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Abstract. Purpose of this review is to consider the possibility to apply the integrated information theory to
investigate the brain neural activity. Earlier was shown that the integrated information amount Φ quantifies a
degree of a dynamic complexity of a system and able to predict a level of its success defined by classic observable
benchmarks. For this reason, a question arises about the application of the integrated information theory to analyse
changes in brain spiking activity due the acquisition of new experience. Conclusion. The bases of the integrated
information theory and its possible application in neurobiology to investigate the process of new experience
acquisition were reviewed. It was shown that the amount of integrated information Φ is a metric which is able
to quantify the dynamic complexity of brain neural networks increasing when the new experience is acquired.
Methods, enabling the practical calculation of Φ for spiking data, were proposed.
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Fundamentals of integrated information theory

Integrated Information Theory (II) and its basic concept — integrated information coefficient
Φ — were originally proposed to assess the level of consciousness in the brain [1–4]. With the help
of IIT, an attempt was made to explain what are the features of neural activity underlying the
phenomenon of conscious subjective sensations, why they appear precisely due to the work of the
brain and whether they arise in other complex systems. J. Tononi suggested that consciousness
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arises only in those systems where information is integrated. The coefficient Φ evaluates two
abilities of a complex system that are critical for its operation — segregation of information and
its integration. Segregation means that the system should be able to be in as many states as
possible in order to generate as much information as possible. At the same time, it is important
that the components of the system are highly specialized, that is, they are associated with coding,
for example, only one type of stimuli. Integration consists in the fact that such components of
the system must be interconnected. This is critically important for the operation of the system as
a whole. Small values of Φ indicate either weak generation of specialized information by system
components, or that there is a place in the system with weak interconnection of components.
Both have a negative effect on its performance in tasks observed from the outside using classical
criteria.

To better understand why both segregation and integration are important, Tony and
colleagues cite an analogy with the photosensitive matrix of a camera. Each of, for example,
a million pixels can be in one of two states (light falls on it or does not fall on it), and thus the
matrix is able to encode 21,000,000 possible states. This means that the ability of the matrix to
differentiate information is very high — it is able to distinguish a very large number of incoming
images. However, there are no interdependencies between the pixel states, they are completely
independent and there are no connections between them. Therefore, no conclusions can be drawn
from the encoded information, no processing of the received image in such a system is impossible.
Thus, the system is only capable of storing information, but not using it for processing and
obtaining conclusions.

Using IIT, results were obtained that are in good agreement with the already available
experimental data on the small contribution of the cerebellum and the large contribution of
the cerebral cortex to the processes of consciousness [5], and differences in the predicted level
of consciousness in the states of wakefulness, sleep [6], anesthesia [7] and for various brain
injuries [8]. This can be useful in medicine to determine whether the patient is conscious or
not [9, 10]. However, in this application, the theory has been seriously criticized. Firstly, she
attributed a high level of consciousness to systems that do not have consciousness based on
common sense, for example, computers. Secondly, consciousness does not depend on the observer,
unlike information, therefore, based on information, it is incorrect to declare the presence of
consciousness. Finally, a set of discrete states of the system is used to calculate the indicator Φ,
which, although sufficient in most cases, leads to information loss — for example, for the same
neurons whose local field potentials encode a large amount of information [11,12]. Therefore, the
question of describing the level of consciousness by this theory remains open.

At the same time, it was shown that the integrated information coefficient Φ well describes
the performance of other complex systems consisting of a certain number of interacting elements
[13, 14]. According to the researchers, Φ shows the internal state of complex self-organizing
systems consisting of individual elements in which order arises at a certain level of complexity. Φ
describes the internal structure leading to a certain behavior of the system, to the complexity of
the states arising in it ("What the system is"), and does not describe the observed states of the
system from the outside ("What the system does") [15, 16]. So, in the work [14], the coefficient
of integrated information was calculated on two data sets: for teams of people performing tasks
directly related to team interaction, and for a group of editors of articles in Wikipedia. In the
first case, 68 groups of people, out of 4 people each, solved various tasks, for example, answered
intellectual questions by brainstorming or typed text in a common online editor. Common to
all tasks was that team members had to interact with each other to successfully complete the
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Fig. 1. Examples of the integrated information theory application for analysis of the action of different complex
systems. a — Correlation between an integrated information coefficient and a collective intelligence for human
groups. b — Relation between groups of Wikipedia editors and manuscript grades (1–5). Changed from [14]. c —
Application of an integrated information coefficient calculated with different methods to quantify the behavior
of a virtual entity in a maze. Left: learning process; a normalized fitness function is shown. Right: evolution of
integrated information coefficient calculated with three different ways. A correlation between Φ and a fitness
function is observed. Changed from [13] (color online)

