑︀
1
𝑚𝑘𝑧

2
𝑘

]︁
ψ̈−

[︁
𝐽0𝑦𝑧 +

𝑛2∑︀
1
𝑚𝑗𝑧𝑗𝑌𝑗 +

𝑛3∑︀
1
𝑚𝑘𝑌𝑘𝑧𝑘

]︁
θ̈−

−
[︁
𝐽0𝑥𝑦 +

𝑛1∑︀
1
𝑚𝑙𝑌𝑙𝑧𝑙 +

𝑛2∑︀
1
𝑚𝑗𝑧𝑗𝑌𝑗

]︁
3̈+

[︁
𝑀0𝑧0𝑦𝑡 +

𝑛2∑︀
1
𝑚𝑗𝑧𝑗 +

𝑛3∑︀
1
𝑚𝑘𝑧𝑘

]︁
ξ̈0−

−
[︁
𝑀0𝑋0𝑦𝑡 +

𝑛1∑︀
1
𝑚𝑙𝑥𝑙 +

𝑛2∑︀
1
𝑚𝑗𝑥𝑗

]︁
ζ̈0 + 𝑐𝑦ψ−

−
𝑟3∑︀
1
𝑐𝑘(ζ0 + 𝑥𝑎𝑘ψ− 𝑌𝑎𝑗3)𝑥𝑎𝑘 +

𝑟2∑︀
1
𝑐𝑖(ξ0 − 𝑌𝑎𝑖θ+ 𝑧𝑎𝑖ψ)𝑧𝑎𝑖 −

𝑛3∑︀
1
𝑘𝑘(ζ0 + 𝑌𝑘3− 𝑧𝑗3− ζ𝑘)𝑥𝑘−

−
𝑛2∑︀
1
𝑘𝑙(ξ0 − 𝑌𝑙θ+ 𝑧𝑙ψ− ξ𝑙)𝑧𝑖 = 𝑀𝑦 +

𝑠1∑︀
1
𝐹𝑙𝑧𝑙 sin(𝑝𝑙𝑡+ ν𝑙)−

𝑠3∑︀
1
𝐹𝑘𝑌𝐹𝑘 sin(𝑝𝑘𝑡+ ν𝑘),(︂

𝑀0𝑥𝑦𝑡 +
𝑛1∑︀
1
𝑚𝑙𝑥𝑙 +

𝑛3∑︀
1
𝑚𝑘𝑥𝑘

)︂
η̈0 −

(︂
𝑀0𝑌𝑜𝑦𝑡 +

𝑛2∑︀
1
𝑚𝑗𝑌𝑗 +

𝑛3∑︀
1
𝑚𝑘𝑌𝑘

)︂
ξ̈0 + 𝑐𝑧θ−

−
𝑟1∑︀
1
𝑐𝑙(ξ0 + 𝑧𝑎𝑙ψ− 𝑌𝑎𝑙θ)𝑌𝑎𝑙 +

𝑟2∑︀
1
𝑐𝑗(η0 + 𝑥𝑎𝑗θ− 𝑧𝑎𝑗3)𝑥𝑎𝑗 −

𝑛1∑︀
1
𝑘𝑙(ξ0 − 𝑌𝑙θ+ 𝑧𝑙ψ− ξ𝑙)𝑌𝑙+

+
𝑛2∑︀
1
𝑘𝑗η0 + 𝑥𝑗θ− 𝑧𝑗3− η𝑗)𝑥𝑗 = 𝑀𝑧 +

𝑠2∑︀
1
𝐹𝑗𝑥𝐹𝑗 sin(𝑝𝑗𝑡+ ν𝑗)−

𝑠1∑︀
1
𝐹𝑙𝑥𝐹𝑙 sin(𝑝𝑙𝑡+ ν𝑙),
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⎧⎪⎪⎨⎪⎪⎩
𝑚𝑙ξ̈𝑙 − 𝑘𝑙(ξ0 − 𝑌𝑙θ+ 𝑧𝑙ψ− ξ𝑙) = 0 1 ⩽ 𝑖 ⩽ 𝑛1,

