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Abstract. The purpose of this work is to find the region of necessary and sufficient conditions for diffusion
instability on the parameter plane (τ, 𝑑) of the Gierer-Meinhardt system, where τ is the relaxation parameter,
𝑑 is the dimensionless diffusion coefficient; to derive analytically the dependence of the critical wave number on
the characteristic size of the spatial region; to obtain explicit representations of secondary spatially distributed
structures, formed as a result of bifurcation of a spatially homogeneous equilibrium position, in the form of series
in degrees of supercriticality. Methods. To find the region of Turing instability, methods of linear stability analysis
are applied. To find secondary solutions (Turing structures), the Lyapunov-Schmidt method is used in the form
developed by V.I. Yudovich. Results. Expressions for the critical diffusion coefficient in terms of the eigenvalues
of the Laplace operator for an arbitrary bounded region are obtained. The dependence of the critical diffusion
coefficient on the characteristic size of the region is found explicitly in two cases: when the region is an interval and
a rectangle. Explicit expressions for the first terms of the expansions of the secondary stationary solutions with
respect to the supercriticality parameter are constructed in the one-dimensional case, as well as for a rectangle,
when one of the wave numbers is equal to zero. In these cases, sufficient conditions for a soft loss of stability are
found, and examples of secondary solutions are given. Conclusion. A general approach is proposed for finding
the region of Turing instability and constructing secondary spatially distributed structures. This approach can be
applied to a wide class of mathematical models described by a system of two reaction-diffusion equations.
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Introduction

The reaction-diffusion equations are used in mathematical modeling of various natural
phenomena, and a large number of publications are devoted to them (see, for example, [1], as well
as recent works by [2,3] and the literature cited in them). As a result of bifurcations of spatially
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homogeneous states, spatially inhomogeneous regimes arise in reaction-diffusion systems. At the
boundary of the region under consideration, various types of boundary conditions can be satisfied.
Of particular interest, in our opinion, is the study of reaction-diffusion systems by analytical
methods. In [4], explicit asymptotic representations of self-oscillatory modes are found for the
infinite-dimensional analog of the Rayleigh system (which can also be considered as a special
case of the Fitzhugh-Nagumo system), and in [5]— stationary modes under Dirichlet boundary
conditions and mixed boundary conditions. In [6], bifurcations on invariant subspaces of the
system were studied for the Rayleigh system under Neumann boundary conditions, in [7], the
bifurcation behavior of stationary regimes branching off from the zero equilibrium position of
the Fitzhugh-Nagumo system was studied under the same conditions.

The study of diffusion instability, which was started by A. Turing in his classic work [8],
subsequently called Turing instability, is continued by many authors to the present day. The
monograph [9] initiated the study of a region in the parameter space of the system called the
Turing instability region.

In [10], using the example of the Schnakenberg system, an approach is proposed for the
analytical description of the Turing instability region in the parameter space of the system, as
well as for finding the range of critical wave numbers for which this instability occurs. It is shown
that the boundary of the domain of necessary conditions is the envelope of the boundary of the
domain of sufficient conditions. In the case of the Schnakenberg system, the points of intersection
of two adjacent curves of sufficient conditions lie on a straight line, the slope of which depends
on the eigenvalues of the Laplace operator in the region under consideration. It is also shown
in [10] that the semi-axis 𝑑 > 1, where 𝑑 is the diffusion coefficient, can be represented as a union
of semi-intervals, each of which corresponds to a critical wave number at which the stability of
the equilibrium position of the system is lost.

In [11], the results of [10] are generalized to a certain class of reaction-diffusion systems,
which, in addition to the diffusion coefficient, contain two parameters. It is assumed that the
coefficients of the system linearized in the vicinity of the equilibrium position are subject to
certain restrictions (hypotheses). A replacement of variables is proposed, in which the Turing
instability domain takes on some standard form. The Gehrer-Meinhardt system considered in
this paper contains only one parameter besides the diffusion coefficient. For the two-parameter
Girer-Meinhardt system [12], one of the hypotheses of [11] does not hold.

The Girer-Meinhardt system was proposed in [12], a description of the mathematical model
for various parameter values is given in [13]. In this paper, we consider a special case of the general
model -the Girer-Meinhardt system with the relaxation parameter τ > 0 [1] in the 𝑚-dimensional
bounded domain Ω ⊂ 𝑅𝑚 at 𝑡 > 0 with Neumann boundary conditions on the boundary

𝑢𝑡 = ∆𝑢− 𝑢+
𝑢2

𝑣
, τ𝑣𝑡 = 𝑑∆𝑣 − 𝑣 + 𝑢2, (1)

𝜕𝑢

𝜕𝑛

⃒⃒⃒
𝜕Ω

=
𝜕𝑣

𝜕𝑛

⃒⃒⃒
𝜕Ω

= 0. (2)

Here 𝑢 = 𝑢(𝑥, 𝑡)— activator, 𝑣 = 𝑣(𝑥, 𝑡)— inhibitor, 𝑑 > 0 — a dimensionless diffusion coefficient
equal to the ratio of the diffusion coefficients of the inhibitor and activator, ∆ = 𝜕2

𝜕𝑥2
1
+ ...+ 𝜕2

𝜕𝑥2
𝑚

— the Laplace operator. The system (1), (2) has a single spatially homogeneous equilibrium
position

(𝑢0, 𝑣0) = (1, 1). (3)

Solutions of a singularly perturbed Gehrer-Meinhardt system with a relaxation parameter
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were investigated in [14], the Eckhaus instability and zigzag instability were analytically and
numerically investigated for the Gehrer-Meinhardt system in [15].

The purpose of this work is to deduce the necessary and sufficient conditions for the
instability of the Turing equilibrium position (3), to find the critical diffusion coefficient and
its dependence on the characteristic size of the Ω region, to find secondary Turing structures
in the vicinity of the equilibrium position with small deviations of the diffusion coefficient from
the critical value. The approach of [10] is used to describe the Turing instability domain. All
constructions are analytical in nature; numerical results are presented only to illustrate the
theoretical material.

1. Necessary conditions for Turing instability

The results of this section are known, and we present them for completeness and for
the purpose of introducing notation. A general approach for finding the necessary conditions
for Turing instability was developed in [9], for the Gehrer-Meinhardt system with a relaxation
parameter, the necessary conditions are formulated in [1]. Dividing the second equation of the
system (1) by τ, we introduce notation for the reaction terms

𝑓(𝑢, 𝑣) = −𝑢+
𝑢2

𝑣
, 𝑔(𝑢, 𝑣) = −𝑣

τ
+

𝑢2

τ
(4)

and find the Jacobi matrix J

J =

(︂
𝑓𝑢 𝑓𝑣
𝑔𝑢 𝑔𝑣

)︂ ⃒⃒⃒⃒
⃒
(𝑢0,𝑣0)

=

(︃
1 −1
2

τ
−1

τ

)︃
. (5)

The system (1), (2) in the diffusion-free approximation takes the form

𝑑𝑢

𝑑𝑡
= −𝑢+

𝑢2

𝑣
,

𝑑𝑣

𝑑𝑡
= −𝑣

τ
+

𝑢2

τ
, (6)

the corresponding (6) linearized in the neighborhood of (𝑢0, 𝑣0) the equation has the form

𝑑𝑦

𝑑𝑡
= J𝑦, 𝑦 ∈ 𝑅2, (7)

where J is defined in (5). The eigenvalues of the Jacobi matrix J lie strictly in the left half-plane
if and only if