task. The nodes in the network were people who were assigned the state "1"at each moment
of time, if the person was talking at that time, and "0"if he was silent. Thus, the coefficient
Φ estimated the generation of information in a network consisting of people. As a result, the
collective intelligence of the teams (the average number of points scored by the teams during the
execution of all tasks) was statistically significantly correlated with the value of Φ calculated
during the work of the teams (Fig. 1, a). The second data set examined the editing history of
999 of the most important Wikipedia articles. For each article, all the people who edited it were
considered. The coefficient of integrated information Φ for such groups of people turned out to
be statistically significantly related to the evaluation of their article issued by users on the site
(on a five-point scale) (Fig. 1, b).

In [13], the coefficient of integrated information was calculated for virtual model organisms
("animats") trained in the skill of orientation in a maze. The organism had sensors, moving
organs and internal intermediate elements for processing information, each of which was a node
of the network having a state of "0"or "1". The network of these elements worked according
to the probabilistic principle, with given probabilities of transition from state to state. The
organism needed to pass from left to right a randomly generated maze with many vertical walls
having one door in different places. The training of organisms was carried out using a genetic
algorithm, which is based on the application of random changes (mutations) and random fusion
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of generated systems (crossing) at each iteration (generation). At the same time, the transition
probabilities and the structure of connections between elements changed from generation to
generation. As a result, it turned out that the coefficient of integrated information calculated
for network elements (not for transition probabilities!) it increased with the course of training.
Similarly, the fitness function increased, showing the success of the organism, and depending on
the number of passes through the doors and the distance to the last door (Fig. 1, c). Thus,
the indicator Φ presumably evaluates the nature of the system’s collaboration, the complexity of
interactions between its elements, ensuring performance in the tasks performed by the system.

For the brain (in vivo and in simulations), the Φ coefficient also showed a relationship with
brain development and the success of the behavior performed. In [17], a computational model
of the brain in which 5.2 million neurons were simulated was trained according to the Hebb
rule. Learning was characterized by an increase in the number of attractors (formed as a result
of self-organization of stable patterns of neuronal activity, which, according to available data,
encode certain stimuli [18, 19] and thus directly ensure the segregation of information). After
the training, an increase in the indicator of integrated information was noticed. To calculate Φ
by 5.2 million model neurons from the membrane potentials of neurons, signals recorded using
electroencephallography (EEG) according to Coulomb’s law [17] were simulated. In the work of
J. Islera et al. [20] the coefficient of integrated information was calculated for EEG recorded in
newborn children, depending on age (in days). It has been shown that the indicator Φ increases
with age. Since active brain development occurs in childhood, this fact confirms the hypothesis
that Φ describes the development of a complex system. In the work [21], when teaching animals
spatial skill, the coefficient Φ for the neural activity of the hippocampus, calculated in various
ways, had a positive correlation with the metric of learning success, depending on the environment
— the number of rewards given to the animal. In [22], a similar result was shown with spatially
aversive (fear-related) learning for the neural activity of two brain regions (hippocampus and
amygdala) (Fig. 2, a). In addition, on the days when there was an increase in the number of
rewards, but not in subsequent ones, a correlation was shown between Φ for hippocampal neurons

Fig. 2. Example of the integrated information theory application for quantification of the degree of learning
success. a — correlation between Φ for hippocampus and amygdala neurons and a relative number of rewards
(normalized by the learning session duration). b — correlation between Φ for hippocampus and amygdala neurons:
left — before the day when the maximal number of rewards was achieved, middle — during a such day, right —
after this day until the end of learning. Changed from [21,22] (color online)
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and Φ for amygdala neurons (Fig. 2. b).
These results show that segregation and integration of information, described by the

coefficient of integrated information Φ, are interrelated with the success of the functioning of
a complex system. Therefore, the application of the theory of integrated information to the
analysis of neural activity of the brain seems to be a promising approach. The coefficient Φ is
able to show internal changes in a complex system, therefore it will allow taking into account
previously unknown patterns in neural activity patterns. This will allow us to more accurately
assess the degree of involvement of certain neural groups in the learning process and the level of
plastic changes occurring in the brain during the acquisition of skills.

