
 Applied Problems of 
Nonlinear Oscillation and Wave Theory

Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2023;31(5)

Article DOI: 10.18500/0869-6632-003067

Study of character of modulation instability
in cyclotron resonance interaction of an electromagnetic wave

with a counterpropagating rectilinear electron beam

A.A. Rostuntsova1,2,3�, N.M. Ryskin1,3

1Saratov Branch of Kotelnikov Institute of Radioengineering and Electronics of the RAS, Russia
2A.V. Gaponov-Grekhov Institute of Applied Physics of the RAS, Nizhny Novgorod, Russia

3Saratov State University, Russia
E-mail: � rostuncova@mail.ru, ryskinnm@info.sgu.ru

Received 14.07.2023, accepted 4.09.2023, available online 19.09.2023, published 29.09.2023

Abstract. In this paper, the interaction of a monochromatic electromagnetic wave with a counterpropagating
electron beam moving in an axial magnetic field is considered. The purpose of this study is to investigate the
conditions for occurrence of modulation instability (MI) in such a system and to determine at which parameters
of the incident wave the MI is absolute or convective. Methods. Theoretical analysis of the MI character is carried
out by studying the asymptotic form of unstable perturbations using the saddle-point analysis. The analytical
results are verified by numerical simulations. Results. Theoretically, the boundary of change in the character of MI
on the plane of input signal parameters (amplitude and detuning of the frequency from the cyclotron resonance) is
determined. Numerical simulations confirm that as the signal frequency increases, the regime of self-modulation,
which corresponds to the absolute MI, is replaced by the stationary single-frequency transmission corresponding
to the convective MI. The numerical results coincide with the analytical ones for the system, which is matched at
the end. The matching is implemented by smooth increasing of the guiding magnetic field in the region of electron
beam injection. Conclusion. Determining the analytical conditions for the implementation of the absolute MI is
of practical interest, since the emerging self-modulation can lead to the generation of trains of pulses with the
spectrum in the form of frequency combs.
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Introduction

One of the fundamental effects leading to the emergence of complex dynamics in nonlinear
media with dispersion is the modulation instability (MI) [1–6]. MI is the instability of a mono-
chromatic wave with a carrier frequency ω with respect to slow spatio-temporal modulations at
the side frequencies ω ± Ω, Ω ≪ ω. MI can be observed in systems of various nature and plays
an important role in nonlinear optics, plasma physics, hydrodynamics, etc.

In the presence of MI, the harmonic signal propagating in a nonlinear medium with
dispersion is enriched with new independent spectral components. Instead of stationary wave
propagation, self-modulation is observed, that is, wave amplitude oscillations, which can be
both regular and chaotic. The process of MI development, as a rule, ends with the formation
of envelope solitons. The most famous example of such solitons are the soliton solutions of the
nonlinear Schrodinger (NLS) equation [2–6].

In a medium with a finite length excited by a harmonic signal at one of the boundaries, the
wave propagation process significantly depends on whether the MI is convective or absolute [6,7].
In the works [8, 9], the differences between convective and absolute MI were investigated using
the example of relatively simple model systems described by the NLS equation or the nonlinear
Klein–Gordon equation. In convective instability, unstable perturbations move along the system
and leave it. Thus, after the transient process, the regime of stationary wave propagation is
established. Nonstationary regimes of self-modulation are observed only in the case of absolute
MI, when unstable perturbations are continuously generated along the entire length of the system.

In the work [10], we investigated MI in the cyclotron resonance interaction of an electro-
magnetic wave (EMW) with a counterpropagating, initially rectilinear beam of electrons moving
in an axial magnetic field. The beam acts as a nonlinear medium consisting of non-isochronous
electron-oscillators. The nonisochronicity is due to the relativistic dependence of the cyclotron
frequency on the electron energy. When the frequency of the incident monochromatic EMW
is within the cyclotron absorption band, and the signal power is sufficiently small, the wave
attenuates and at the same time the transverse oscillations of the electrons are excited. However,
with an increase in the signal amplitude, the absorption band shifts to the region of lower
frequencies due to the non-isochronous oscillations of the electrons. As a result, EMW propagation
without attenuation becomes possible. At the same time, due to the development of MI, the input
signal can be transformed into a train of microwave solitons. Note that a similar effect was first
predicted in [11], where it was called nonlinear or soliton tunneling (see also [3]). With respect to
the system considered in this paper, it was discovered and investigated in the works [12–14]. The
implementation of this effect in microwave electronics is of obvious interest from the point of view
of generating trains of short microwave pulses with a spectrum in the form of frequency combs,
which is relevant for a number of practical applications, for example, in spectroscopy [15,16].