Tr(J) ≡ 𝑓𝑢 + 𝑔𝑣 = 1− 1

τ
< 0, Det(J) ≡ 𝑓𝑢𝑔𝑣 − 𝑓𝑣𝑔𝑢 =

1

τ
> 0. (8)

From (8) we obtain the condition of asymptotic stability in the diffusion-free approximation

0 < τ < 1. (9)

Now let’s consider a linearized system with diffusion (1), (2)

𝑢𝑡 = ∆𝑢+ 𝑓𝑢 · 𝑢+ 𝑓𝑣 · 𝑣, 𝑣𝑡 =
𝑑

τ
∆𝑣 + 𝑔𝑢 · 𝑢+ 𝑔𝑣 · 𝑣, (10)

𝜕𝑢

𝜕𝑛

⃒⃒⃒
𝜕Ω

=
𝜕𝑣

𝜕𝑛

⃒⃒⃒
𝜕Ω

= 0, (11)
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where the elements of the Jacobi matrix are given in (5).
Let µ𝑘 and ψ𝑘 be the eigenvalues and eigenfunctions of the operator −∆ with Neumann

boundary conditions, 𝑘 = 0, 1, 2...

∆ψ𝑘 + µ𝑘ψ𝑘 = 0, 𝑥 ∈ Ω, 𝜕ψ𝑘
𝜕𝑛

⃒⃒⃒
𝜕Ω

= 0. (12)

The eigenvalue of a linear operator is called simple if the dimension of the generalized eigenspace
corresponding to a given eigenvalue is equal to one. In this paper, as in [10], the simplicity of the
eigenvalues of µ𝑘 is assumed.

Let 𝐻 be a Hilbert space of vector functions 𝑤 = (𝑢, 𝑣) with components 𝑢, 𝑣 ∈ 𝐿2(Ω).
Let the operator A0 : 𝐻 → 𝐻, acting according to the rule A0 = 𝐷∆, is defined on the set of
vector functions 𝑤 = (𝑢, 𝑣) with components from Sobolev spaces 𝑊 2

2 (Ω) satisfying boundary
conditions (2), where 𝐷 is a matrix

𝐷 =

(︃
1 0

0
𝑑

τ

)︃
. (13)

Then the linearized system (10), (11) reduces to the equation in 𝐻

𝑤𝑡 = A𝑤, A = A0 + J, 𝑤 ∈ 𝐻. (14)

The spectrum of the operator A is discrete due to the compactness of its resolvent in 𝐻.

Definition 1. Equilibrium position (𝑢0, 𝑣0) is called Turing unstable if all the eigenvalues of
the linearized problem in the diffusion-free approximation (7) lie strictly in the left half-plane
and there is an eigenvalue of the linearized problem with diffusion (14), which lies in the right
half-plane.

Consider a linear spectral problem for the operator A (14) in 𝐻:

A3 = λ3, 3 ̸= 0. (15)

We obtain the necessary conditions for the existence of the eigenvalue of the operator A in the
right half-plane.

Looking for an eigenfunction 3 (15) as a series of eigenfunctions of the Laplace operator
with vector coefficients

3 =
+∞∑︁
𝑘=0

𝐶𝑘ψ𝑘, 𝐶𝑘 = (𝑐1𝑘, 𝑐
2
𝑘), (16)

after substituting the series (16) into (15) and equating the coefficients with the same eigenfunctions
ψ𝑘, for any fixed 𝑘 we obtain a linear system with the matrix J𝑘, which corresponds to the
eigenvalue λ𝑘 and the eigenvector 𝐶𝑘:

J𝑘𝐶𝑘 = λ𝑘𝐶𝑘, 𝐶𝑘 ̸= 0, (17)

where J𝑘 is defined by the formula

Jk =

(︃
𝑓𝑢 − µ𝑘 𝑓𝑣

𝑔𝑢 𝑔𝑣 −
𝑑

τ
µ𝑘

)︃ ⃒⃒⃒⃒
⃒
(𝑢0,𝑣0)

=

(︃
1− µ𝑘 −1

2

τ
−1

τ
− 𝑑

τ
µ𝑘

)︃
, (18)
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moreover, the determinant and trace of the matrix Jk obey the relations

Tr(J𝑘) = Tr(J)−
(︂
1 +

𝑑

τ

)︂
µ𝑘 < Tr(J) < 0,

Det(J𝑘) =
𝑑

τ
µ2𝑘 −

(︂
𝑑

τ
· 𝑓𝑢 + 𝑔𝑣

)︂
µ𝑘 +Det(J).

Since Tr(Jk) < Tr(J) < 0, then the loss of stability of the equilibrium (𝑢0, 𝑣0) can occur only if
the determinant is equal to zero: Det(Jk) = 0. Since Det(J) > 0 (8), then 𝑘 > 0 and, accordingly,
µ𝑘 > 0.

Let ℎ(µ) denote the polynomial

ℎ(µ) = 𝑑µ2 − (𝑑− 1)µ+ 1. (19)

The equality Det(J𝑘) = 0 is possible if and only if ℎ(µ𝑘) = 0.
In order for a linearized system with diffusion (8), (9) to have an eigenvalue in the right

half-plane, it is necessary that the trinomial ℎ(µ) had positive roots. To do this, the discriminant
of the trinomial must be non-negative, and the second coefficient must be negative. From these
conditions we get a restriction on the diffusion coefficient

𝑑 ⩾
(︁
1 +

√
2
)︁2

. (20)

Together, the inequalities (9) and (20) lead to the necessary conditions for Turing instability on
the parameter plane (τ, 𝑑) [1]:

0 < τ < 1, 𝑑 ⩾
(︁
1 +

√
2
)︁2

. (21)

2. Sufficient Turing instability conditions

Applying the [10] approach, we obtain constraints on the system parameters under which
the linearized reaction-diffusion system (8), (9) has an eigenvalue in the right half-plane. Let’s
take into account the discreteness of the spectrum of the operator A. Let’s express from the
equation ℎ(µ𝑘) = 0, where ℎ(µ) is set in (19), the diffusion coefficient 𝑑:

𝑑𝑘 =
µ𝑘 + 1

µ𝑘(1− µ𝑘)
. (22)

The condition of the positivity of the diffusion coefficient (22) leads to a restriction

µ𝑘 < 1. (23)

If this condition is not met, then Turing instability does not occur. In the one-dimensional case
Ω = (0, ℓ), when µ𝑘 =

(︀
π𝑘
ℓ

)︀2, we arrive at a lower estimate for the size of the region: ℓ > π𝑘.
Let’s introduce a notation for 𝑘 ∈ 𝑁

γ𝑘 = µ𝑘 + µ𝑘+1 + µ𝑘µ𝑘+1. (24)

Note that the expression (24) is also involved in describing the domain of sufficient Turing
instability conditions for the Schnakenberg system [10], brusselator and other systems [11].

Using elementary calculations, the following statement is proved.
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Statement 1. Let µ𝑘 < 1 and µ𝑘+1 < 1. The equality 𝑑𝑘 = 𝑑𝑘+1 holds if and only if γ𝑘 = 1,
and the inequality 𝑑𝑘 < 𝑑𝑘+1 is equivalent to the inequality γ𝑘 > 1.