Fundamentals of the processes of segregation and integration of information

The successful application of IIT for the analysis of various systems shows that segregation
and integration of information are found in various self-organizing systems [13,14]. The brain is
no exception. Such processes directly follow from the network structure of the brain formed by
neurons and their interactions. The network structure of the brain is represented by communities
with close internal mutual connections. It was shown [23] that neural communities implement
segregation of information, and the connections between them — integration. Let’s look at these
processes in more detail.

Back at the beginning of the XX century, using the simplest microscopy methods, it was
shown that the brain is not homogeneous, but has a large number of pronounced anatomical
areas [24, 25]. Later, clusters of neurons [26] were found inside the brain, the structure of which
is determined by the anatomical structure of the brain [27]. With such a network arrangement,
special subgroups of neurons are formed in it, which contain a large number of connections —
significantly more than all other neurons. This subgroup is called the "Rich club". Such cells are
found in each cluster and are responsible for communication and information exchange between
clusters. As a result, it turns out that each cluster can contain cells that have connections with
other clusters. Such cells are called hubs. The "Club of the Chosen"forms a powerful structure
that provides connections between clusters, allowing information to quickly move from almost
any cluster to any. It is shown that in comparison with a random network, such a structure
allows to significantly reduce the length of the path between the regions [28], which, as will
be shown later, is critically important. The formation of a "club of the chosen"is described
by the Barabashi-Albert [29] network model, where connections at each node are formed with a
probability proportional to the already existing number of connections of this node. The proposed
generative model explains a similar structure — cells from the "club of the chosen ones"are more
likely to form synaptic connections than the rest, therefore they are more likely to connect
with cells from all other clusters, and not only with the nearest ones. In such networks, the
global clustering coefficient 𝐶 is high, defined as the average for all nodes ratio of the number
of interconnected pairs of neighbors of nodes to the total number of pairs of neighbors of nodes.
It shows how strongly the hub nodes with a large number of connections are expressed in the
network.

Each cluster, in turn, is built internally according to certain rules, which are the direct
opposite of the organization of hubs. A good specialization in performing a function requires a
quick exchange of information within the community. To do this, it is necessary to minimize the
length of the pathways between neurons in the community. And neurons in specialized regions
of the brain do form such networks, which has been confirmed by various methods [30–33].
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The structure of neural connections in such clusters is described using a model of the so-called
"small-World networks". Initially, such networks were proposed to describe the graph of social
connections between all people — it was revealed that on average only 6 acquaintances share two
randomly taken people, and that people using only their acquaintances, only locally accessible
people, independently find these paths [34]. This shows the high speed of information exchange in
such networks. The emergence of a "tight world"network is described by the Watts-Strogatz [35]
model: in a regular ring network with 𝑘, a random test is performed for each connection with
a probability of a positive outcome 𝑝, and in the case of a positive outcome, this connection is
redirected by one of the ends to another node randomly selected in such a way that there was no
similar connection before redirection. At 𝑝 = 0, a completely regular network is formed (which
is obvious, since no connections in the original regular network will be modified), and at 𝑝 = 1,
the resulting network will be completely random. Thus, the network in each region of the brain
is the result of a balance between randomness and regularity. The most important property of
the "close world"networks is that they have an extremely low average path length between two
elements, weakly depending on their number. According to a study by Watts and Strogatz, the
average path length in such networks is determined as follows:

