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COUPLED ROTATORS APPROACH TO THE DYNAMICS
OF INTERACTING MAGNETIC LAYERS’

Bernd Esser, Viadimir Rzhevskil

The dynamical properties of two anisotropic rotators modelling magnetic layers
coupled by bilinear and biquadratic interactions terms are considered. The easy plane case is
considered in detail and it is shown that the presence of the biquadratic coupling produces a
sequence of bifurcations in the rotational phase spaces. In a first bifurcation a new ground
state with rotators located in the easy plane and including a finite angle is generated.
Hyperbolic points appear by increasing the biquadratic coupling in a second bifurcation.
These hyperbolic points correspond to a nonparallel rotator configuration with rotators
splitted off from the easy plane and symmetrically displaced along the transversal direction.
The corresponding energy is located between the energies of the ground state and the parallel
rotator configuration. Phase space portraits displaying how the stationary states are embedded
in the rotational flow are shown.
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Introduction

Magnetic materials display a wealth of nonlinear phenomena [1] among which in
the last decade the biquadratic coupling mechanism between magnetization vectors in
layer sysiems has attracted particular attention (see e. g. [2-4]). In such systems the
coupling between the magnetization vectors of different layers can be influenced to a
large extent by selecting specific spacers through which the magnetic layers interact.
Then by changing the spacer material and layer configurations the magnetic properties of
the layer systems can be varied to a great extent and desired properties for applications
produced, for the calculations of the interlayer exchange coupling from microscopic
quantum models for different systems we refer to the recent work [5]. In the discussion of
the coupling between the magnetic layers the relation between the bilinear and
biquadratic coupling types has turned out to be of particular importance [2]. Systematic
studies of the coupling coefficients for different magnetic layer systems reveal that the
magnitude of the biquadratic coupling coefficient can be well above the bilinear
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Ha KOTOpo#i foirke rofpl paboran npodeccop ¥0.J1. KnuMonroruy, i Ha kKadenpe craTuueckolt husuky i
HenHHERHON AUHaMuKA ['yMGOIBITCKOTO YHHBEPCHTETa BEpRuHa, BO3rIaBIsIeMO B TEUCHHE MHOTHX JieT
npodeccopom B. D6emuHrom.
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coefficient for some parameter regions (e. g. for some values of the spacer layer thickness
[6]). So far the corresponding calculations were static in the sense that they focussed on
the energies of the energetically lowest states, which can display transitions when the
bilinear and biquadratic coupling coefficients are changed, as was pointed in [2,3].

The aim of this paper is to consider the implications of the presence of both the
bilinear and biquadratic coupling mechanism on the dynamical level for coupled
magnetization vectors. By using a classical approach familiar from the Landau-Lifshitz
equations we investigate the dynamics of the magnetization vectors in a model of coupled
rotators with both the bilinear and biquadratic interaction terms present. Starting from the
equations of motion for the coupled rotators we will show that a sequence of bifurcations
is possible in the rotational phase space of the rotators. In order to restrict the number of
possible relations between the parameters in the equations of motion we will consider this
bifurcation . sequence for the easy plane case of the intralayer part. Analysing the
bifurcation sequence we find all the stationary rotator configurations including the ground
state and the relations between these configurations from the energetic side. In particular
we will show that besides the bifurcation to a new ground state there is another
bifurcation in the excited state region of the rotator configurations creating hyperbolic
points. The full dynamic analysis presented here is a necessary condition for a further
understanding of dynamical phenomena in coupled magnetic layer systems such as
switching between different stationary states and relaxation. o

The paper is organized as follows. In the section 1 the model for the coupled
rotators is formulated and the basic equations are derived. Stationary states and their
stability are treated in the sections 2 and 3, respectively. Based on the results of the
sections 2 and 3 in the 4 section the bifurcation sequence is discussed and representative
phase space portraits are shown. Finally in the last section we summarize our conclusions.

1. Model

We consider a system of two magnetic layers with coupled magnetization vectors.

The magnetization vectors are represented by rotators and described by a classical .
Hamilton function

H=H,+H_, 1)

where H, and H, , are the Hamiltonians of the isolated rotators and their interaction,
respectively. The Hamiltonian of the isolated rotators H,, is taken as to characterize an
anisotropic system with different in plane and out of plane constants a>0 and >0, i.e.