Theoretical analysis of nonlinear stationary solutions in the form of solitons allowed us
to determine an analytical condition for the amplitude and frequency of the incident EMW, in
which cyclotron absorption is replaced by self-modulation, and the found condition agrees well
with the results of numerical simulation [10]. In addition, it was found that with an increase in
the frequency of the input signal, the nonstationary regime of self-modulation is replaced by the
stationary propagation of the wave. In this paper, it is shown that this effect is associated with a
change in the nature of MI from absolute to convective. The results of theoretical analysis of the
nature of MI are presented, in particular, a rigorous study of the asymptotic form of unstable
perturbations by the saddle-point analysis is carried out. As a result, the analytical boundary
of the transition from absolute MI to convective on the plane of the input signal parameters is
determined. The theoretical conclusions are confirmed by the results of numerical simulation.
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Fig 1. a — scheme of the resonance cyclotron interaction of radiation with a counterpropagating rectilinear electron
beam; b — dispersion diagram ω (𝑘) (color online)

1. Model and basic equations

The scheme of the considered model is shown in Fig. 1, a. A annular electron beam guided
by a uniform axial magnetic field 𝐵0 interacts with a backward wave in a cylindrical waveguide
under the cyclotron resonance condition

ω𝑟 + ℎ𝑟𝑉𝑧 ≈ ω𝐻 , (1)

where ω𝑟 and ℎ𝑟 = ℎ𝑟 (ω𝑟) are frequency and propagation constant of the wave, respectively,
𝑉𝑧 is longitudinal velocity of electrons, ω𝐻 = 𝑒𝐵0/ (𝑚𝑒γ) is the cyclotron frequency, 𝑒 and 𝑚
are the charge and rest mass of the electron, γ is the Lorentz factor. Electrons rotating in an
axial magnetic field are cyclotron oscillators that are non-isochronous due to the relativistic
dependence of the cyclotron rotation frequency on energy ω𝐻 = ω𝐻 (γ). It is assumed that the
electrons have no transverse velocity at the entrance to the interaction space. Such a beam forms
a passive medium of non-isochronous cyclotron electron-oscillators, unlike cyclotron resonance
masers, where a beam of rotating electrons, which is an active medium, enters the electromagnetic
structure. The EMW propagating towards the beam of unexcited electron-oscillators, when the
condition (1) is met, begins to be absorbed, causing transverse oscillations of the electrons.
With an increase in the amplitude of these oscillations, the cyclotron resonance condition (1) is
violated, and the absorption is saturated.

The electron-wave interaction in the model under consideration is described by the system
of equations well known from the literature [10,12–14]:

𝜕𝑎

𝜕τ
− 𝜕𝑎

𝜕𝑍
= −𝑝, (2)

𝜕𝑝

𝜕𝑍
+ 𝑖|𝑝|2𝑝 = 𝑎. (3)

Here (2) is the equation of wave excitation by an electron beam, and (3) is the equation of electron
motion in the wave field averaged over the period of cyclotron oscillations. In the equations
(2), (3) 𝑎 is the normalized slowly varying complex amplitude of the wave field, 𝑝 = 𝑝𝑥 + 𝑖𝑝𝑦 is
the normalized transverse momentum of electrons, 𝑍 ∼ 𝑧 and τ ∼ (𝑡− 𝑧/𝑉𝑧) are dimensionless
independent variables, 𝑥, 𝑦 are transverse coordinates, 𝑧 is longitudinal coordinate, and 𝑡 is time.
All variables in (2) are dimensionless, for more information, see [10, 12–14]. Since the electron
beam at 𝑍 = 0 has zero rotational velocity, the boundary condition is