⟨𝑙⟩ = ln𝑁

ln𝐾
,

where 𝑁 is the number of elements in the network, and 𝐾 is the number of connections of one
element. If we take the number of neurons in any anatomical region 𝑁 = 1 billion, and the
average number of synapses in a neuron 𝐾 = 1000, we get the average length of the connection
⟨𝑙⟩ = 3. Such a small length allows such networks to generate information faster. It can be shown
that in such networks the measure of the efficiency of information exchange is much higher:

𝐸(𝐺) =
1

𝑁(𝑁 − 1)

∑︁
𝑖,𝑗∈𝐺

1

𝑑𝑖,𝑗
,

where 𝐺 is the network under consideration (graph), 𝑁 is the number of nodes in the network,
and 𝑑𝑖𝑗 is the length of the shortest path between nodes 𝑖 and 𝑗 in the network. Normalization
by 𝑁(𝑁 − 1) is needed in order to take as a unit the efficiency of a network having all 𝑁(𝑁 −
1)/2 possible connections [36, 37]. Artificial neural networks built on the basis of the "close
world"model learn faster and make fewer mistakes [38].

A similar pattern exists at higher levels. There is every reason to assume that networks in
the brain are multilevel, that is, nodes can be not only neurons, but also entire networks built on
the same principle [39], that is, the brain can be described as a hypernet [40]. Artificial structures
(reconstructed or created based on the application of graph theory), for example, voxels (three-
dimensional pixels used for the analysis of functional magnetic resonance imaging, fMRI), can
also be distinguished as nodes. The relationship between nodes in such studies is determined
based on their activity by various statistical methods [41–44], after which close communities are
distinguished using a special class of algorithms for detecting related populations (Communiy
detection) [45, 46]. In such studies, voxels also showed a similar network structure, with close
communities and hubs [47–50]. For some areas of the brain, the equivalence of the structure
obtained by anatomical methods and methods of analyzing the activity of groups of neurons
using the fMRI [51] method was shown. Thus, a similar structure is found at different levels.
Perhaps the network structure at each level determines the structure of the next level — and so
on, up to higher levels of networks, like social networks, directly accessible for observation.
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Apparently, such networks arise evolutionarily under the influence of a complex environment.
It is quite difficult to trace the evolution of a living brain network due to the great complexity
of such networks, therefore computer modeling is used. In [52], a model of a multilayer neural
network with connections changing according to a genetic algorithm was trained for several
tasks, and the required task was often changed. At the same time, structural motives similar
to the above-described motives in the networks of the living brain appeared in such a network.
A specially defined modularity metric, showing how well communities can be identified in the
network with a minimum of connections between them, grew with such training. A simpler linear
model, in which the vector of results was obtained from the vector of environmental resources
using a matrix, and the success metric was calculated as the modulus of the difference between the
vector of results and a given ideal vector, showed a similar result — blocks of non-zero elements
were found in the matrix against a general background consisting mainly of zeros. Here, the
frequency of task changes turned out to be directly related to a similar modularity metric for
the matrix [53].

Thus, in the brain, as a result of evolution in the environment, two directly opposite
"standards"of network formation coexist — networks of a "close world"with a large number of
connections between different pairs of elements and networks with nodes having a large number
of connections. The former are characterized by a low clustering coefficient, high link density
and a small average path length, and the latter — on the contrary, a high clustering coefficient,
low link density and an increased average path length. The activity of nodes in each community
strongly correlates with each other and weakly correlates with activity in other communities.
These types of networking are directly related to differentiation (segregation) and integration of
information [23].

Segregation of information means that the processing of highly specialized information of
each specific type, the performance of each specific task is carried out in its own specialized
modules. These modules are precisely the aforementioned communities that have close internal
ties according to the "close world"model. In them, firstly, short connections between elements
increase the speed of information generation, and, secondly, a group of a large number of neurons
can be in a large number of states, and thus distinguish a large number of objects.

Integration of information — the presence of relationships, interdependencies between the
states of nodes in different communities. This is necessary for the exchange of information
and, consequently, for drawing common conclusions based on information processed by various
communities. The physical basis of information integration is nodes-hubs that provide interconnection
between clusters. Without this, the work of the brain as a whole would be impossible. The
integration of information is based on the relationships between clusters and is implemented by
neurons from the "club of favorites".