𝑚𝑗 η̈𝑗 − 𝑘𝑗(η0 − 𝑥𝑗θ− 𝑧𝑗3− η𝑙) = 0 1 ⩽ 𝑗 ⩽ 𝑛2,

𝑚𝑘ζ̈𝑘 − 𝑘𝑘(ζ0 − 𝑥𝑘ψ+ 𝑌𝑘3− ζ𝑘) = 0 1 ⩽ 𝑘 ⩽ 𝑛3.

(2)

When deriving the equations , the notation is used: 𝐺𝑥𝑦𝑧 — coordinate system rigidly connected
to the body; 𝑙, 𝑗, 𝑘 — indexes showing that the element, force, moment, etc., works or acts in the
direction of the axes 𝐺𝑥, 𝐺𝑦, 𝐺𝑧, respectively; 𝑀0,𝑚𝑗 ,𝑚𝑘,𝑚𝑙 — solid masses and extinguishers,
respectively; 𝐽𝑜𝑥𝐽𝑜𝑦𝐽𝑜𝑧𝐽𝑜𝑥𝑦𝐽𝑜𝑧𝑥𝐽𝑜𝑦𝑧 — moments of inertia of a rigid body relative to the coordinate
system 𝐺𝑥𝑦𝑧; 𝑥𝑜𝑦𝑡, 𝑌𝑜𝑦𝑡, 𝑧𝑜𝑦𝑡 — coordinates of the center of gravity of a solid body without
taking into account the masses of extinguishers in the coordinate system 𝐺𝑥𝑦𝑧; 𝑥𝑙, 𝑌𝑙, ..., 𝑌𝑘, 𝑧𝑘
— coordinates of the quenchers’ masses in the static equilibrium position in the coordinate
system; 𝑥𝑎𝑙, 𝑌𝑎𝑙, ..., 𝑌𝑎𝑘, 𝑧𝑎𝑘 — coordinates of the attachment points of springs to a solid in the
coordinate system; 𝑥𝐹𝑙, 𝑌𝐹𝑙, ..., 𝑌𝐹𝑘, 𝑧𝐹𝑘 — coordinates of points of application of external forces
in the coordinate system 𝐺𝑥𝑦𝑧; 𝑐𝑙, 𝑐𝑗 , 𝑐𝑘 — operator stiffness coefficients of the springs on which
the body is suspended, determined by the dependence (1); 𝑘𝑙, 𝑘𝑗 , 𝑘𝑘 — operator coefficients of
spring stiffness in dampers, which are determined by the dependence (1); 𝑐𝑥, 𝑐𝑦, 𝑐𝑧 — operator
stiffness coefficients of torsion springs located along the axes 𝐺𝑥, 𝐺𝑦, 𝐺𝑧, respectively, which are
determined by dependence (1); 𝐹𝑗 , 𝐹𝑘, 𝐹𝑙 — amplitudes of external disturbing forces applied to
the body; 𝑝𝑗 , 𝑝𝑘, 𝑝𝑙 — frequencies and phase of external forces; ν𝑗 , ν𝑘, ν𝑙 — phases of external
forces; 𝑛1, 𝑛2, 𝑛3 — number of extinguishers in each direction; 𝑟1, 𝑟2, 𝑟3 — number of springs
supporting the body; 𝑀𝑥,𝑀𝑦,𝑀𝑧 — external moments acting on the body; 𝑠1, 𝑠2, 𝑠3 — number
of external forces; ω𝑗 ,ω𝑘,ω𝑙 — natural frequencies.

The equations of motion (2) are derived using the Dalembert principle, possible displacements.
The identity of the obtained systems is proved using Lagrange equations of the second kind.