Note that for the function

𝑑(𝑦) =
𝑦 + 1

𝑦(1− 𝑦)
, 0 < 𝑦 < 1, (25)

the value 𝑦 =
√
2−1 is the point of the global minimum, with 𝑑(

√
2−1) = (

√
2+1)2. Therefore,

for 𝑑𝑘 (22) the inequality holds: 𝑑𝑘 ⩾ (1 +
√
2)2.

Definition 2. The critical value of the wave number is a number 𝑘 for which the eigenvalue
µ𝑘 is the root of the polynomial ℎ(µ): ℎ(µ𝑘) = 0, while for 𝑑<𝑑𝑘 all eigenvalues of the linearized
system with diffusion (14) lie strictly in the left half-plane, and for 𝑑 > 𝑑𝑘 there is an eigenvalue
of the system (14) in the right half-plane. When these conditions are met, 𝑑𝑘 is called the critical
diffusion coefficient.

To find the critical diffusion coefficient, we need the following auxiliary statement, which
is proved similarly to statement 1.

Statement 2. Let 1 ⩽ 𝑘 < 𝑚, µ𝑘 < 1 and µ𝑚 < 1, we introduce the notation

γ𝑘,𝑚 = µ𝑘 + µ𝑚 + µ𝑘µ𝑚.

The equality 𝑑𝑘 = 𝑑𝑚 holds if and only if γ𝑘,𝑚 = 1, and the inequality 𝑑𝑘 < 𝑑𝑚 is equivalent to
the inequality γ𝑘,𝑚 > 1.

Statements 1 and 2 are valid for an arbitrary bounded domain Ω in which the Laplace
operator has simple eigenvalues µ𝑘 (12). We describe an algorithm for finding the critical wave
number 𝑘 and establish the dependence of the critical diffusion coefficient 𝑑𝑘 on the characteristic
size of the region Ω. First, let’s do the reasoning for the one-dimensional case Ω = (0, ℓ).

2.1. A one-dimensional case. In this case, µ𝑘 =
(︀
π𝑘
ℓ

)︀2. Using ℓ𝑘,𝑘+1, we denote the
length of the segment for which 𝑑𝑘 = 𝑑𝑘+1, 𝑘 ∈ 𝑁 . We find ℓ𝑘,𝑚 from the equation γ𝑘,𝑚 = 1:

ℓ2𝑘,𝑘+1 =
π2

2

(︁√︀
(𝑘2 + (𝑘 + 1)2)2 + 4𝑘2(𝑘 + 1)2 + 𝑘2 + (𝑘 + 1)2

)︁
. (26)

Similarly, following statement 2, for 1 ⩽ 𝑘 < 𝑚, using ℓ𝑘,𝑚 we denote the length of the segment
for which 𝑑𝑘 = 𝑑𝑚. We find ℓ𝑘,𝑚 from the equation γ𝑘,𝑚 = 1:

ℓ2𝑘,𝑚 =
π2

2

(︁√︀
(𝑘2 +𝑚2)2 + 4𝑘2𝑚2 + 𝑘2 +𝑚2

)︁
. (27)

Obviously, for 𝑚 < 𝑛, the inequality ℓ𝑘,𝑚 < ℓ𝑘,𝑛 holds. Let’s find the value of the critical diffusion
coefficient depending on the characteristic size of the region.

Approximate values of the boundaries of the segment ℓ𝑘,𝑘+1 corresponding to the first few
critical values of the wave number 𝑘, are shown in the table. 1.

Statement 3. Let ℓ ∈ (ℓ𝑘−1,𝑘, ℓ𝑘,𝑘+1), where 𝑘 ∈ 𝑁 and ℓ0,1 = π. Then

𝑑𝑘 = min
𝑚

𝑑𝑚, (28)

where the minimum is taken for all 𝑚 for which the expression 𝑑𝑚 is defined .
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Table 1. Boundaries of the segment ℓ𝑘,𝑘+1, corresponding to the critical
values of the wave number 𝑘

The critical wave number Segment Boundaries
𝑘 = 1 ℓ ∈ (π, ℓ1,2) ℓ1,2 = 2.38779 · π
𝑘 = 2 ℓ ∈ (ℓ1,2, ℓ2,3) ℓ2,3 = 3.91738 · π
𝑘 = 3 ℓ ∈ (ℓ2,3, ℓ3,4) ℓ3,4 = 5.46148 · π
𝑘 = 4 ℓ ∈ (ℓ3,4, ℓ4,5) ℓ4,5 = 7.00999 · π
𝑘 = 5 ℓ ∈ (ℓ4,5, ℓ5,6) ℓ5,6 = 8.56046 · π
𝑘 = 6 ℓ ∈ (ℓ5,6, ℓ6,7) ℓ6,7 = 10.11195 · π
𝑘 = 7 ℓ ∈ (ℓ6,7, ℓ7,8) ℓ7,8 = 11.66406 · π
𝑘 = 8 ℓ ∈ (ℓ7,8, ℓ8,9) ℓ8,9 = 13.21656 · π
𝑘 = 9 ℓ ∈ (ℓ8,9, ℓ9,10) ℓ9,10 = 14.76934 · π
𝑘 = 10 ℓ ∈ (ℓ9,10, ℓ10,11) ℓ10,11 = 16.3223 · π

Proof. Let’s prove statement 3. Let’s consider the interval ℓ ∈ (ℓ0,1, ℓ1,2). For ℓ ∈ (π, 2π] only
the value 𝑑1 is defined. For ℓ ∈ (2π, ℓ1.2) 𝑑1 and 𝑑2 are defined, but the inequality γ1 > 1 implies
that 𝑑1 < 𝑑2. Similar reasoning is carried out for the first few values of 𝑘.

Now let 𝑘 > 1, ℓ ∈ (ℓ𝑘−1,𝑘, ℓ𝑘,𝑘+1). As ℓ increases, the functions µ𝑘(ℓ) and also γ𝑘(ℓ)
decrease, and on the interval ℓ ∈ (ℓ𝑘−1,𝑘, ℓ𝑘,𝑘+1) several diffusion coefficients 𝑑𝑚 can be defined.
Let’s show that 𝑑𝑘 is the minimum of them.

First, we prove that 𝑑𝑚 > 𝑑𝑘 for 𝑚 < 𝑘. Indeed, the inequality 𝑑𝑚 > 𝑑𝑘 is equivalent to
the inequality γ𝑚,𝑘 < 1, which, in turn, is equivalent to ℓ > ℓ𝑚,𝑘. Since max

𝑚<𝑘
ℓ𝑚,𝑘 = ℓ𝑘−1,𝑘, the

inequality holds at the specified interval.
Next, let’s make sure that 𝑑𝑘 < 𝑑𝑛 for 𝑛 > 𝑘, Indeed, this inequality is equivalent to the

following: γ𝑘,𝑛 > 1, which holds for ℓ < ℓ𝑘,𝑛. Since min
𝑛>𝑘

ℓ𝑘,𝑛 = ℓ𝑘,𝑘+1, the required inequality is

proved. □
It follows from statement 3 that the formula (28) gives the critical value of the diffusion

coefficient 𝑑𝑘, where 𝑘 is the critical wave number. In the variables (τ, 𝑑) for ℓ ∈ (ℓ𝑘−1,𝑘, ℓ𝑘,𝑘+1),
the domain of sufficient Turing instability conditions has the form

0 < τ < 1, 𝑑 ⩾ 𝑑𝑘. (29)

Let 𝑑𝑘(ℓ) = 𝑑
(︁(︀
π𝑘
ℓ

)︀2)︁, where the function 𝑑𝑘(𝑦) is defined in (25). To describe the relative
position of the curves, 𝑑𝑘(ℓ) let’s prove the following statement.