Thus, the main essence of two phenomena evaluated in the theory of integrated information
was revealed: segregation and integration of information. It can be assumed that they arise in
the brain in an evolutionary way and are extremely important for the successful functioning of
the brain.

Definition of the integrated information parameter Φ

Let’s now consider exactly how the indicator Φ is calculated. It is necessary to derive such
an indicator that will describe the degree of information generation by parts of the system and the
degree of its integration. To begin with, it is necessary to accurately characterize the generation
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of information. Let’s imagine the system as a random variable 𝑋, which is a 𝑁 -dimensional
vector, where 𝑁 is the number of elements (nodes) in the system. Each element of the vector
shows the state of one node at a given time. Node states are considered binary — a node can be
either inactive (state "0") or active (state "1"). The system evolves over time, initially being in
the state 𝑋0, then, after some time, in the state 𝑋1, then, after the same time — in the state
𝑋2, and so on. In this theory, time is considered discretely, at certain interva ∆𝑡 [3]:

𝑋1∆𝑡−→𝑋2∆𝑡−→𝑋3 . . .

Then the amount of information generated by the system in one step ∆𝑡 can be estimated using
the expression:

𝐻(𝑋𝑡|𝑋𝑡+∆𝑡),

where 𝐻(𝑋|𝑌 ) is the conditional entropy of the variable 𝑋, provided that the variable 𝑌 has
been observed. Here the conditional entropy shows the amount of information needed to describe
the system (complete removal of uncertainty about it) at time 𝑡, provided that the state of the
system is known at time 𝑡+∆𝑡. We can say that this indicator predicts to what extent the state
of the system at time 𝑡 predicts the future state of the system at time 𝑡+∆𝑡. Now it is necessary
to assess the degree of integration of information, that is, the interaction of parts of the system.
To do this, Tononi and colleagues proposed splitting the system into disjoint parts, removing
all connections between these parts, and calculating a simple difference between the amount of
information generated by the whole system and the generated sum of its parts. This metric is
called effective information (Effective Information, EI):

𝐸𝐼(𝑋𝑡 → 𝑋𝑡+∆𝑡, 𝑃 ) =

[︃
𝑘∑︁

𝑖=1

𝐻(𝑃𝑡,𝑖|𝑃𝑡+∆𝑡,𝑖)

]︃
−𝐻(𝑋𝑡|𝑋𝑡+∆𝑡).

Here 𝑃 = 𝑃1, 𝑃2, . . . 𝑃𝑘; 𝑃1∪𝑃2∪ . . .∪𝑃𝑘 = 𝑋 — splitting the system into 𝑘 parts. The entropies
under the sum are calculated for each part of the system, for some subset of its elements 𝑃𝑖.
Obviously, this difference will not always be zero, the entropy of the sum of the parts is not equal
to the entropy of the whole system, since probability distributions appear in the expression for
conditional entropy, and the sum of distributions in general is not equal to the joint distribution.
Equality is achieved only in the case of complete independence of the parts, when the separation
will not change anything — then the sum of the entropies of the parts will be equal to the
total entropy of the system, and the difference will be zero. This is a very important special
case that helps to understand the principle of assessing the degree of integration of information
— the degree of interdependence is assessed, the degree of what consequences will be from the
separation of the system into parts. The greater the gain from combining parts into a system,
the more information can be additionally obtained from such a combination, the more effective
information will beя EI. Now it is necessary to determine which specific partitioning of the
system into parts should be used for calculations. According to the definition given in [3], it
is required to find a partition that will give the minimum value of EI, that is, one that will
determine the most independent parts of the system. This makes it possible to determine the
weak point of the system - the part of it that is minimally connected to the rest of the system
and, therefore, weakly exchanges information with it. The information generated by this part is
least used by the system to create general conclusions and makes the least contribution to the
system. In the worst case, such a minimum value is zero, which means that it was possible to
find a completely independent subgroup in the system that does not exchange information with
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the rest of the parts. The found partition in IIT is called a partition with minimal information
(Minimum Information Partition, MIP). And the value of the integrated information coefficient
Φ is the value of the effective information EI when splitting MIP:

Φ = EI(𝑋𝑡 → 𝑋𝑡+∆𝑡, 𝑃 = MIP).