Experiments show that the main vibrations of the machine are vertical movements of the
paws. Therefore, we will compile a simplified system of equations of motion of a rigid body with
dampers. We will consider only those degrees of freedom of movement of the body that give
vertical movements to its points. Such movements will be the movement of the body’s pole along
the axis 𝐺𝑥 – ξ0 and its rotation relative to the axes 𝐺𝑦 and 𝐺𝑧 –ψ and θ.

𝑁1 of dynamic dampers with sensitivity axes that are parallel to the 𝐺𝑥 axis are installed
on the solid. We will place the origin of coordinates in the center of gravity of a solid body, and
we will direct the coordinate axes along the main axes of inertia of the body. Then the equations
of motion will take the form

𝑀0ξ̈0 +
𝑟1∑︀
1
𝑐𝑙 (ξ0 − 𝑌𝑎𝑙θ+ 𝑧𝑎𝑙ψ) +

𝑛1∑︀
1
𝑘𝑙 (ξ0 − 𝑌𝑙θ+ 𝑧𝑙ψ− ξ𝑙) =

𝑠1∑︀
1
𝐹1𝑙𝑒

−𝑖𝑝𝑙𝑡,

𝐽𝑜𝑦ψ̈+
𝑟1∑︀
1
𝑐𝑙 (ξ0 − 𝑌𝑎𝑙θ+ 𝑧𝑎𝑙ψ) 𝑧𝑎𝑖 +

𝑛1∑︀
1
𝑘𝑙 (ξ0 − 𝑌𝑙θ+ 𝑧𝑙ψ− ξ𝑙) 𝑧𝑙 =

𝑠1∑︀
1
𝐹2𝑙𝑧𝐹𝑙𝑒

−𝑖𝑝𝑙𝑡,

𝐽𝑜𝑧θ̈+
𝑟1∑︀
1
𝑐𝑙 (ξ0 − 𝑌𝑎𝑙θ+ 𝑧𝑎𝑙ψ)𝑌𝑎𝑙 −

𝑛1∑︀
1
𝑘𝑙 (ξ0 − 𝑌𝑙θ+ 𝑧𝑙ψ− ξ𝑙)𝑌𝑙 = −

𝑠1∑︀
1
𝐹3𝑙𝑌𝐹𝑙𝑒

−𝑖𝑝𝑙𝑡,

𝑚𝑙ξ̈𝑙 − 𝑘𝑙 (ξ0 − 𝑌𝑙θ+ 𝑧𝑙ψ− ξ𝑙) = 0, 1 ⩽ 𝑙 ⩽ 𝑛1,

(3)

where 𝐹1𝑙 = 𝐹𝑙𝑒
𝑖31 , 𝐹2𝑙 = 𝐹𝑙𝑒

𝑖32 , 𝐹3𝑙 = 𝐹𝑙𝑒
𝑖33 , 31, 32, 33 — phase shifts of external loads.

Similarly, the phase shift of the elements of the mechanical system is taken into account.

1.2. Solution methods. Suppose that a perturbing force 𝐹0𝑙𝑒
−𝑖31 , 𝑙 = 1, 2, ..., 𝐿 acts on

a solid, where 𝐿 is the number of external loads.
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If the integral term is given on a finite segment [0, 𝑡],

𝑐𝑛[3(𝑡)] = 𝑐0𝑛

[︂
3(𝑡)−

∫︁ 𝑡

0
𝑅𝑐𝑛(𝑡− τ)3(τ)𝑑τ

]︂
, 𝑛 = (𝑖, 𝑗, 𝑘) (4)

then the natural oscillations of the mechanical system (1) are considered. We take the integral
term in (4) small. Then 3(𝑡) = ψ(𝑡)𝑒−𝑖ω𝑅𝑡, where ψ(𝑡) is a slowly changing function of time, ω𝑅
is a real frequency. We will replace the ratios (4) approximations of the form [19,20]

𝑐𝑛[3] = 𝑐0𝑗
[︀
1− Γ𝑐𝑗(ω𝑅)− 𝑖Γ𝑠𝑗(ω𝑅)