Statement 4. On each interval ℓ ∈ (ℓ𝑘−1,𝑘, ℓ𝑘,𝑘+1), 𝑘 ∈ 𝑁 the function 𝑑𝑘(ℓ) has a unique
point of minimum ℓ = ℓ*, with 𝑑𝑘(ℓ*) = (1 +

√
2)2 and

ℓ2* =
(︀
1 +

√
2
)︀(︀
π𝑘
)︀2
; ℓ2𝑘−1,𝑘 ⩽

(︀
1 +

√
2
)︀(︀
π𝑘
)︀2

⩽ ℓ2𝑘,𝑘+1. (30)

Proof. To prove statement 4, we will replace the variables ξ = 1
µ in (25). Then

𝑑(ξ) =
ξ(ξ+ 1)

ξ− 1
. (31)

It is easy to verify that ξ* = 1+
√
2 is the point of the global minimum of the function 𝑑(ξ), the

corresponding critical value of the segment length is ℓ2* = (π𝑘)2ξ*.
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Fig. 1. Dependence of the critical diffusion coefficient 𝑑𝑘(ℓ) on the length of the segment (on a logarithmic scale)

Next, from (26) we get the inequality

ℓ2𝑘,𝑘+1

(π𝑘)2
=

1

2

⎛⎝√︃(︂1 + (𝑘 + 1)2

𝑘2

)︂2

+ 4
(𝑘 + 1)2

𝑘2
+ 1 +

(𝑘 + 1)2

𝑘2

⎞⎠ ⩾ 1 +
√
2. (32)

Similarly

ℓ2𝑘−1,𝑘

(π𝑘)2
=

1

2

⎛⎝√︃(︂1 + (𝑘 − 1)2

𝑘2

)︂2

+ 4
(𝑘 − 1)2

𝑘2
+ 1 +

(𝑘 − 1)2

𝑘2

⎞⎠ ⩽ 1 +
√
2. (33)

The formula (30) follows from (32) and (33). □

2.2. The rectangle case. Let now Ω = (0, 𝑎) × (0, 𝑏). Since, by assumption, the
eigenvalues of the Laplace operator are simple, we consider the case of incommensurable squares
of the sides of a rectangle. Let, for definiteness,

𝑏2 =
𝑎2√
2
. (34)

By introducing the notation 𝑧 =
(︁𝑎
π

)︁2
, we write out the eigenvalues of the Laplace operator:

λ𝑚,𝑛 =
(︁π
𝑎

)︁2
(𝑚2 +

√
2𝑛2) =

𝑚2 +
√
2𝑛2

𝑧
, 𝑚, 𝑛 = 0, 1, . . . . (35)

Let’s arrange λ𝑚,𝑛 in ascending order:

µ1 = λ1,0; µ2 = λ0,1; µ3 = λ1,1;

µ4 = λ2,0; µ5 = λ2,1; µ6 = λ0,2; . . . (36)
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Thus,

µ𝑘 =
ν𝑘
𝑧
; ν𝑘 = 𝑚2 +

√
2𝑛2. (37)

Using 𝑎𝑘,𝑚, we denote the length of the side of the rectangle for which 𝑑𝑘 = 𝑑𝑚. Let’s find
𝑎𝑘,𝑘+1 from the equation γ𝑘 = 1. We have

𝑧2 − (ν𝑘 + ν𝑘+1)𝑧 − ν𝑘ν𝑘+1 = 0. (38)

Since 𝑧 > 0, then

𝑎2𝑘,𝑘+1 =
π2

2

(︁√︀
(ν𝑘 + ν𝑘+1)2 + 4ν𝑘ν𝑘+1 + ν𝑘 + ν𝑘+1

)︁
. (39)

Let 𝑑𝑘(𝑎) = 𝑑
(︁(︀
π
𝑎

)︀2 ν𝑘)︁, where 𝑑𝑘(𝑦) is defined in (25). Similarly to statement 4, the
following statement is proved.

Statement 5. At each interval 𝑎 ∈ (𝑎𝑘−1,𝑘, 𝑎𝑘,𝑘+1), 𝑘 ∈ 𝑁 , there is a unique minimum point
𝑎 = 𝑎* of the function 𝑑𝑘(𝑎), with 𝑑𝑘(𝑎*) = (1 +

√
2)2 and

𝑎2* =
(︀
1 +

√
2
)︀
π2ν𝑘; 𝑎2𝑘−1,𝑘 ⩽

(︀
1 +

√
2
)︀
π2ν𝑘 ⩽ 𝑎2𝑘,𝑘+1. (40)

From statements 4 and 5, as well as the conditions (21) and (29), it follows that at each
interval ℓ ∈ (ℓ𝑘−1,𝑘, ℓ𝑘,𝑘+1) and 𝑎 ∈ (𝑎𝑘−1,𝑘, 𝑎𝑘,𝑘+1), respectively, there is a unique value of the
characteristic size of the domain ℓ* (respectively, 𝑎*) for which the necessary and sufficient Turing
instability conditions coincide. For reaction-diffusion systems with two parameters, for example,
for the Schnakenberg system, a similar situation arises [10, 11]. At the point of intersection of
the curves of necessary and sufficient Turing instability conditions, these curves touch. For the
one-parameter Girer-Meinhardt system, the curve of sufficient conditions is 𝑑𝑘(ℓ) (or 𝑑𝑘(𝑎)) at
the minimum point touches the curve of necessary conditions 𝑑 = (1 +

√
2)2.

Approximate values of the boundaries of the side length of the rectangle 𝑎𝑘,𝑘+1, corresponding
to the first few values of the wave number 𝑘, are shown in the table. 2.

Table 2. Boundaries 𝑎𝑘,𝑘+1 of the side corresponding to the critical
values of the wave number 𝑘

The critical wave number Segment Boundaries

𝑘 = 1 𝑎 ∈ (π, 𝑎1,2) 𝑎1,2 = 1.70341 · π
𝑘 = 2 𝑎 ∈ (𝑎1,2, 𝑎2,3) 𝑎2,3 = 2.13887 · π
𝑘 = 3 𝑎 ∈ (𝑎2,3, 𝑎3,4) 𝑎3,4 = 2.76998 · π
𝑘 = 4 𝑎 ∈ (𝑎3,4, 𝑎4,5) 𝑎4,5 = 3.36546 · π
𝑘 = 5 𝑎 ∈ (𝑎4,5, 𝑎5,6) 𝑎5,6 = 3.65555 · π
𝑘 = 6 𝑎 ∈ (𝑎5,6, 𝑎6,7) 𝑎6,7 = 3.85352 · π
𝑘 = 7 𝑎 ∈ (𝑎6,7, 𝑎7,8) 𝑎7,8 = 4.3402 · π
𝑘 = 8 𝑎 ∈ (𝑎7,8, 𝑎8,9) 𝑎8,9 = 4.74518 · π
𝑘 = 9 𝑎 ∈ (𝑎8,9, 𝑎9,10) 𝑎9,10 = 4.92167 · π
𝑘 = 10 𝑎 ∈ (𝑎9,10, 𝑎10,11) 𝑎10,11 = 5.28149 · π
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3. Secondary stationary solutions

We will be interested in secondary stationary solutions of the initial nonlinear system
(1), (2), which arise at a critical value of the diffusion coefficient 𝑑 = 𝑑𝑘 as a result of loss of
stability of the equilibrium position (𝑢0, 𝑣0). When considering Turing instability, such solutions
are called Turing structures.