Finally, one problem needs to be fixed. If the parts into which the system is divided are
very different in size, then effective information will primarily be determined by the size of the
parts of the system, and not by the degree of interconnection and interdependence, as required.
For example, in the case of splitting into two strongly unequal parts, the effective information will
almost always be less than when divided into equal parts, since the separation of a small number
of elements weakly affects the system and weakly changes the amount of information generated
in it. Similarly, splitting into many parts will reduce information much more than splitting into a
small number — the more parts, the more connections will be broken, the more interdependencies
will disappear, and the system will generate less information. To eliminate such effects, when
searching for a partition, the minimum is searched for by the normalized values of EI, where
the normalization coefficient 𝑁𝑃 is equal to the minimum possible information generated by all
parts of the system:

𝑁𝑃 = (𝑘 − 1) min
𝑖=1...𝑘

𝐻max(𝑃𝑖),

where 𝑘 is the number of parts in the partition, and 𝐻max(𝑃𝑖) is the maximum entropy of a
part of the system (the maximum possible amount of information required to describe its state).
For systems with binary nodes, the maximum entropy is equal to the size of the system. Thus,
𝑁𝑃 = (𝑘− 1)min𝑖=1...𝑘 |𝑃𝑖| [3]. As a result, the indicator of integrated information is determined
by the expression

Φ = argmin
𝑃

[︁∑︀𝑘
𝑖=1𝐻(𝑃𝑡,𝑖|𝑃𝑡+∆𝑡,𝑖)

]︁
−𝐻(𝑋𝑡|𝑋𝑡+∆𝑡)

(𝑘 − 1)min𝑖=1...𝑘 |𝑃𝑖|
, (1)

from which it can be seen that the indicator of integrated information is measured in bits, since
Φ is actually a linear combination of various entropies, which are also measured in bits. In
theory, Φ non-negative, since the sum of the Shannon entropies of the parts of the system will be
greater than the entropy of the whole system — more connections gives more interdependencies,
which reduces the number of possible states of the system and reduces entropy. Theoretically, the
maximum possible value of Φ is equal to the number of elements in the system, but in practice
it is never achieved, since this requires the entropy of the whole system to be zero, which is
impossible.

Practical calculation of the
coefficient of integrated information

The main problem of computing by such a classical definition is finding a partition with
minimal information. No assumptions and restrictions are made about the type of partitioning —
theoretically, it can be arbitrary, into any number of parts and with any distribution of elements
over these parts. In practice, such a partition can be found only by a complete search of all
possible partitions, with the calculation of normalized effective information for each and the
search for the minimum. Let’s estimate the complexity of the algorithm. The number of all
possible partitions of a set of 𝑁 elements is determined by the Bell number 𝐵𝑁 . It is given by
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Fig. 3. A number of system partitions required to consider to find the Minimal Information Partition (MIP).
Number of partitions is shown for arbitrary partitions and bipartitions; also a factorial of a number of elements is
shown for reference. The 𝑦 axis is in logscale. Plotted using the estimation of a number of arbitrary partitions [55]
and a number of bipartitions [56]

the recurrence relation [54]

𝐵𝑁 =
𝑁∑︁
𝑘=0

𝐶𝑘
𝑛𝐵𝑘−1.

Assuming for obvious reasons that 𝐵0=1 and 𝐵1=1, it is easy to calculate the Bell number for
the following 𝑁 as well. So, for example, 𝐵10=115975, 𝐵15=1382958545, a 𝐵20=51724158235372

( fig. 3).
The Bell number can be estimated as [55]:

𝐵𝑁 <

(︂
0.792𝑛

ln(𝑛+ 1)

)︂𝑛
,

that is, it grows faster than the exponent, but slower than the factorial. Thus, even for relatively
small systems, calculatingΦ becomes a big problem. Modern computing power, even on supercomputers,
will not be enough to determine the Φ index for systems with 𝑁 ⩾ 10 elements. Therefore, in
practice, they are often limited to splitting the system into two parts. In this case, the number
of partitions that need to be sorted is determined by the Stirling number of the second kind [56],
which is already growing exponentially (see Fig. 3):