]︀
[3], (5)

where

Γ𝑐𝑛(ω𝑅) =
∫︁ ∞

0
𝑅𝑛(τ) · cosω𝑅τ𝑑τ; Γ𝑠𝑛(ω𝑅) =

∫︁ ∞

0
𝑅𝑛(τ) · sinω𝑅τ𝑑τ,

cosine and sine — Fourier images of the relaxation kernel of the material. As an example of
a viscoelastic material, we take the three-parameter Rzhanitsyn-Koltunov relaxation kernel:
𝑅𝑛(𝑡) = 𝐴𝑛𝑒

−β𝑛𝑡/𝑡1−α𝑗𝑛 . On the influence function 𝑅𝑛(𝑡−τ) the usual requirements of integrability,
continuity (except 𝑡 = τ), sign-definiteness and monotonicity are imposed:

𝑅 > 0,
𝑑𝑅(𝑡)

𝑑𝑡
⩽ 0, 0 <

∫︁ ∞

0
𝑅(𝑡)𝑑𝑡 < 1.

When solving the problem of natural oscillations, there are no external loads and natural
frequencies are determined at given values of physico-mechanical and geometric parameters.

If there are vibration effects on the body, then the resonant frequencies are set and the
amplitude-frequency characteristics of various points of the mechanical system are constructed.

We will look for a solution to the problem of forced oscillations in the form:⎛⎜⎜⎝
ξ0
ψ
θ
ξ𝑙

⎞⎟⎟⎠ =

⎛⎜⎜⎝
Σ0
Ψ
Θ
Σ𝑙

⎞⎟⎟⎠ 𝑒−ω𝑡, (6)

where ω is a given real value. And when solving the problem of natural oscillations ω = ω𝑅+ 𝑖ω𝐼
— a complex unknown quantity (frequency) that needs to be determined.

We substitute (6) into the system (2) and exclude Σ𝑖. We obtain an algebraic system of
three equations with respect to three oscillation amplitudes Σ0,Ψ,Θ. The absolute displacement
of an arbitrary point of the body with coordinates 𝑌𝐵 and 𝑧𝐵 is given by the expression

ξ = ξ0 + 𝑧𝐵Ψ− 𝑌𝐵Θ = [Σ0 + 𝑧𝐵Ψ− 𝑌𝐵Θ] 𝑒
−ω𝑡 = Σ𝑒−ω𝑡.

Each damper, when adjusted to the frequency of the disturbing force, acts on the point of the
solid on which it is installed. For a body with three degrees of freedom at the tuning frequency,
it is necessary to have three dampers that are not located on the same straight line.

The software package «MAPLE-18» [19,20] was used to calculate the amplitude-frequency
characteristics. The compiled algorithm allows calculations for various forces of the imbalance of
the angles between them in different planes, the masses of the dampers and their location, the
settings of the dampers and the viscoelastic properties of the viscoelastic element.

68
Safarov I. I., Teshaev M.K.

Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2023;31(1)



2. Results and discussions

The viscoelastic properties of the material are described using a three-parameter relaxation
kernel [21–23]:

𝑅𝑐𝑗(𝑡) = 𝑅𝑐𝑙(𝑡) = 𝑅𝑐𝑘(𝑡) = 𝐴𝑝𝑒
−β𝑝𝑡/𝑡1−α𝑝 ,

𝑅𝑘𝑗(𝑡) = 𝑅𝑘𝑙(𝑡) = 𝑅𝑘𝑘(𝑡) = 𝐴𝑔𝑒
−β𝑔𝑡/𝑡1−α𝑔 .

The approach to optimizing the parameters for a viscous friction damper differs from the case of a
damper without damping. To obtain the optimal parameters of the damper in the works [24,25],
the properties of a linear system with a single damper were used. It was found out that one
damper is effective for a mechanical system with one degree of freedom.