𝑝 (𝑍 = 0) = 0. (4)

Rostuntsova A.A., Ryskin N.M.
Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2023;31(5) 599



At the right boundary of the system, at 𝑍 = 𝐿, where 𝐿 is a dimensionless length, an external
harmonic signal is applied, that is

𝑎 (𝑍 = 𝐿) = 𝐴0𝑒
𝑖ωτ, (5)

where 𝐴0 and ω are the normalized amplitude and frequency detuning of the signal from the
frequency of cyclotron resonance, respectively.

2. Nonlinear dispersion relation

Consider the solutions of the equations (2), (3) in the form of a monochromatic wave with
constant amplitude: 𝑎 = 𝐴0𝑒

𝑖(ωτ−𝑘𝑍), 𝑝 = 𝑃0𝑒
𝑖(ωτ−𝑘𝑍). In [10], the nonlinear dispersion relation

was obtained for these solutions

(ω+ 𝑘)
(︁
𝑘 − |𝑃0|2

)︁
= −1, (6)

moreover, the complex amplitudes of the waves 𝐴0 and 𝑃0 satisfy the relation

|𝑃0|2 = |𝐴0|2 (ω+ 𝑘)2 . (7)

Analysis of the equation (6) shows that there is a non-transmission band ω−𝑐 < ω < ω+𝑐 ,
whose boundaries ω±𝑐 = ±2−|𝐴0|2 are shifted to the region of lower frequencies with an increase
in the amplitude of the wave. A qualitative view of the dispersion diagram is shown in Fig. 1, b.
For waves with ω > ω+𝑐 corresponding to the upper branch of the dispersion characteristic, the
Lighthill criterion is met [2–6]

χβ > 0, (8)

testifying to the presence of MI. Here χ = 𝜕2ω/𝜕𝑘2 is the group velocity dispersion parameter,
and β = −𝜕ω/𝜕|𝐴0|2 is the parameter of nonlinearity. Taking into account (6), it is not difficult
to find expressions for these parameters:

χ = − 2

(𝑘 − |𝑃0|2)3
, β =

1

(𝑘 − |𝑃0|2)4
. (9)

If one selects the frequency of the input harmonic signal in the non-transmission band
and starts increasing its amplitude, sooner or later this frequency will be equal to the critical
ω+𝑐 . Instead of cyclotron absorption, propagation of undamped waves (nonlinear tunneling) will
become possible. However, the analysis of the nonlinear dispersion relation is carried out for an
infinite medium, whereas the system under consideration is fundamentally limited in space, since
the boundary conditions (4), (5) are placed at different ends of the interaction space. As shown
in [10], the critical value of the frequency at which EMW propagation begins differs from ω+𝑐
and is determined by the equation

ω = 2− 1

2
|𝐴0|2. (10)

Note that (10) exactly corresponds to the relation between the frequency and amplitude of the
exact solution in the form of a soliton [10,12–14]. Indeed, MI causes the tunneling wave to split
into traveling envelope solitons (see [10]).
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3. Analysis of the nature of modulation instability

To determine the nature of instability (absolute or convective), we will investigate the
asymptotic form of unstable perturbations at infinitely large times [7, 18, 19]. Since MI is the
instability of a monochromatic wave with respect to slow modulations with frequencies lying in a
small interval near the carrier frequency, we will define small perturbations of the monochromatic
solution

𝑎 = (𝐴0 + ̃︀𝑎 (𝑍, τ)) 𝑒𝑖(ωτ−𝑘𝑍),

𝑝 = (𝑃0 + ̃︀𝑝 (𝑍, τ)) 𝑒𝑖(ωτ−𝑘𝑍),
(11)

where |̃︀𝑎 (𝑍, τ) | ≪ |𝐴0|, |̃︀𝑝 (𝑍, τ) | ≪ |𝑃0|, and ω and 𝑘 satisfy the dispersion relation (6).
Following [6–9], we will look for a solution in the form of a pair of satellites equidistant from the
carrier frequency: ̃︀𝑎 = 𝑎+𝑒