𝑆(𝑁, 2) =
1

2
(2𝑛 − 1)

However, even in such a simplified version, the task remains very difficult. For example,
for 30 neurons, when performing calculations, you will have to iterate over 𝑆(30, 2) = 5.369 · 108
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Fig. 4. Approximated partitions of a brain neural network partially replicating properties of MIP. a — Atomic
partition, every neuron is contained in its own partition (shown by the red circles). Such partition does not
correspond to an existing structure of a neural network and neglects the information processing by neuron groups.
b — Neural network cluster structure. Neuron communities connected between each other by synapses with hubs
(marked by astericks) are visible. c — Neural network partition by groups corresponding to neuron clusters.
Changed from [21] (color online)

possible partitions. Therefore, approximate methods are needed that allow the calculation to
be performed faster, obtaining Φ, not much different from the exact value. They are based on
finding a partition that more or less repeats the properties of the true one (required by definition,
given in IIT), but is found without a complete search. One of the first proposals was to use the
so-called Atomic partition [13, 57, 58], which is a simple division of a system of 𝑁 nodes into
𝑁 parts, where each node is in one part (Fig. 4, а). This partially solves the problem, since it
corresponds to the basic ideology of the theory of integrated information — calculating the gain
in the operation of the whole system compared to the work of individual parts. At the same time,
it is approximately assumed that such separate parts are the nodes themselves, and the presence
of separate clusters (subsets) capable of generating information is ignored. This is a serious
drawback of this approach, since the real structure of neural networks in the brain, as mentioned
earlier, is not homogeneous, but consists of separate clusters with close connections inside (Fig.
4, b). Each of these clusters solves a specific task and is to some extent an independent unit, and
splitting the network into separate neurons ignores this fact and does not allow us to assess the
gain in information generation due to the operation of such clusters. Therefore, approximations
that take into account such a cluster structure are necessary.

It can be assumed that the partitioning into such clusters is the closest to that required
by the definition of Φ given in IIT (Fig. 4, c). Splitting into places where there are the least
connections between the parts of the system (that is, splitting outside the boundaries of clusters)
will lead to the least reduction in the amount of information generated by the system. Methods
of statistical analysis of neural activity are used to identify such clusters. The high correlation
between the series of spike events of two neurons means that with a high probability the
activity of one neuron can be the cause of the activity of the other, that is, one of them has
a synaptic connection with the other. The strength of the synaptic connection is determined by
the magnitude of the correlation. After that, well-known methods for finding close clusters in a
weighted graph are used, such as the Loven method [59], spectral clustering [60] or the weighted
stochastic block model [61]. This allows you to calculate Φ in a reasonable time, getting a fairly
accurate result [57].

Calculating Φ by definition (1) is very difficult in practice. Here there is a well-known
problem that arises when obtaining statistical distributions — the amount of data may become
severely insufficient to obtain a sufficiently accurate probability distribution. For a system of 𝑁
elements, there are 2𝑁 possible states, and it is necessary to observe each of them enough times
to calculate the probability of occurrence of each state and thus obtain a probability distribution

190
Nazhestkin I. A., Svarnik O. E.

Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2023;31(2)



close to the true one. In practice, problems manifest themselves in the occurrence of instability
of the calculated value of Φ, when a small difference in the input data (for example, observing
a slightly smaller number of states) leads to very large changes in Φ). At the same time, the
normalized effective information 𝐸𝐼/𝑁𝑃 for several partitions of the system practically does not
differ and is near the desired minimum, and the non-normalized effective information 𝐸𝐼 for these
partitions already differs significantly. A small difference in the collected states of the system at
the same time leads to the fact that the desired minimum goes to another partition, which will
give a very different non-normalized value of 𝐸𝐼, and, consequently, a different value of Φ. Such
instability can seriously distort the results. Therefore, in [62], a new algorithm was developed for
calculations, the so-called autoregressive Φ. With its help, it is possible to calculate Φ for the
data encountered in practice on the evolution of the states of each element of the system over
time. The coefficient of integrated information in this case is calculated as follows:

