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Abstract . Purpose of this work is the research of the dynamical processes and in particular the phenomenon of
the synchronization in an ensemble of coupled chaotic economic oscillators. Methods. The research methods are the
qualitative and numerical methods of the theory of nonlinear dynamical systems and the theory of the bifurcations.
Results. The nonlinear model of economic oscillator as the system of automatic control are considered. Such kind
of general economic models are unsuitable for getting some concrete economic estimations and recommendations.
But such kind models are very useful for a development the theory of the economic cycles, theory of the generation,
interactions, synchronization of the cycles and so on. Our numerical experiments demonstrated a good enough
qualitative similarity of an chaotic economic oscillations in our model and real economic cycles. The phenomen
of the synchronization of the chaotic oscillations in the ensemble of coupled economic oscillators are considered,
however the accuracy of the synchronization depends with couplings essentially.
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Introduction

Economic fluctuations (business cycles) have been the subject of close attention of economists
for more than a decade. Despite the many theories put forward (the theory of periodic cycles,
exogenous theories of the impact of natural disasters, social, technological shocks, endogenous
theories of underconsumption, equilibrium cycle, over-accumulation, etc.) [1–4], it should be
recognized that a single. There is no generally accepted theory of economic fluctuations today, as
there is no single view on the causes that generate cycles [5]. The question of synchronizing
economic fluctuations is even more unclear and confusing. A number of authors study the
synchronization of cycles based on the analysis of time-series [6]. However, in most economic
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works, synchronization is understood not as a coincidence of oscillation frequencies, but as some
proximity concordance analysis, based on the proximity of «phases» (stages) of cycles [7]. There
are authors — supporters of the application of the theory of dynamic chaos in economics and
finance, in particular for the analysis of synchronization [8, 9].

In [10, 11], a dynamic model of a chaotic economic oscillator functioning as an automatic
control system and the processes of generating and synchronizing economic cycles based on this
model are considered. The present work is a development of these studies, in particular, continues
the study of synchronization processes in an ensemble of related economic oscillators.

The work is organized as follows. Section 1 discusses the dynamic model of the economic
oscillator. Section 2 presents the results of a study of synchronization processes in an ensemble
of coupled oscillators.

1. Model of economic fluctuations

In [10,11], the idea of constructing a nonlinear model of a hypothetical economic oscillator
functioning as a typical automatic control system is considered. This approach to describing
the dynamic behavior of various technical, biological, social, and other objects is not new. In
the literature, you can find many examples of using this approach, in particular, an example of
building a dynamic buyer model in the task of forming public opinion [12].

How can we build a model of an economic oscillator using the ideas of the theory of
automatic control? Economic fluctuations (business cycles) are determined by several indicators,
among which the most important is the gross domestic product (GDP), characterized by the total
amount of goods and services produced in the country. Let’s choose one specific type of product
from the composition of GDP and build a chain of automatic control, where as an input signal
we will take the trend value of the value of this product (constant or changing over time), and
as an object of control we will take a certain appraiser of the value of the product. The control
circuit will adjust the evaluator’s output signal according to the input signal. The functions of the
various elements of the control chain of the constructed hypothetical system, obviously, should
be implemented by the managers actions of the government of the country, investment banks,
management of enterprises, etc., etc. Since the selected product is produced, as a rule, not by
one manufacturer, but by several, it may be necessary to organize a multi-circuit management
system. The presence of many agents involved in management may result in inconsistency of
control actions. The unavoidable presence of inertia and delays in control circuits can lead to
instabilities that generate the appearance of limit cycles and chaotic attractors, as a result of
which periodic and chaotic oscillations will form at the output of the system. To estimate the
value of the cost of other goods and services that make up the GDP, other management systems
should be built in the same way. Summing up the output signals of all the built control systems
will allow us to get an estimate of the value of GDP and its dynamics, that is, to get a business
cycle model as a result. It is obvious that the model obtained as a result of such constructions,
which includes a large number of multi-circuit control systems, will be so cumbersome, this will
not allow conducting a dynamics study and obtaining any specific data about the business cycle,
since most of the parameters of the constructed model will be unknown. Taking into account
this circumstance, it seems more expedient to implement the simplest version of an automatic
control system for evaluating only one indicator - the composite business cycle index.