𝑖(Ωτ−𝐾𝑍) + 𝑎−𝑒
−𝑖(Ωτ−𝐾𝑍),

̃︀𝑝 = 𝑝+𝑒
𝑖(Ωτ−𝐾𝑍) + 𝑝−𝑒

−𝑖(Ωτ−𝐾𝑍).
(12)

After substituting (11) and (12) into the original equations (2), (3) and linearization of the
system, we obtain the dispersion relation for the frequency Ω and the wave number 𝐾 of small
perturbation. The roots of this equation can be written explicitly:

Ω (𝐾) = −𝐾 +
𝐾 (ω+ 𝑘)2

1 + (ω+ 𝑘)2
(︀
𝐾2

0 −𝐾2
)︀ ±

𝐾 (ω+ 𝑘)2
√︁
(ω+ 𝑘)2

(︀
𝐾2 −𝐾2

0

)︀
1 + (ω+ 𝑘)2

(︀
𝐾2

0 −𝐾2
)︀ , (13)

where the notation 𝐾2
0 = 2|𝑃0|2/(ω+ 𝑘) is introduced. Recall that we consider the upper branch

of the dispersion characteristic, where MI occurs (see Fig. 1, b). In this case, (ω+ 𝑘) > 0 and
𝐾2

0 > 0.
If we consider 𝐾 to be real, in the domain of wave numbers 𝐾2 < 𝐾2

0 the roots Ω (𝐾) will
be complex. For the instability increment λ = −Im[Ω (𝐾)] we get the following expression:

λ (𝐾) = |𝐾| (ω+ 𝑘)3
√︀
𝐾2

0 −𝐾2

1 + (ω+ 𝑘)2
(︀
𝐾2

0 −𝐾2
)︀ . (14)

Fig 2. Increment of the MI λ(𝐾) as a function of 𝐾
and |𝑃0| at ω = 2

It follows from (14) that MI actually occurs on
the upper branch of the dispersion characteristic,
which corresponds to the conclusions based on
the Lighthill criterion (see section 2). Figure 2
shows the dependence of the instability increment
on 𝐾 and |𝑃0|. It can be seen that with an
increase in the amplitude of the wave, the region
of wave numbers in which MI occurs expands.

For a more rigorous analysis, we will
consider both Ω and 𝐾 complex. Following
[7, 18, 19], we present a general solution for a
small field perturbation in the form of a Fourier
integral
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̃︀𝑎 (𝑍, τ) = +∞∫︁
−∞

𝑎𝐾𝑒𝑖(Ω(𝐾)τ−𝐾𝑍)𝑑𝐾. (15)

The asymptotic form of the integral (15) under the condition τ→ ∞ is estimated by the saddle-
point analysis. In doing so, ̃︀𝑎 (𝑍, τ) ∼ 1√

τ
𝑒−Im[Ω(𝐾𝑠)]τ, (16)

where 𝐾𝑠 is the saddle point where 𝑑Ω(𝐾𝑠)/𝑑𝐾 − 𝑍/τ = 0 [7, 18,19].
Instability is absolute if at any fixed point 𝑍 at τ→ ∞ the perturbation increases infinitely

in time. According to the estimate (16), this condition corresponds to the inequality

Im [Ω(𝐾𝑠)] < 0. (17)

The saddle point in the limit 𝑍/τ → 0 is determined from the condition of zero complex
group velocity

𝑑Ω
𝑑𝐾

= 0. (18)

In this case, the integration contour in (15) is deformed in such a way as to pass through the
saddle point along the line of the steepest descent.