ΦAR =
min𝑀

1
2 ln

detΣ(𝑋)
detΣ(𝐸𝑋)

−
∑︀𝑀

𝑘=1
1
2 ln

detΣ(𝑀𝑘)

detΣ(𝐸𝑀𝑘 )

𝐿(𝑀)
. (2)

Here Σ(𝑋) — covariance matrix of the variable 𝑋, 𝐸𝑋 — remains of a regression predicting the
state of the system at time 𝑡 based on the state at time 𝑡+∆𝑡, 𝐸𝑀𝑖 — the same residuals, but not
for the whole system, but for its parts (subsamples) 𝑀𝑖, and 𝐿(𝑀) = 1

2 ln
[︁
min𝑘 {(2π𝑒)|𝑀𝑘| detΣ(𝑀𝑘)}

]︁
—

normalization coefficient. The division into subsamples can be used any proposed in one of the
approximate calculation methods. When calculating Φ in this way, problems are possible in cases
when the data changes too slowly (the elements of the system are always in the state "0"or "1"),
which leads to the impossibility of calculating regressions in (2). In this case, the least slightly
changing element is removed from the system [14]. Since such elements encode little information,
their removal does not affect the result.

There are other definitions in the literature in which some improvements are applied, such
as taking into account the prediction at each stage of both the future and the previous states of the
system [63], replacing the entropy difference with the distribution difference metric (Wasserstein
metric) [4], and many others [64–66]. However, in practice, in the articles discussed earlier, for
practical calculations on data in the form of time series (spike or EEG) they were not used
because the calculation of the distribution characteristics required when using these methods
is impossible in practice due to insufficient data volumes. For example, in the works [20–22],
neural activity data were long time series, so the definition of «autoregressiveΦ» was used. In
the work [13], the classical definition was used, since due to the small amount of data in an
artificially simulated system, entropy calculation was possible. In [14], the autoregressive variant
was used to calculate on a larger data set; for another data set, the classical definition was used.

Finally, to calculate Φ on neural activity data (spike or EEG), it is necessary to find the
parameter ∆𝑡, which determines how many steps the amount of information generated by the
system is calculated. When calculating Φ in simulated systems, where their evolution over time
occurs in steps (using program code in a loop), (as, for example, in [13]), obviously the generation
of information in one such step is considered. For continuous, non-discrete systems, the use of
such an approach is illegal. The paper [20] provides an overview of approaches to choosing ∆𝑡
for neural activity of the brain. A huge number of processes with complex time dynamics occur
inside the brain at different levels, so any estimate of ∆𝑡 will be approximate, and the calculation
of Φ using such an estimate will not be based on the amount of information generated during the
completed cycle. Processes occurring at different speeds are detected in the brain, both at the
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level of individual neurons (action potentials and neurotransmitter release) and at the level of
multiple neurons (total brain activity). At the moment, there are many confirmations that these
processes occur periodically, and can be described either by the principle of a moving average, or
autoregressive (each next state is derived from the previous one). It is necessary to estimate the
time scale of such processes. It can be assumed that these periods are determined by rhythmic
fluctuations of large neural groups, which are visible as rhythms on the EEG. Also, cognitive
processes [67–69] seem to be periodic. According to various sources (see, review in [20]), the
moment of conscious perception, for example, occurs in the period from 50 to 500 ms after the
presentation of information, therefore it is useful to consider the periods of information generation
by neural communities within such limits. In general, all sources agree that such processes occur
on a time scale faster than a second. As a result, to determine the characteristic period for which
the maximum amount of information is generated, it is necessary to iterate through all possible
numbers of steps giving ∆𝑡 within one second. The value of ∆𝑡, at which the maximum index of
Φ is reached, and is used in further calculations. A similar approach was used in [14].

Conclusion

The basics of the theory of integrated information and its possible application in neuroscience
to assess the process of acquiring new experience were considered. The methods that allow in
practice to calculate the value of Φ for neural activity data are indicated. Currently, such an
approach is used only to a limited extent due to the significant computational complexity for
large volumes of spike data. However, existing studies show the advantages of using IT and its
ability to assess the internal states of neural networks in the brain.
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