The model of an economic oscillator functioning as an automatic control system for the
value of the composite business cycle index [10,11] is shown in Fig. 1.

Here the object of control is the estimator E, the output of which generates the current
estimate of the value of the composite index of the business cycle 𝐼E(𝑡). The input of the system
receives 𝐼R(𝑡) — the value of the real business cycle index determined by the real sector of the
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economy (for simplicity, let’s put it constant). The discriminator 𝐼E(𝑡) and 𝐼R(𝑡). The signal
from the output of D passes through the filter F, removes high-frequency noise. The signal from
the output of the filter 𝑈F goes to the controller C, which corrects the estimate of 𝐼E(𝑡) by the
amount of ∆𝐼 in the direction of rapprochement with 𝐼R(𝑡).

The equation describing the dynamics of the economic oscillator model (see Fig. 1),
obtained in [10,11] in operator form:

𝑥+𝐾(𝑝)Φ(𝑥) = γ, 𝑝 ≡ 𝑑/𝑑𝑡. (1)

Here 𝑥 = (𝐼E− 𝐼R)/∆𝐼max — the dimensionless current deviation of the 𝐼E value of the composite
business cycle index from the value of 𝐼R of the real composite index of the business cycle.
∆𝐼max = 𝑆𝐸 (𝑆 — steepness of the controller characteristic, 𝐸 — maximum value of the output
signal D), γ = (𝐼0E − 𝐼R)/∆𝐼max — dimensionless deviation of the value of the composite index
of the business cycle 𝐼0E at the initial time from the values of 𝐼R of the real composite index of
the business cycle, 𝐾(𝑝) — the transfer function of the filter, Φ(𝑥) — the nonlinearity of the
discriminator D, normalized to one.

Taking 𝐾(𝑝) = (1+𝑎1𝑝+𝑎2𝑝
2+𝑎3𝑝

3)−1 and introducing dimensionless time τ = 𝑡/𝑎1 and
parameters 𝜀 = 𝑎2/𝑎

2
1, µ = 𝑎3/𝑎

3
1, write the equation (1) as

𝑑𝑥

𝑑τ
= 𝑦,

𝑑𝑦

𝑑τ
= 𝑧, (2)

µ
𝑑𝑧

𝑑τ
= γ− 𝑥− 𝑦 − 𝜀𝑧 −Φ(𝑥).

Dynamics (2) has been studied in a number of papers, in particular, in [13] for Φ(𝑥) =
2β𝑥/(1 + β2𝑥2) at β > 0, in [14] for inverted nonlinearity Φ(𝑥) at β < 0, as well as in [15], etc.
Here is a brief overview of the dynamics (2).

Fig. 1. The model of economic oscillator: E — estimator, C — control element, F — filter, D — discriminator

0
O1

O3

�(x)

x

a

b

c

x

y

O1

O1 x

�
 - x

�
 - x

�(x)
0

O1

O2

O3 x

x

x

y

O1 O2 O3

O1

O2

O3

-�(x)

y

O1

_

O2

_

O3

_

O1

_
O2

_
O3

_

O3

_
O1

_
O2

_

0
�

 - x x

x

x

Fig. 2. Equilibrium states of the system (2) (a), phase portraits of the system (2) when µ = 0, 𝜀 = 0 (b), phase
portraits of the system (2) when µ = 0, 𝜀 ̸= 0 (c)
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For µ = 0, 𝜀 = 0, the system (2) reduces to a first-order equation, and for µ = 0, 𝜀 ̸= 0 — to
a second-order equation. The dynamics (2) in these cases is determined by the equilibrium states
(Fig. 2, a). For non-inverted nonlinearity Φ(𝑥), there is one stable equilibrium state 𝑂1(𝑂3),
or three — 𝑂1, 𝑂3 — stable and 𝑂2— unstable, and for inverted nonlinearity Φ(𝑥) one stable
equilibrium state 𝑂̄1 (𝑂̄3), or three — 𝑂̄1 (𝑂̄3) — stable and 𝑂̄2 — unstable. In Fig. 2, b the
characteristic phase portraits of the system (2) are given for µ = 0, 𝜀 = 0, and in Fig. 2, c —
phase portraits for µ = 0, 𝜀 ̸= 0 obtained by standard methods of oscillation theory [16].