-2
Hy=% _a/2(M 2+M ?) + BI2M 2. )

In (2) the z-axis is chosen transversal to the plane, M, M, and M, are the components
of the angular momentum vectors of the rotators M,, i=1,2. The interaction is taken as an

expansion in powers of the scalar products of these vectors (M,,M,)
H_ =%, A(M MY, ®3)

where A i k=1,2,.. are the corresponding interaction constants. We will consider the case
of two anisotropic rotators coupled by both the bilinear and biquadratic interaction terms,
i.e. we will keep the interaction terms up to the second order k=2. For the sign of A, we
will take the case A,=-1A,1<0. Then in the absence of biquadratic coupling the rmmmum
energy corresponds to a parallel orientation (ferromagnetic case) of the magnetization
vectors of the layer system. For the sign of the blquadratlc interaction constant A, wW¢
assume for the sake of definiteness that A,>0, which is observed in different systems
relevant for applications [2]. A schematic representatlon of the model is shown in the fig. 1.
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7 M, Fig. 1. Schematic representation of the magnetic
A layer system. Two magnetic layers L, and L, are

7 shown with the magnetization vectors M, and M,,

éZ x respectively. The anisotropy axis of both layers is

directed transversal to the layer planes and is parallel

I to the z-axis. The magnetizations M, and M,

interact through the spacer § by both bilinear and
biquadratic interaction terms, see eq. (3). By
Ly, changing the spacer material and/or thinkness the
interaction strength is changed.

The equations of motion for the
coupled rotators are obtained from

dM/dt = {M_H), (4)

where {.,.} represent the classical Poisson brackets. The r.h.s. of (4) is calculated by using
the explicit forms of Hy, H;  and the standard angular momentum brackets for M, , M,

nt
and M, . In partlcular for the interaction part one finds the relation

M,

{M,,(M,M,)"} = (-1)k(M,M,)“'[M,xM,], i=1,2. (5)
Collecting all terms one obtains the system of coupled rotators
dM, /dt = (B - a)(aM)[nxM,] + (4,+24,(M,M,))[MxM |, (6)

dAVL/dt = (8 - o) (nM,)[nxML] + (A,+24, (M, M,))[M,xM,]. 7

Here n denotes a unit vector directed transversal to the (x, y)-plane along the z-axis. The
equations of motion (6), (7) conserve the system energy E=H, the z-projection of the
total momentum M =M, M, and the square of each of the vectors Mz, i=1,2, as is
easily verified by calculatmg the corresponding Poisson brackets. We will assume
conditions for which M?=M,?=M.?, i. e. the moduli of the angular momenta of rotators
are equal and will be denoted by M below. This represents the situation when the
interacting layers are prepared from the same magnetic material. The easy plane case, i. e.
B>a, will be considered. As will be shown below, in this case by remaining in the plane
the magnetization vectors can pass from the parallel into a nonparallel ground state
configuration, if the biquadratic coupling becomes strong enough.

2. Stationary states and energies

In view of the conservation of M? the phase space of each of the vectors M, is
located on a sphere (rotational phase space). On this sphere according to (2) an equator
and poles formed by the intersections of the (x,y)-plane and the z-axis with the sphere are
distinguished (the interaction part (3) is isotropic and does not introduce particular
directions). The z-axis transversal to the equator plane determines a reflection symmetry
with respect to the two half spaces z>0 and z<0. This symmetry is present in the locations
of the stationary states outside the equator plane and in the structure of the phase space
portraits.

From the zeros of the r.h.s. of the system (6) and (7) we now find the following
stationary configurations of the coupled rotators.

Parallel equaior plane configuration. From the 1.h.s. of the equations of motion
(6) and (7) one obviously finds a stationary state when both vectors M, and M, are
parallel and located in the equator plane. According to (2) and (3) the energy of this
stationary state is given by
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E_ = aM?- A, IM? + A, M. ®)

Nonparallel equator plane configuration. For M, and M, located in the equator
plane the r.h.s. of the equations (6) and (7) admit another solution for a stationary state if

A, +24,(M,M,) =0 ©)

holds. This condition determines an angle 6 between the vectors M; and M, for which
the vectors are at rest. The angle is given by

cost = {4, /(2A,M 2) (10)

The solution (10) exists for parameters A,, A, and moduli of angular momenta M, for
which the condition
A V(2AM%) <1 (11

is fulfilled, i.e. the stationary state (10) exists, if the biquadratic coupling is strong
enough. The stationary configuration with both vectors M, and M, located in the equator
plane and constituting the angle 8, eq. (10), is degenerate with respect to a total rotation
of both vectors in the equator plane. This configuration was also found from an
experimentally analysis of the domain structure in magnetic multilayer sysiems modelled
by an energy function with a biquadratic coupling term and called the canted
configuration in the literature on coupled magnetic layers [3]. We will call this stationary
state the nonparallel equator plane configuration in order to distinguish it from another
nonparallel configuration in which the vectors M, and M, are located outside the equator
in the meridian plane. The nonparalle] meridian plane configuration will be considered
below. Inserting (10) into (2), (3) one obtains for the energy E,, of the nonparallel equator
configuration

E,=E_-AM*(1-cos8)? (12)

where E_ is the energy of the parallel equator configuration given by (8). As is evident
from (12(3 the energy E, is below E .