To find Turing structures, we apply the Lyapunov-Schmidt method in the form developed
by V. I. Yudovich [16, 17]. This method, along with the central manifold method, is used in
problems described by parabolic equations, in particular, the equations of hydrodynamics [18],
as well as the reaction-diffusion equations [4–7]. First, linear spectral and linear adjoint problems
are considered, then the solution to nonlinear equations is sought in the form of a series in degrees
of supercriticality. To find the terms of the series, we obtain linear inhomogeneous equations,
from the solvability condition of which we find the coefficients of the branching equation.

3.1. Linear spectral and linear adjoint problems. Hereafter 𝑘 is a critical wave
number, the operator A is defined in (14). Then the adjoint to the operator A has the form:
A* = A0+J*, where J* denotes the finite-dimensional operator to which the matrix J* transposed
to J (5) corresponds. Let’s find the eigenfunctions of the operators A and A* corresponding to
the zero eigenvalue:

A3𝑘 = 0, A*𝛷𝑘 = 0, 3𝑘 ̸= 0, 𝛷𝑘 ̸= 0. (41)

It follows from (15)–(17) that the eigenfunctions have the form

3𝑘(𝑥) = 𝐶𝑘ψ𝑘(𝑥), 𝛷𝑘(𝑥) = 𝐷𝑘ψ𝑘(𝑥), (42)

where ψ𝑘(𝑥) is the eigenfunctions of the Laplace operator (12), and the vector coefficients 𝐶𝑘

and 𝐷𝑘 are the eigenvectors of the matrices J𝑘 and J*𝑘, respectively:

J𝑘𝐶𝑘 = 0, J*𝑘𝐷𝑘 = 0, 𝐶𝑘 ̸= 0, 𝐷𝑘 ̸= 0. (43)

From (43) we find the coordinates of 𝐶𝑘 and 𝐷𝑘:

𝐶𝑘 = (1; 1− µ𝑘), 𝐷𝑘 =
(︁
1;− τ

2
(1− µ𝑘)

)︁
. (44)

Note that due to restrictions on the eigenvalues 0 < µ𝑘 < 1 and the relaxation parameter
0 < τ < 1 the scalar product of the vectors 3𝑘 and 𝛷𝑘 is positive∫︁

Ω

3𝑘(𝑥)𝛷𝑘(𝑥)𝑑𝑥 =
(︁
1− τ

2
(1− µ𝑘)2

)︁∫︁
Ω

ψ2𝑘(𝑥)𝑑𝑥 > 0. (45)

The condition (45) implies the absence of blocks of dimension greater than one in the matrix
representation of the operator A.

3.2. The perturbation equation. After changing variables in the vicinity of the equilibrium
position (𝑢0; 𝑣0) = (1; 1) (for convenience, we retain the previous notation (𝑢; 𝑣)):

𝑢 → 𝑢+ 1; 𝑣 → 𝑣 + 1 (46)

from (1) we arrive at the perturbation equation

𝑢𝑡 = ∆𝑢− (𝑢+ 1) +
(𝑢+ 1)2

𝑣 + 1
, τ𝑣𝑡 = 𝑑∆𝑣 − (𝑣 + 1) + (𝑢+ 1)2. (47)
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We transform the nonlinear term in the first equation (1). Using the Taylor series expansion and
leaving the terms no higher than the third degree

1

𝑣 + 1
= 1− 𝑣 + 𝑣2 − 𝑣3 + . . . ,

−(𝑢+ 1) + (1 + 𝑢)2(1− 𝑣 + 𝑣2 − 𝑣3 + . . .) = 𝑢− 𝑣 + (𝑢− 𝑣)2 − 𝑣(𝑢− 𝑣)2 + . . . ,

let’s reduce the equations (46) to the form

𝑢𝑡 = ∆𝑢+ 𝑢− 𝑣 + (𝑢− 𝑣)2 − 𝑣(𝑢− 𝑣)2, τ𝑣𝑡 = 𝑑∆𝑣 + 2𝑢− 𝑣 + 𝑢2. (48)

Let ℓ ∈ (ℓ𝑘−1,𝑘, ℓ𝑘,𝑘+1), where 𝑘 is the critical wave number. Let us introduce the supercriticality
parameter 𝜀 using a change of variables

𝑑 = 𝑑𝑘 + 𝜀2. (49)

Then the perturbation equation (48) takes the form:

𝑢𝑡 = ∆𝑢+ 𝑢− 𝑣 + (𝑢− 𝑣)2 − 𝑣(𝑢− 𝑣)2, τ𝑣𝑡 = 𝑑𝑘∆𝑣 + 2𝑢− 𝑣 + 𝑢2 + 𝜀2∆𝑣. (50)

We will look for a stationary solution of the system (50) in the form of series in powers of
the parameter 𝜀

𝑢(𝑥) =

+∞∑︁
𝑘=1

𝜀𝑘𝑢𝑘(𝑥), 𝑣(𝑥) =

+∞∑︁
𝑘=1

𝜀𝑘𝑣𝑘(𝑥). (51)

Let us equate the coefficients at the same powers 𝜀. For 𝜀1 we arrive at the problem

0 = ∆𝑢1 + 𝑢1 − 𝑣1, 0 = 𝑑𝑘∆𝑣1 + 2𝑢1 − 𝑣1, (52)

the solution of which is
(𝑢1; 𝑣1) = β13𝑘(𝑥) = β1𝐶𝑘ψ𝑘(𝑥), (53)

where 3𝑘(𝑥), 𝐶𝑘 are defined in (41), (44), the amplitude β1 is not yet defined.

3.3. Equations for 𝜀2. Equating expressions in (50) with 𝜀2, to find (𝑢2, 𝑣2) we arrive
at the system

∆𝑢2 + 𝑢2 − 𝑣2 = −(𝑢1 − 𝑣1)
2, 𝑑𝑘∆𝑣2 + 2𝑢2 − 𝑣2 = −𝑢21. (54)

Taking into account the expressions 𝑢1, 𝑣1 (53), we find the vector function on the right-hand
side of the system (54)

𝑓2(𝑥) = −(µ2𝑘; 1)β
2
1ψ

2
𝑘(𝑥). (55)

The solvability condition for the system (54) is that the right-hand side 𝑓2 is orthogonal to the
eigenvector 𝛷𝑘(𝑥) of the linear adjoint operator A*:∫︁

Ω

𝑓2(𝑥)𝛷𝑘(𝑥)𝑑𝑥 = −β21
(︁
µ2𝑘 −

τ
2
(1− µ𝑘)

)︁∫︁
Ω

ψ3𝑘(𝑥)𝑑𝑥 = 0. (56)

The condition (56) is satisfied in the one-dimensional case, as well as in the case of a
rectangular parallelepiped due to the fact that the integral of the cube of the eigenfunction is
equal to zero. Next we consider the one-dimensional case.
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3.3.1. A nonlinear additive in the one-dimensional case. In the one-dimensional
case, the formula (55) takes the form

𝑓2(𝑥) = −(µ2𝑘; 1)β
2
1

1

2

(︂
1 + cos

(︂
2π𝑘
ℓ

𝑥

)︂)︂
. (57)

Therefore, the solution to the system (54) has the following structure

(𝑢2; 𝑣2) = β23𝑘(𝑥) + 𝑧0 + 𝑧(𝑥), (58)

where the first term is the solution of the homogeneous equation corresponding to the equation
(54), and the second and third are the solutions of the inhomogeneous equation