The dynamics of the system (2) in the three-dimensional phase space (𝑥, 𝑦, 𝑧) is quite
complex and is characterized not only by the presence of equilibrium states, but also by the
presence of limit cycles and chaotic attractors, as about one equilibrium state 𝑂1 or 𝑂3 (𝑂̄1 or
𝑂̄3), and about three equilibrium states 𝑂1, 𝑂2, 𝑂3 (𝑂̄1, 𝑂̄2, 𝑂̄3).

Without giving here a complete description of the dynamics (2), we present the most
important bifurcations from the point of view of economic interpretations, illustrating different
ways of excitation of chaotic oscillations in the system (2).

For the case of the non-inverted characteristic Φ(𝑥) in Fig. 3 presents a parametric portrait
(µ, γ) of the system (2) for 𝜀 = 1, β = 10.

Here the dashpoint line γ = γ* corresponds to the bifurcation of the fusion of the equilibrium
states 𝑂2 and 𝑂3, and the dashpoint line γ = γ** corresponds to the bifurcation of the fusion of
equilibrium states 𝑂2 and 𝑂1. The lines γ = γ* and γ = γ** limit the region 𝐶1 of the existence
of the equilibrium state 𝑂1, the region 𝐶2 of the existence of the equilibrium states 𝑂1, 𝑂2, 𝑂3

and the region 𝐶3 the existence of a state of equilibrium 𝑂3.
Line 1 corresponds to the Andronov–Hopf bifurcation for the equilibrium state 𝑂1. The

first Lyapunov quantity on lines 1 is negative, hence this bifurcation is supercritical and line 1
corresponds to the soft birth of a stable limit cycle 𝐿1 around 𝑂1 (fig. 4, a) when crossing lines 1
from left to right.

Dotted lines 2 and 3 correspond to the first period doubling bifurcation of the cycle 𝐿1,
after which the cycle 𝐿1 undergoes a series of period doubling bifurcations, resulting in a chaotic
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attractor 𝑆1 appears in accordance with Feigenbaum’s scenario (Fig. 4, b).The area of existence
of the attractor 𝑆1, bounded by line 2, is very small and therefore in Fig. 3 is not shown, and
the region of existence of the attractor 𝑆1, bounded by line 3, is indicated by 𝐷1 in Fig. 3.

Line 4 corresponds to the loss of stability of the equilibrium state 𝑂3 as a result of the
Andronov–Hopf bifurcation. The first Lyapunov quantity on line 4 is negative, that is, it is a
supercritical bifurcation and on line 4 a stable limit cycle 𝐿3 is gently born around 𝑂3 (Fig. 4, c).

The dotted line 5 corresponds to the first bifurcation of doubling the period of the cycle
𝐿3, then through a series of bifurcations of doubling the period, a chaotic attractor 𝑆3 is born
in accordance with the scenario Feigenbaum (fig. 4, d). The domain of existence of the attractor
𝑆3 is denoted by 𝐷3 in fig. 3.

In addition to the bifurcations described above, the system (2) demonstrates other bifurcations,
in particular, the bifurcation of the 𝐿1 cycle sticking into the saddle separatrix loop 𝑂2 followed
by the disappearance of 𝐿1 (line 6), saddle-node bifurcation of the disappearance of the 𝐿3 cycle
(line 7), saddle-node bifurcation of the birth of the cycle 𝐿2, covering all three equilibrium states
𝑂1, 𝑂2, 𝑂3 (line 8), loop bifurcation saddle-focus separatrix 𝑂2 with negative saddle magnitude
and positive saddle magnitude (line 9). In the latter case, there is a complex parametric portrait
structure associated with an infinite number of bifurcation lines corresponding to multiple cycles
and multi-pass loops of separatrix [17]. The analysis of these bifurcations is not given here,
because it goes beyond the main purpose of the work.