The equation (18) is solved numerically together with the dispersion relation (13). There
are a total of 6 saddle points 𝐾𝑖

𝑠, which correspond to the roots Ω𝑖(𝐾𝑠), 𝑖 = 1, ..6. We number
them as shown in Fig. 3, where an example of the dependencies of ReΩ𝑖 and ImΩ𝑖 on the carrier
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Fig 3. Dependences of the real (a) and imaginary (b) parts of the roots of the characteristic equation Ω𝑖 on the
carrier frequency ω at |𝑃0| = 0.7. The critical value ωcr = 2.18 corresponds to the change of the character of MI
(color online)
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frequency ω at some fixed value |𝑃0| is given. The roots have symmetry Ω1,2,3 = −Ω6,5,4, which
is obviously due to the choice of a perturbation in the form of a pair of symmetric satellites (see
(12)).

For any fixed amplitude |𝑃0|, there is some critical value of the carrier frequency ω = ωcr,
such that for ω > ωcr all saddle points 𝐾𝑠 lie on the real axis. The corresponding roots of the
dispersion relation (13) are also real, that is, Im[Ω(𝐾𝑠)] = 0. This means that at ω > ωcr the
condition (17) is not met, therefore, MI is convective.

When the frequency ω becomes below the critical value, two pairs of saddle points with
a nonzero imaginary part appear in the 𝐾-plane. The corresponding roots Ω𝑖 become complex
conjugate: Ω2 = Ω*

3, Ω4 = Ω*
5 (see Fig. 3). The roots Ω1, Ω6 remain real numbers. Obviously,

in each pair of complex-conjugate roots, the condition (17) is fulfilled for one of them, therefore
MI is absolute.

Fig. 4 illustrates the change in the position of the roots in the complex plane when changing
ω. With a decrease in ω, the real parts of complex roots decrease in absolute value, and the
imaginary ones, on the contrary, increase. When the carrier frequency becomes less than the
cutoff frequency ω+𝑐 , the wave becomes attenuated and it obviously makes no sense to talk about
MI.

4. Numerical simulation

Сompare the results of theoretical analysis of the nature of MI with numerical simulation.
The equations (2), (3) with boundary conditions (4), (5) were integrated using an explicit finite-
difference scheme of the second-order accuracy for both independent variables.

In Fig. 5 the partitioning of the parameter plane (ω, |𝐴0|) on the areas of various dynamic
regimes is presented. The dashed line shows the boundary of the non-transmission band, below
which, in region 1, the input signal attenuates. This boundary is completely consistent with the
theoretical formula (10). Above it, in region 2, the wave propagation is non-stationary, that is,
self-modulation regimes are observed. In this area, MI is absolute. Note that near the boundary,
close-to-periodic trains of traveling solitons are generated, however, as we move away from the
boundary, the shape of the generated signal begins to have a complex, irregular character (for
more information, see [10]).

In region 3, where the MI becomes convective, after a certain transient process, the regime
of stationary wave propagation is established. The established dependencies |𝑎(𝑍)| and |𝑝(𝑍)|
are periodic. The corresponding analytical solutions were found in [10]. The solid line in Fig. 5
corresponds to the analytical boundary of the change in the character of MI. For its construction,
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the critical values ωcr were calculated at different amplitudes |𝑃0| and then using the relations
(6) and (7), the corresponding dependence ωcr(|𝐴0|) was found. However, it should be noted
that the numerically found boundary of the change in the character of MI is quite different from
the theoretical one. This is obviously explained by the fact that the theoretical analysis in the
section 3 was carried out for boundless system, whereas the system with boundary conditions
(4) and (5) is fundamentally bounded and has a finite length 𝐿. The reflection of the wave from
the left boundary prevents the shift of perturbations along the system in the case of convective
MI. Accordingly, the boundary of the establishment of stationary regime is significantly shifted
to the region of higher frequencies, and the longer the length of the system, the more pronounced
this effect is (see Fig. 5).