𝑧0 = (𝐶0
1 ;𝐶

0
2 ); 𝑧(𝑥) = (𝐶1

1 ;𝐶
1
2 ) cos

(︂
2π𝑘
ℓ

𝑥

)︂
. (59)

To find 𝑧0 from (54), we come to the system

𝐶0
1 − 𝐶0

2 = −1

2
β21µ

2
𝑘, 2𝐶0

1 − 𝐶0
2 = −1

2
β21, (60)

the solution of which is

𝐶0
1 =

1

2
β21(µ

2
𝑘 − 1), 𝐶0

2 =
1

2
β21(2µ

2
𝑘 − 1). (61)

Now let’s find 𝑧(𝑥). The coefficients 𝐶1
1 and 𝐶1

2 satisfy the equations

𝐶1
1 (1− µ2𝑘)− 𝐶1

2 = −1

2
β21µ

2
𝑘, 2𝐶1

1 − 𝐶1
2 (𝑑𝑘µ2𝑘 + 1) = −1

2
β21. (62)

The determinant of the (62) system has the form

∆(µ𝑘) = 𝑑𝑘µ2𝑘(µ2𝑘 − 1) + µ2𝑘 + 1. (63)

If µ2𝑘 ⩾ 1, then it follows from (63) that the determinant of the system is ∆(µ𝑘) > 0. If µ2𝑘 < 1,
then the diffusion coefficient 𝑑2𝑘 is determined and, transforming the expression (63), we again
obtain the positivity of the determinant of the system:

∆(µ𝑘) = µ2𝑘(µ2𝑘 − 1)(𝑑𝑘 − 𝑑2𝑘) > 0, (64)

since for ℓ ∈ (ℓ𝑘−1,𝑘, ℓ𝑘,𝑘+1) we have 𝑑𝑘 < 𝑑2𝑘.
Next we will need another expression ∆(µ𝑘). Taking into account the relation µ2𝑘 = 4µ𝑘,

we transform (64) to the form

∆(µ𝑘) =
3(4µ2𝑘 + 5µ𝑘 − 1)

1− µ𝑘
=

3(γ𝑘,2𝑘 − 1)

1− µ𝑘
> 0. (65)

Now from (62) we find 𝐶1
1 and 𝐶1

2

𝐶1
1 =

1

2

β21
∆(µ𝑘)

(µ2𝑘(𝑑𝑘µ2𝑘 + 1)− 1), 𝐶1
2 =

1

2

β21
∆(µ𝑘)

(2µ2𝑘 − (1− µ2𝑘)). (66)
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3.3.2. A nonlinear additive in the case of a rectangle. Let Ω = (0, 𝑎) × (0, 𝑏),
the sides of the rectangle are connected by the ratio (34), 𝑘 is the critical value of the wave
number. For convenience, we introduce the following notation: µ𝑘 = λ𝑚,𝑛 and ψ𝑘 = Ψ𝑚,𝑛(𝑥1, 𝑥2)
— eigenvalues and eigenfunctions of the operator −∆ with Neumann boundary conditions

∆Ψ𝑚,𝑛 + λ𝑚,𝑛Ψ𝑚,𝑛 = 0, 𝑥 ∈ Ω, 𝜕Ψ𝑚,𝑛

𝜕𝑛
|𝜕Ω = 0. (67)

There are three types of eigenvalues and eigenfunctions possible.
Type 1. For 𝑚 ̸= 0, 𝑛 = 0

µ𝑘 =
(︁π
𝑎

)︁2
·𝑚2; Ψ𝑚,𝑛 = cos

(︁π𝑚
𝑎

𝑥1

)︁
. (68)

In this case, the eigenvalue of the problem in the rectangle coincides with the eigenvalue µ𝑚
in the one-dimensional case for ℓ = 𝑎, and the eigenfunction coincides with the eigenfunction
ψ𝑚(𝑥1) in the one-dimensional case.

Thus, the coefficients of decompositions of secondary solutions for 𝜀2 have the form (58), (59),
where µ𝑘 = λ𝑚,0, µ2𝑘 = λ2𝑚,0, and its eigenfunction cos

(︀
2π𝑘
ℓ 𝑥
)︀

should be replaced with cos
(︀
2π𝑚
𝑎 𝑥1

)︀
.

Type 2. For 𝑚 = 0, 𝑛 ̸= 0

µ𝑘 =
(︁π
𝑏

)︁2
· 𝑛2; Ψ𝑚,𝑛 = cos

(︁π𝑛
𝑏
𝑥2

)︁
. (69)

In this case, the eigenvalue of the problem in the rectangle coincides with the eigenvalue µ𝑛 for
ℓ = 𝑏 in the one-dimensional case, and the eigenfunction coincides with the eigenfunction ψ𝑛(𝑥2)
in the one-dimensional case.

Then, as for type 1, the equations for 𝜀2 has already been solved in the one-dimensional case.
The coefficients of decompositions of secondary solutions for 𝜀2 have the form (58), (59), where
µ𝑘 = λ0,𝑛, µ2𝑘 = λ0,2𝑛, and the eigenfunction cos

(︀
2π𝑘
ℓ 𝑥
)︀

should be replaced with cos
(︀
2π𝑛
𝑏 𝑥2

)︀
.

Type 3. For 𝑚 ̸= 0, 𝑛 ̸= 0

µ𝑘 =
(︁π
𝑎

)︁2
·𝑚2 +

(︁π
𝑏

)︁2
· 𝑛2; Ψ𝑚,𝑛 = cos

(︁π𝑛
𝑏
𝑥2

)︁
cos
(︁π𝑛

𝑏
𝑥2

)︁
. (70)

Note that in the rectangle, the relationship between 𝑘 and ν𝑘 is generally unknown.
Obviously, for the eigenfunctions of the first and second types of the equation at 𝜀2 has

already been considered in the one-dimensional case. Let’s consider the eigenfunctions of the
third type. From equality

Ψ2
𝑚,𝑛 =

1

4

(︂
1 + cos

(︂
2π𝑚
𝑎

𝑥1

)︂
+ cos

(︂
2π𝑛
𝑏

𝑥2

)︂
+ cos

(︂
2π𝑚
𝑎

𝑥1

)︂
cos
(︁
2
π𝑛
𝑏
𝑥2

)︁)︂
(71)

it follows that in the expression (58), the term 𝑧0 = 𝐶0 has the same form as in (59), and the
term 𝑧(𝑥) has the following structure

𝑧(𝑥) = 𝐶1 cos

(︂
2π𝑚
𝑎

𝑥1

)︂
+𝐶2 cos

(︂
2π𝑛
𝑏

𝑥2

)︂
+𝐶3 cos

(︂
2π𝑚
𝑎

𝑥1

)︂
cos

(︂
2π𝑛
𝑏

𝑥2

)︂
. (72)

The constants 𝐶1, 𝐶2, 𝐶3 are found using the same reasoning as for eigenfunctions of the
first and second types. In this paper, the third type of eigenfunctions is not considered.
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3.4. The equations for 𝜀3. Equating expressions in (50) with 𝜀3, to find (𝑢3, 𝑣3) we
come to the system