Let us now turn to the dynamics of the system (2) in the case of inverted nonlinearity
Φ(𝑥). In Fig. 5 for this case, the most important bifurcation curves are presented, reflecting the
occurrence and randomization of self-oscillatory modes in the model (2), and in Fig. 6 examples
of projections corresponding to these modes of attractors are given.

The dotted line γ = γ* divides the plane of the parameters (µ, γ) into the regions 𝐶1 and
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𝐶2 of the existence of three (𝑂̄1, 𝑂̄2, 𝑂̄3) and one (𝑂̄3) equilibrium state.
Lines 1 and 2 (see fig. 5) are responsible for the birth of a stable limit cycle 𝐿1 around the

equilibrium state 𝑂̄1 (Fig. 6, a). The line 1 corresponds to the Andronov–Hopf bifurcation of the
equilibrium state 𝑂̄1. The point 𝑀 , where the first Lyapunov quantity turns to zero, divides the
bifurcation curve into sections of soft and hard excitation of self-oscillations. The part of lines 1
located above the point 𝑀 , corresponds to the supercritical Andronov-Hopf bifurcation, at the
intersection of this section of the curve from left to right, the change in stability of the equilibrium
state 𝑂̄1 is accompanied by the birth of a stable limit cycle 𝐿1 of almost zero amplitude. The
part of lines 1 located below the point 𝑀 corresponds to the hard birth of self-oscillations. A
rigid self-oscillating mode occurs as a result of the bifurcation of a two-fold limit cycle on lines 2.
The line 2 is located below the point 𝑀 and runs to the left of lines 1. When lines 2 intersect
from left to right in the phase space of the model (2), a stable limit cycle 𝐿1 of finite amplitude
appears.

The cycle 𝐿1 may experience period doubling bifurcations, as a result of which a chaotic
attractor 𝑆1 may form on its basis (Fig. 6, b). The dotted line 3 is responsible for the first
bifurcation of doubling the period of the cycle 𝐿1, this bifurcation is soft, and corresponds to
the appearance of a stable limit cycle 𝐿

(2)
1 of the doubled period. Note that the process of

doubling the cycle period 𝐿1 does not always end with the formation of of a chaotic attractor,
the Feigenbaum scenario can be interrupted by the disappearance of limit cycles of large periods
either through tangent bifurcation or as a result of bifurcations of multi-pass loops of saddle
separatries 𝑂̄2. In particular, in Fig. 5 solid line 5 corresponds to the tangent bifurcation of the
cycle 𝐿

(2)
1 of the doubled period, and the solid line 6 — bifurcations of the two-way loop of the

saddle-focus separatrix 𝑂̄2. The line 4 bounds the area of existence of the cycle 𝐿1 on the right,
on this curve the cycle 𝐿1 disappears through a tangent bifurcation. The regions of existence of
the chaotic attractor 𝑆1 on Fig. 5 are not highlighted because they have insignificant dimensions,
however, dotted lines reflecting the transition from regular to chaotic oscillations are applied to
the parametric portrait.

The line 7 is responsible for the birth of a stable limit cycle 𝐿3 (Fig. 6, c) through the
bifurcation of a two-fold limit cycle. At small γ at the moment of birth, the cycle 𝐿3 covers the

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

�

0          0.2        0.4        0.6        0.8        1.0         1.2        1.4 
�

1
3

2
1

4

5

6

78

8

10

10

11

7

��

9

Fig. 5. Parameter portrait of the (2) when 𝜀 = 1, β = −10

Matrosov V.V., Shalfeev V.D.
Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2023;31(3) 259



0.15

-0.15
-0.15-0.32

y

x

0.25

-0.22
-0.34 -0.02x

y

0.61

-0.67
0.04 1.0x

y

a b c

0.75

-0.74
-0.05 1.1x

y

0.13

-0.14
0.55 0.9

y

x

1.15

-1.22
-1.23 1.53x

y

d e f

Fig. 6. Projections of attractors of the system (2) when 𝜀 = 1, β = −10, γ = 0.5, µ = 0.321 (a), γ = 0.6, µ = 0.463
(b), γ = 0.05, µ = 0.529 (c), γ = 0.1, µ = 0.623 (d), γ = 0.1, µ = 0.66 (e), γ = 0.1, µ = 1.27 (f )

equilibrium state 𝑂̄3, with the growth of γ, as well as with distance from line 7, the amplitude
of the cycle 𝐿3 grows, and it begins to cover all three equilibrium states.