The amplitudes of displacements of the center of mass of a body with three degrees of
freedom depending on frequency are investigated. The results are obtained in dimensionless
parameters, taking into account the damper and without taking into account the damper. For
the calculation, the case of four dampers mounted on the paws was chosen, 𝐴𝑝 = 0.01, β𝑝 = 0.05,
α𝑝 = 0.1 𝐴𝑔 = 0.001, β𝑔 = 0.025, α𝑔 = 0.05.

𝑌𝑔𝑙 =
𝑌𝑙
𝑌01

, 𝑍𝑔𝑙 =
𝑧𝑙
𝑧01

, η𝑚𝑙 =
𝑚𝑙

𝑀0
, η𝑘𝑙 =

𝑘𝑙
𝑐1
, 𝑐1 = 𝑐2,

η𝑚𝑖 = 0.025, η𝑘𝑖 = 0.65, 𝑌𝑔𝑖 = 1, 𝑍𝑔𝑖 = 1.

In Fig. 2 the amplitude-frequency characteristics of the displacements of the center of
mass of the main mass without absorbers and with absorbers are given. It can be seen that four
absorbers mounted on the paws effectively reduce the amplitudes of movements.

In Fig. 3 shows the amplitudes of oscillations of the main mass when passing through the
resonance 1 — with a one-mass absorber, and 2 — with a two-mass absorber. It is established
that a two-mass absorber is 10–15% more effective than a one-mass absorber.

Calculations of a specific example were made for a body weighing 350 kg. For the
calculation, the case of four absorbers weighing 9 kg each mounted on paws was chosen
𝐴𝑝 = 0.01, β𝑝 = 0.05, α𝑝 = 0.1 𝐴𝑔 = 0.001, β𝑔 = 0.025, α𝑔 = 0.05, 𝑐01 = 𝑐02 = 2510 Н/м,
𝑘01 = 𝑘02 = 𝑘03 = 1500 Н/м.

In Fig. 4 the results of calculating the amplitude-frequency response in decibels for a solid
without absorbers (dotted curve) and with absorbers (solid and dashed curve) are presented.
Along the ordinate axis, the vibration level in decibels is postponed 𝑊db = 20 lg(𝑤/𝑤0), where
𝑤 is— acceleration of the body point, 𝑤0 = 2.8·10−4 m/s. The relative frequency of the disturbing
force ω01 = ω/Ω1 is postponed along the abscissa axis, where ω is the frequency of the disturbing
force, Ω1 is the frequency of vertical vibrations of a solid on shock absorbers (Ω1 = 18.79 Hz).

Fig. 2. Amplitude-frequency characteristics of displacements of the center of mass of the main mass (dotted curve
— without absorbers and solid — with absorbers)
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Fig. 3. The amplitude-frequency characteristics of the displacements of the center of mass of the main mass (1
— with one-mass absorber, 2 — with two-mass absorber)

Fig. 4. Amplitude-frequency characteristics of a rigid body with three degrees of freedom: dashed curve — without
absorbers and solid curve — with absorbers

At a given level of forces from the rotor imbalance 𝐹01 = 0.756 kg and 𝐹02 = 0.767 kg, the
vibration level in the frequency range ω = 50 Hz(ω01 = 2.66) turned out to be 45.5 dB. This is
close to the maximum allowable level of 46 dB.

Conclusion

Based on the results of the research, we have made the following conclusions:
• the rotational motion frequency of the converter rotor ranges from 48 to 51.25 Hz (2.55 ⩽
ω01 ⩽ 2.73);

• when setting the absorber to a frequency of 50 Hz, the vibration level decreases to 37.5 dB
at the left end of the interval and to 42.5 dB at the right end of the interval;

• at a frequency of 50 Hz, as it follows from the theory, the paws do not oscillate;
• when setting the absorbers to a frequency of 51.5 Hz, the maximum vibration level does

not exceed 40 dB;
• the optimal setting of the absorbers is in the region of 50.6...50.7 Hz;
• it has been found that a two-mass absorber is 10–15% more effective than a one-mass

absorber.
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