∆𝑢3 + 𝑢3 − 𝑣3 = −2(𝑢1 − 𝑣1)(𝑢2 − 𝑣2) + 𝑣1(𝑢1 − 𝑣1)
2 ≡ 𝐹1,

𝑑𝑘∆𝑣3 + 2𝑢3 − 𝑣3 = −∆𝑣1 − 2𝑢1𝑢2 ≡ 𝐹2. (73)

3.4.1. The condition of solvability in the one-dimensional case. Taking into
account the expressions 𝑢1, 𝑣1 (53) and 𝑢2, 𝑣2 (58), we find the vector function 𝑓3(𝑥) = (𝐹1;𝐹2)
of the right-hand side of the system (74):

𝐹1 = −2β1β2µ2𝑘ψ
2
𝑘(𝑥)− 2β1µ𝑘(𝐶

0
1 − 𝐶0

2 )ψ𝑘(𝑥)− 2β2µ𝑘(𝐶
1
1 − 𝐶1

2 )ψ𝑘ψ2𝑘 +

+ β31µ
2
𝑘(1− µ𝑘)ψ3𝑘(𝑥),

𝐹2 = β1µ𝑘(1− µ𝑘)ψ𝑘(𝑥)− 2β1β2ψ2𝑘(𝑥)− 2β1𝐶0
1ψ𝑘(𝑥)− 2β1𝐶1

1ψ𝑘(𝑥)ψ2𝑘(𝑥). (74)

The condition for the solvability of the equation for 𝜀3 is that the right-hand side of the
system is orthogonal to the solution of the homogeneous adjoint equation:∫︁

Ω

𝑓3(𝑥)𝛷𝑘(𝑥)𝑑𝑥 = 0. (75)

It has the form

2µ𝑘(𝐶
0
1 − 𝐶0

2 ) + µ𝑘(𝐶
1
1 − 𝐶1

2 )−
3

4
β21µ

2
𝑘(1− µ𝑘) +

+
τ
2
(1− µ𝑘)[µ𝑘(1− µ𝑘)− 2𝐶0

1 − 𝐶1
1 ] = 0. (76)

After substituting the coefficients 𝐶0
1 , 𝐶

0
2 , 𝐶

1
1 , 𝐶

1
2 in (76), the solvability condition (75) takes the

form
β21𝑓(µ𝑘) = τµ𝑘(1− µ𝑘)2. (77)

Since the right-hand side of (77) is positive, the sign of β21 coincides with the sign of the expression
𝑓(µ𝑘):

𝑓(µ𝑘) = 𝑓1(µ𝑘) + τ𝑓2(µ𝑘);

𝑓1(µ𝑘) = µ𝑘

(︂
1

2
µ2𝑘 +

3

2
µ𝑘

)︂
− µ𝑘
∆(µ𝑘)

(︀
𝑑𝑘µ

2
𝑘 · µ2𝑘 − µ2𝑘 − µ2𝑘

)︀
;

𝑓2(µ𝑘) = (1− µ𝑘)
(︂
µ2𝑘 − 1 +

1

2∆(µ𝑘)
(µ2𝑘(𝑑𝑘µ2𝑘 + 1)− 1)

)︂
. (78)

3.4.2. Soft and hard loss of stability. IIf β21 > 0, then a soft loss of stability occurs
— secondary solutions (Turing structures) exist and are stable in the supercritical region 𝑑 > 𝑑𝑘,
where 𝑑𝑘 is the critical value of the diffusion coefficient. If β21 < 0, then there is a hard loss of
stability — secondary solutions exist in the subcritical region of 𝑑 < 𝑑𝑘, and they are unstable
[16,17].
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Let’s find the conditions under which a soft or hard loss of stability occurs. Taking into
account (65), we convert (78) to the form

𝑓1(µ𝑘) =
µ2𝑘(µ𝑘 + 1)

6(4µ2𝑘 + 5µ𝑘 − 1)
· 𝑔1(µ𝑘);

𝑓2(µ𝑘) =
(1− µ2𝑘)

6(4µ2𝑘 + 5µ𝑘 − 1)
· 𝑔2(µ𝑘), (79)

where 𝑔1(µ𝑘)and 𝑔2(µ𝑘) are found by formulas

𝑔1(µ𝑘) = 12µ2𝑘 + 29µ𝑘 − 1;

𝑔2(µ𝑘) = 24µ3𝑘 + 9µ2𝑘 − 34µ𝑘 + 5. (80)

Let’s introduce the notation 𝑦 = µ𝑘, 0 < 𝑦 < 1. Then 𝑓(𝑦) in (77) has the form

𝑓(𝑦) =
(1 + 𝑦)(𝑦2𝑔1(𝑦) + τ(1− 𝑦)𝑔2(𝑦))

6(4𝑦2 + 5𝑦 − 1)
. (81)

Our goal is to investigate the sign of the function 𝑓(𝑦). Using the expression µ𝑘 =
(︀
π𝑘
ℓ

)︀2,
we will find the limits of the change of 𝑦 when the length of the segment ℓ ∈ [ℓ𝑘−1,𝑘, ℓ𝑘,𝑘+1]. We
have an inequality (︂

π𝑘
ℓ𝑘,𝑘+1

)︂2

⩽ 𝑦 ⩽

(︂
π𝑘

ℓ𝑘−1,𝑘

)︂2

, (82)

where ℓ𝑘,𝑚 are defined in (27).
For 𝑘 = 1 we have: (︂

π
ℓ1,2

)︂2

⩽ 𝑦 ⩽

(︂
π
ℓ0,1

)︂2

. (83)

Given the expressions ℓ0,1 = π and ℓ1,2, for 𝑘 = 1 we arrive at the inequality

𝑦* ⩽ 𝑦 ⩽ 1, 𝑦* =

√
41− 5

8
≈ 0.1754, (84)

where 𝑦* is the positive root of the equation 4𝑦2+5𝑦−1 = 0, which is obtained from the condition
γ1 = 1. Thus, for 𝑦 > 𝑦* the denominator in (81) is positive.

For 𝑘 = 2 from (82) and (84) we come to equality

4

(︂
π
ℓ2,3

)︂2

⩽ 𝑦 ⩽ 4𝑦*; 0.2607 ⩽ 𝑦 ⩽ 0.7016. (85)

The last inequality in (85) is obtained as a result of approximate calculations.
It is easy to see that as the wave number 𝑘 increases, the length of the change interval 𝑦

(82) decreases. Taking into account the inequalities (32), (33), it is easy to show that in the limit
this interval contracts to a point that belongs to all the considered intervals.

Statement 6. At 𝑘 → ∞, the change interval of 𝑦 shrinks to the minimum point 𝑦0 =
√
2− 1

of the function 𝑑(𝑦) (25).

From (81) and (84) we conclude that in order for the expression β21 to have a plus sign, it
is enough that the function

𝐺(𝑦) = 𝑦2𝑔1(𝑦) + τ(1− 𝑦)𝑔2(𝑦) (86)

is positive when 𝑦 belongs to the interval (83), and τ changes in the interval (0, 1).

Revina S.V., Ryabov A. S.
Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2023;31(4) 515



Note that for τ = 0, the function 𝐺(𝑦) is positive. The study of 𝐺(𝑦) shows that it is positive
for all 𝑦 belonging to the maximum possible change interval of 𝑦 ∈ [𝑦*; 1] if the parameter τ is
small, namely τ ∈ (0; 0.2059).

In addition, there is a change interval of 𝑦 ∈ (𝑦1; 1), where 𝑦1 ≈ 0.47, at which 𝐺(𝑦) is
positive for all τ ∈ (0; 1).