The dotted line 8 corresponds to the beginning of the doubling of the period of the cycle
𝐿3, when moving away from this line, the cycle 𝐿3 experiences a cascade of bifurcations of
doubling of the period, as a result, a chaotic attractor is formed on the basis of 𝐿3 𝑆3 (Fig. 6, d).
The lines 9 and 11 limit the region 𝐷3 of the existence of chaotic oscillations. The dot line 10
reflects the fourth bifurcation of doubling the period of the cycle 𝐿3, and since the bifurcation
values of the fifth and subsequent bifurcations of doubling the period 𝐿3 fit into the interval
∆µ = 10−4, the value of the fourth bifurcation of doubling the period can practically be used
in as the boundary of the region of existence of chaotic oscillations. On the solid line 11, a
chaotic attractor crisis occurs, when leaving the 𝐷3 region through this line, the 𝑆3 attractor
collapses, phase trajectories from its vicinity rush to infinity. Note that chaotic oscillations of 𝑆3

can take a different form, this indicates the wide possibilities of the model under consideration
for generating chaotic oscillations with different characteristics. Examples of possible projections
of the attractor 𝑆3 are shown in Fig. 6, d–f.

Thus, the above data show that the model (2) demonstrates extensive possibilities for
generating chaotic modes. Comparison of oscillograms of such chaotic oscillations [10,11] with the
oscillograms of real fluctuations of composite business cycle indices, given in the literature [18],
makes it possible to conclude that there is a fairly good qualitative similarity of such fluctuations.

2. Analysis of synchronization processes of related economic fluctuations

Let’s consider the dynamics of a small ensemble of five economic oscillators (2) connected
according to the scheme of Fig. 7.
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Fig. 7. The ensemble of oscillators

Connections according to the scheme
Fig. 7 allow us to investigate synchronization
processes in the ensemble depending on the
strength of the connections with the oscillator
𝑂0. We will consider the connections of the
oscillators 𝑂1, 𝑂2, 𝑂3, 𝑂4 are approximately
the same, and the connections from the 𝑂0

oscillator will vary from weak to strong.
Such a situation can simulate the processes
of economic interaction between a group
of countries with approximately the same
economy and one country with a significantly
stronger economy.

The system of equations describing the
dynamics of the ensemble shown in Fig. 7, can be written as

𝑑𝑥1
𝑑τ

= 𝑦1,
𝑑𝑦1
𝑑τ

= 𝑧1,

µ1
𝑑𝑧1
𝑑τ

= γ1 − 𝑥1 − 𝑦1 − 𝜀1𝑧1 −Φ1(𝑥1)− κ21Φ2(𝑥2)− κ31Φ3(𝑥3)− κ01Φ0(𝑥0),

𝑑𝑥2
𝑑τ

= 𝑦2,
𝑑𝑦2
𝑑τ

= 𝑧2,

µ2
𝑑𝑧2
𝑑τ

= γ2 − 𝑥2 − 𝑦2 − 𝜀2𝑧2 −Φ2(𝑥2)− κ12Φ1(𝑥1)− κ42Φ4(𝑥4)− κ02Φ0(𝑥0),

𝑑𝑥3
𝑑τ

= 𝑦3,
𝑑𝑦3
𝑑τ

= 𝑧3,

µ3
𝑑𝑧3
𝑑τ

= γ3 − 𝑥3 − 𝑦3 − 𝜀3𝑧3 −Φ3(𝑥3)− κ13Φ1(𝑥1)− κ43Φ4(𝑥4)− κ03Φ0(𝑥0), (3)