It is of interest to study the change in the nature of MI for a system that is matched on
the left border, which allows to eliminate reflections. This can be achieved by smoothly changing
the magnetic field along the system. Specifically, a matching section of length 𝑍0 < 𝐿 was added
to the numerical model, on which the frequency detuning dependent on 𝑍 is introduced into the
equation of motion:

𝜕𝑝

𝜕𝑍
+ 𝑖(∆(𝑍) + |𝑝|2)𝑝 = 𝑎, (19)

which was selected in the form of

∆(𝑍) =

⎧⎨⎩∆max(𝑍0 − 𝑍)2/𝑍2
0 , 0 ⩽ 𝑍 ⩽ 𝑍0,

0, 𝑍0 ⩽ 𝑍 ⩽ 𝐿.
(20)

The dependence (20) simulates a smooth increase in the magnetic field in the region 0 ⩽ 𝑍 ⩽
𝑍0 along the direction of motion of electrons entering into the interaction space. At 𝑍 = 𝑍0,
the magnetic field reaches a value corresponding to the cyclotron resonance, and then remains
constant. In this case, the mismatch turns to zero.

Simulation of the matched system shows that with sufficiently long matching section,
reflections are practically not observed. The numerical boundary of the change in the character
of MI, shown in Fig. 5 by circles, agrees well with the theoretical one, and the simulation results
practically do not depend on the parameters included in (20). The specifically presented results
are obtained for ∆max = 2, 𝑍0 = 10 and 𝐿 = 23, that is, the length of uniform part of the system
is 13.
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Figure 6 illustrates the spatiotemporal dynamics of the field at different values of the input
signal frequency for unmatched (a, c, e) and matched (b, d, f ) system. For the matched system,
only uniform section is shown, 𝑍0 ⩽ 𝑍 ⩽ 𝐿. The figures 6, a, b are plotted at |𝐴0| = 1.0 and
ω = 1.5, which corresponds to a point lying slightly above the transmission boundary in Fig. 5.
In both cases, the development of MI leads to the generation of a periodic train of solitons.
However, in the unmatched system, a partial reflection of the soliton from the left boundary and
its propagation in the in the same direction in which the electron beam moves occurs that is
clearly seen in Fig. 6, a. In the case of the matched system (see Fig. 6, b) it can be seen that
solitons form near the right boundary, and then propagate along the system at a constant speed.

When increasing the frequency to ω = 2.5 we get into the area of convective MI (see Fig. 5).
However, in the unmatched system, due to the influence of the reflected wave, the stationary
regime is not established. The formation of solitons does not occur, and fluctuations in the
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amplitude of the field are complex, irregular in nature (see Fig. 6, c). The stationary regime is
established in the matched system (see Fig. 6, d). At the same time, the amplitude periodically
depends on the coordinate, which indicates the presence of a reflected signal, but its influence is
small. The standing wave ratio (SWR), which is defined as the ratio of the maximum value of
the amplitude to the minimum, is equal to 1.28.

At ω = 3.5, the stationary regime is set for both matched and unmatched system (see
Fig. 6, e, f ). In both cases, the amplitude periodically depends on the coordinate, but for the
matched system, this dependence is less pronounced: for the unmatched system, the SWR is
1.22, for the matched system, it is 1.13.

Conclusion

In this paper, MI is investigated in the interaction of an electromagnetic wave with a
counterpropagating, initially rectilinear electron beam under the cyclotron resonance condition.
The nonlinear nature of the dependence of the cyclotron frequency on the electron energy leads to
a shift of the cyclotron absorption band and the manifestation of the effect of nonlinear tunneling
with an increase in the power or frequency of the incident wave. A rigorous analysis of the nature
of MI has been carried out. By analyzing the asymptotic form of perturbations calculated by the
saddle-point analysis, the conditions under which MI is absolute or convective are found, and
the boundary of the change in the character of MI on the plane of the input signal parameters
is constructed.

Numerical simulation shows that with an increase in the frequency of the input signal,
nonstationary self-modulation regimes that correspond to absolute MI are replaced by stationary
single-frequency signal propagation due to convective MI. However, the fundamental influence of
reflections in the spatially limited system complicates the comparison with theoretical conclusions.
The simulation of the system matched at the boundary through which the electron beam enters is
carried out. In this case, the boundary of the change in the character of MI is in good agreement
with the theoretical dependence obtained from the analysis of the character of MI. In the matched
system, the generation of periodic trains of solitons is facilitated. Such regimes are of interest
from the point of view of generating frequency combs in the microwave range.
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