3.4.3. The condition of solvability in the two-dimensional case. For the previously
considered eigenvalues of the first and second types, when one of the indices 𝑛 or 𝑚 vanishes,
the reasoning of the one-dimensional case takes place (74)–(81).

Let’s assume for certainty 𝑚 ̸= 0, 𝑛 = 0. Then, to find the square of the amplitude, we
get the same expression as in the one-dimensional case (77). To determine the type of loss of
stability, it is necessary to find the interval of change in the variable 𝑦 = µ𝑘.

Using the expression µ𝑘 = π2ν𝑘
𝑎2

, we find the limits of the change of 𝑦 when the side of the
rectangle is 𝑎 ∈ (𝑎𝑘−1,𝑘, 𝑎𝑘,𝑘+1). Instead of (82), we come to the inequality

π2ν𝑘
𝑎2𝑘,𝑘+1

⩽ 𝑦 ⩽
π2ν𝑘
𝑎2𝑘−1,𝑘

, (87)

where 𝑎𝑘,𝑘+1 are defined in (39).
For 𝑘 = 1 we have:

π2ν1
𝑎21,2

⩽ 𝑦 ⩽
π2ν1
𝑎20,1

. (88)

Given the expressions 𝑎0,1 and 𝑎1,2, for 𝑘 = 1 we arrive at the inequality

𝑦0 ⩽ 𝑦 ⩽ 1, 𝑦0 =

√︀
3 + 6

√
2− (1 +

√
2)

2
√
2

≈ 0.3445. (89)

Since 𝑦0 > 𝑦*, then for 𝑦 > 𝑦0 the denominator in (81) is positive. It is easy to see that statement
6 is also true in the two-dimensional case. The sufficient conditions for a soft loss of stability,
formulated at the end of the previous paragraph, are also valid in the two-dimensional case.

3.4.4. Stationary solutions. Having considered the higher terms of the decomposition
of the solution in degrees of 𝜀, we conclude that in (75) the coefficient β2 = 0. Summarizing the
results obtained, we come to the statement.

Statement 7. Let 𝑘 be a critical wave number; in the one-dimensional case, the length of the
segment ℓ is enclosed in the interval ℓ ∈ (ℓ𝑘−1,𝑘, ℓ𝑘,𝑘+1), in the two-dimensional case for 𝑚 ̸= 0,
𝑛 = 0 (68) the side of the rectangle 𝑎 belongs to the interval 𝑎 ∈ (𝑎𝑘−1,𝑘, 𝑎𝑘,𝑘+1). Then at
τ ∈ (0; 0.2059) there is a soft loss of stability of the equilibrium position (1; 1) of a nonlinear
system and for small 𝑑 > 𝑑𝑘 stable secondary spatially inhomogeneous solutions arise

(𝑢(𝑥); 𝑣(𝑥)) = ± (𝑑− 𝑑𝑘)
1/2 β1𝐶𝑘 cos

(︂
π𝑘
ℓ
𝑥1

)︂
+ (𝑑− 𝑑𝑘) (𝑧0 + 𝑧(𝑥)) +𝑂((𝑑− 𝑑𝑘)

3/2), (90)

where is 𝐶𝑘 defined in (44),

𝑧0 =
(︀
𝐶0
1 ;𝐶

0
2

)︀
; 𝑧(𝑥) =

(︀
𝐶1
1 ;𝐶

1
2

)︀
cos

(︂
2π𝑘
ℓ

𝑥1

)︂
, (91)

the coefficients 𝐶0
1 , 𝐶

0
2 are found in (61), and 𝐶1

1 , 𝐶
1
2 are found in (66).
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Fig. 2. Components of the secondary solution 𝑢(𝑥) (a) и 𝑣(𝑥) (b) at 𝑘 = 2, ℓ = 3π

In Fig. 2 an example of a secondary spatially inhomogeneous solution obtained analytically
is given in the case when the spatial variable changes in a rectangle.

The numerical calculations are in full agreement with the statements obtained analytically.
In Fig. 3 the results of numerical integration of a nonlinear system (48) in the case of a soft loss
of stability in the one-dimensional case under the initial condition are presented

𝑢(𝑥, 0) = 𝜀 cos

(︂
2

3
𝑥

)︂
; 𝑣(𝑥, 0) =

5

9
𝜀 cos

(︂
2

3
𝑥

)︂
(92)

for a critical wavenumber 𝑘 = 2 and parameter values ℓ = 3π, τ = 0.15, 𝜀 = 0.1, 𝑑 = 𝑑2 + 𝜀2,
where the critical diffusion coefficient is 𝑑2 = 5.85 according to the formula (22). The solution
of the non -stationary system in a short period of time goes to the stationary regime (90),
corresponding to the positive β1 = 0.2. If in the initial condition (92) 𝜀 is replaced by −𝜀, then
the mode corresponding to the «minus» sign in the formula (90) is set in the nonlinear system.

If the value of τ is taken from the interval corresponding to a hard loss of stability, that
is, close to one (in Fig. 4 the value of τ = 0.95, the other parameters are the same as in Fig. 3),
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Fig. 3. Numerical solution 𝑢(𝑥, 𝑡) (a) and 𝑣(𝑥, 𝑡) (b) of a non-linear non-stationary system for τ = 0.15 with initial
conditions close to the stationary state
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Fig. 4. Numerical solution 𝑢(𝑥, 𝑡) (a) and 𝑣(𝑥, 𝑡) (b) of a non-linear non-stationary system for τ = 0.95 with initial
conditions close to the stationary state

then in numerical experiments the equilibrium position loses stability, but there is no transition
to a stationary mode.

Conclusion

1. The Turing instability region. A region of necessary and sufficient Turing instability
conditions is found for the Gehrer-Meinhardt system with a relaxation parameter on the
parameter plane (τ, 𝑑), where τ is the relaxation parameter, and 𝑑 is the diffusion coefficient.

2. The critical diffusion coefficient. An explicit expression of the critical diffusion coeffi-
cient is found when the system is considered in an arbitrary bounded domain. It is shown
that the critical diffusion coefficient depends on the eigenvalues of the Laplace operator
in this domain.The dependence of the critical diffusion coefficient on the characteristic
size of the domain in the case of a segment and a rectangle is established. Expressions of
the length of the segment and the length of the side of the rectangle are clearly found,
at which a «change» of the critical wave number occurs. These expressions are found
from the condition that some combination of the eigenvalues of the Laplace operator γ𝑘
is equal to one. It is shown that for these domains, for each critical wavenumber, there
is a single value of a characteristic size at which the necessary and sufficient Turing
instability conditions coincide. This value corresponds to the minimum point of the diffusion
coefficient, considered as a function of the length of the segment in the one-dimensional
case or the side of the rectangle in the two-dimensional case. A comparison is made with
the Turing instability conditions for the Schnakenberg system.

3. Turing structures. Using the Lyapunov-Schmidt method, the first few terms of the
series for degrees of supercriticality are found explicitly when the diffusion coefficient
is in the vicinity of the critical value. The studies are carried out for a segment, as
well as for a rectangle in the case when the eigenfunctions of the Laplace operator have
the same structure as in the one-dimensional case. Sufficient conditions for soft loss of
stability are obtained, and examples of secondary solutions of nonlinear equations are
given. The proposed approach is general in nature and can be extended to other reaction-
diffusion systems. For example, the Schnakenberg system, Fitzhugh-Nagumo, Gray-Scott,
the brucellator model and others.
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