𝑑𝑥4
𝑑τ

= 𝑦4,
𝑑𝑦4
𝑑τ

= 𝑧4,

µ4
𝑑𝑧4
𝑑τ

= γ4 − 𝑥4 − 𝑦4 − 𝜀4𝑧4 −Φ4(𝑥4)− κ24Φ2(𝑥2)− κ34Φ3(𝑥3)− κ04Φ0(𝑥0),

𝑑𝑥0
𝑑τ

= 𝑦0,
𝑑𝑦0
𝑑τ

= 𝑧0,

µ0
𝑑𝑧0
𝑑τ

= γ0 − 𝑥0 − 𝑦0 − 𝜀0𝑧0 −Φ0(𝑥0)− κ10Φ1(𝑥1)− κ20Φ2(𝑥2)− κ30Φ3(𝑥3)− κ40Φ4(𝑥4).

In Fig. 8–10 the results of numerical experiments with the system are presented (3).
Projections of chaotic attractors for the case of the absence of connections with the oscillator
𝑂0 are given in Fig. 8. In this case, the oscillators 𝑂1 — 𝑂4 are synchronized, and there is no
synchronization with the oscillator 𝑂0. In Fig. 9 the case of weak connections with an oscillator is
presented 𝑂0. In this case, the synchronization of the oscillators 𝑂1 — 𝑂4 remained approximately
at the same level, at the same time, there was a weak synchronization with the 𝑂0 oscillator.
In Fig. 10 the case of strong connections with the 𝑂0 oscillator is presented, in this case the
synchronization of 𝑂1–𝑂4 has significantly improved and there is quite noticeable synchronization
of 𝑂0 with other oscillators.

As follows from Fig. 8–10, the accuracy of the obtained synchronization of chaotic oscillations
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turned out to be low. It can be increased by strengthening the links, but even a triple increase
in the strength of the links with the element 𝑂0 (Fig. 10) did not lead to a significant increase
in synchronization accuracy.

Next, let’s consider the influence of connection parameters on the magnitude of synchronization
errors. As a quantitative assessment of the synchronization accuracy of the 𝑖 and 𝑗 oscillators,
we will use the value ∆𝑖,𝑗 calculated by the formula

∆𝑖,𝑗 = max
τ∈[0,𝑇 ]

|𝑥𝑖(τ)− 𝑥𝑗(τ)|/
√︁
(𝑥min

𝑖 − 𝑥min
𝑗 )2 + (𝑥max

𝑖 − 𝑥max
𝑗 )2. (4)

Fig. 8. Projections of attractors of the system (3) when couplings from oscillator 𝑂0 are absent and γ0 = 0.64,
𝜀0 = 0.64, µ0 = 0.53, β0 = −10, γ1 = 0.64, 𝜀1 = 0.64, µ1 = 0.53, β1 = −10, γ2 = 0.65, 𝜀2 = 0.61, µ2 = 0.51,
β2 = −10, γ3 = 0.64, 𝜀3 = 0.61, µ3 = 0.51, β3 = −10, γ4 = 0.63, 𝜀4 = 0.65, µ4 = 0.52, β4 = −10, κ21 = 0.8,
κ31 = 0.98, κ12 = 1, κ42 = 0.1, κ13 = 1, κ43 = 0.06, κ24 = 0.4, κ34 = 0.84, κ01 = κ02 = κ03 = κ04 = 0,
κ10 = κ20 = κ30 = κ40 = 0
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Fig. 9. Projections of attractors of the (3) when couplings from oscillator 𝑂0 are weak and κ01 = κ02 = κ03 =
κ04 = 0.3, κ10 = κ20 = κ30 = κ40 = 0.05

This value characterizes the maximum deviation of the phase variables 𝑥𝑖(τ) and 𝑥𝑗(τ) from the
line 𝑥𝑖 = 𝑥𝑗 during the observation time 𝑇 , related to the size of the attractor projection on
the plane of the corresponding coordinates [19]. Quantitative estimates of the synchronization
accuracy of the ensemble oscillators, calculated by the formula (4) at the interval 𝑇 = 15, 000, are
shown in Fig. 11. From the above results it follows that the dependence ∆𝑖,𝑗 from κ is an irregular
process in general with a declining trend. Solid thick lines in Fig. 11 are the result of smoothing
the values of ∆𝑖,𝑗 using the algorithm Savitsky–Goley, which more clearly reflect the trends in
the evolution of synchronization errors with increasing connectivity. From the analysis of the
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Fig. 10. Projections of attractors of the (3) when couplings from oscillator 𝑂0 are strong and κ01 = κ02 = κ03 =
κ04 = 3, κ10 = κ20 = κ30 = κ40 = 0.1

presented results, it follows that synchronization errors with the growth of κ do not decrease
monotonously; ∆1,2 and ∆3,4 decrease; ∆1,0 and ∆3,0 have minima*. Note that the strengthening
of the bonds entails an increase in the size of the attractor, and can also lead to the regularization
of chaotic oscillations of oscillators. In in the latter case, there is a sharp decrease in the values of
∆𝑖,𝑗 . In Fig. 11 sharp «dips» ∆𝑖,𝑗 , in particular, in the area of κ =2.26 is due to the regularization
of chaotic oscillations.

*The values of ∆1,3 and ∆2,4 are close to the values of ∆1,2 and ∆3,4, and the values of ∆2,0 and ∆4,0 — to the
values of ∆1,0 and ∆3,0, respectively.
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Fig. 11. The evolution of synchronization errors when couplings from oscillator 𝑂0 are κ01 = κ02 = κ03 = κ04 = κ,
κ10 = κ20 = κ30 = κ40 = 0.1 (color online)

Fig. 12. Projections of attractors of the (5) when γ1 = 1.06, 𝜀1 = 1, µ1 = 2.1, γ2 = 1.05, 𝜀2 = 0.96, µ2 = 2.06,
β1 = 10, β2 = 10, κ1 = 0.07, κ2 = 0.2

Another way to improve synchronization is to change the type of connections, namely, the
organization of oscillator connections not by the variable 𝑥, but by the rate of its change 𝑦. In
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this case, for two coupled oscillators (2) , the mathematical model will have the form

𝑑𝑥1
𝑑τ

= 𝑦1,
𝑑𝑦1
𝑑τ

= 𝑧1,

µ1
𝑑𝑧1
𝑑τ

= γ1 − 𝑥1 − 𝑦1 − 𝜀1𝑧1 −Φ1(𝑥1)− κ2Φ2(𝑦1 − 𝑦2),

𝑑𝑥2
𝑑τ

= 𝑦2,
𝑑𝑦2
𝑑τ

= 𝑧2, (5)

µ2
𝑑𝑧2
𝑑τ

= γ2 − 𝑥2 − 𝑦2 − 𝜀2𝑧2 −Φ1(𝑥2)− κ1Φ2(𝑦2 − 𝑦1).

The results of the numerical experiment with the model (5) are presented in Fig. 12.
Based on these results, it can be concluded that the connection of the oscillators (2) along the 𝑦
coordinate makes it possible to achieve good synchronization accuracy of the simulated economic
fluctuations in the ensemble. Nevertheless, this type of connection for real economic oscillators
seems unrealistic, since measuring the rates of 𝑦 changes in economic variables 𝑥 for controlling
oscillators is most likely unlikely or practically impossible.

Conclusion

The problem of synchronization of an ensemble of connected chaotic economic oscillators is
considered. The economic oscillator model is an endogenous dynamic model based on the ideas of
the theory of automatic control systems. Of course, this kind of general dynamic models cannot be
used to obtain any specific economic estimates or specific recommendations for making economic
decisions. solutions. However, such models are useful for the development of dynamic theories
of economic cycles, theories of their generation, interaction, synchronization, etc., Numerical
experiments with the model considered in this paper have demonstrated the qualitative similarity
of chaotic oscillations generated by the model with real economic fluctuations presented in the
literature. It is established that a small ensemble of related economic oscillators demonstrate
the appearance of synchronization of chaotic oscillations when certain values of the coupling
coefficients are reached. The synchronization of chaotic oscillations obtained in numerical experiments
is characterized by the presence of a noticeable synchronization error, the magnitude of which
significantly depends on the strength of the connections between the oscillators.
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