Nonparallel meridian plane configuration. These stationary states are found by
representing the system (6), (7) in the equivalent form

dM,/dt = [K, xM,], (13)
dML/dt = [K ,;xM,], (14)

where the vectors K, and K,
o K, = (- a)(@M,)n + (4, +24,(M;,M,))M, (15)
K= (- a)(nM,)n + (A, +24,(M,,M,))M, (16)

were introduced. Zeros of the r.h.s. of the equations (13) and (14), corresponding to
stationary states are obtained if the vector K,, is parallel to M, and the vector K, parallel
to M,,, simultaneously. This occurs for the special configuration when the vectors M, and
M, are located in the meridian plane transversal to the equator plane and have opposite
projections on the z-axis. In this plane they form a configuration symmetric with respect
to a reflection in the equator plane and include the angle ¢

cosd = [5(B - o) + 14, 1)/(24,M?). @17)

The solution (17) exists for parameters A,, A, and angular momenta M, for which the
condition
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(Mo(B- o) +14,11/2A,M%) < 1 (18)
is fulfilled. The solution (17) can be directly checked by noting that for this particular

value of ¢
A, +24,(M, M) =1/,(8 - o). (19)

Inserting (19) into (15), (16) and using for M, M, the decompositions M =M+M,,
M,=M -M_, where the vectors M and M, denote the parts located in the equator plane
and directed along the z-axis, respectlvely, one obtains K, =1/2(B-a)M, parallel to M,
and K, =1/2(8- oL)M2 parallel to M, as required.

Usmg (17) in (2), (3) one finds for the energy £, of the nonparallel meridian plane

configuration
E,=E, - A,M*(1-cosp)? (20)

which similar to (12) is lower than the energy of the parallel equator configuration. The
relation between the energies E, and E, is established by comparing (10) with (17),

which gives cosf<cos¢, 0S¢<6<n/2 and consequently E,<E, if both the solution branches
E, and E coexist. We will consider the implications for the phase space flow of the latter
s1tuat1on when the discussing the bifurcation sequence below.

3. Stability

We now turn to the results for the stability and local phase space structure around
each of the stationary points found in the previous section.

3.1. Parallel equator plane configuration. We start the stability analysis with
small deviations from the parallel equator configuration when the vectors M, and M, are
almost parallel and deviate by a small vector m, i. e.

M;,=M+m, M,=M-m 1)
and
M= 1/2 (M1+M2), m= 1/2 (Ml-M2). (22)

The vector M is located in the equator plane, i. e. (Mn)=0, and Iml<</M!. With this
assumption one obtains from the r.h.s. of (6), (7) to first order in ml

dM, /dt = (B - a)(nm)[nxM] + 2(4, +2A4,M ?)[Mxm], (23)
dML/dt = -(B - o)(nm)[nxM] - 2(4,+24,M?)[Mxm]. (24)

Adding both equations one finds dM/dt=0, i. e. the central vector M is constant and
remains in the equator plane. Subtracting the equations one obtains for m

dm/dt = (B-o)(nm)[nxM] + 2(4,+24, M?)[Mxm]. (25)
We now choose the x-axis parallel to M. Then for the components of m one has
dm Jdt =0, (26)
dm jdt = (B-o)Mm,_ - 2(A,+2A,M*)Mm_, (27)
dm [dt = 2(A, +2A,M )Mm p (28)

The transition to the tangential space with m =const is a result of the linearization. The
phase space structure of the remaining system of two coupled variables m_ and m,-is of
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elliptic or hyperbolic type depending on the sign of the roots A of the characteristic
equation

A =AM (B - 0)/2-(A,+2A,M2)}(A+2A,M7). _ (29)
For 2?<0 (A*>0) the point m=0 is ellipﬁc (hyperbolic), i. e. the paiauel,equator

configuration is stable (unstable).

3.2. Nonparallel equator plane configuration. In this case the linearization of the
equations of motion (6) and (7) has to be performed around the configuration of vectors
M, and M, located in the equator plane and including the fixed angle 6, eq. (10). We
denote the particular vectors, which satisfy (10), as M,=P and M,=Q, respectively.
Introducing now the small vectors m, and m, for the deviations as

M, = P+m, (30)
M, = Q+m, (31)

one obtains by keeping the linear terms for the components of m; and m, in the equator
plane

and

dmy. /dt=(p - o)(nm,)[nxP], (32)
dm,, jdt= - )Em)Q]  (33)

and for the components transversal to the equator plane
o dm, /dt = -2A, [PxQ]((m,Q)+(m,P)), (34
dm,, /dt = +2A,[PxQ]((m,Q)+(m,P)). (35)

Now calculating the roots A of the characteristic equation for the system (32)-(35)
one finds

32 = -4A,(B - 0)I[PxQ]P, (36)

i.e. the nonparallel equator plane configuration is elliptic for the easy plane case f>a.

3.3. Nonparallel meridian plane configuration. In this case we proceed in
analogy to the nonparallel equator plane configuration and denote the vectors M, and M,
satisfying the condition (17) as M,=P and M,=Q, respectively. Introducing the small
vectors m, and m, for the deviations from P and Q as

M, =P+m, (37)
M,=Q +m,, (38)

and performing the linearizations of the equations of motion (6) and (7) one obtains

dm /dt = 1/2 (B - o){2(nm,)[nxP]+2(nP)[nxm, ] +
+ [mxPl+[Qxm, J}+2A,{(Qm, )+(Pm,)}[QxP]

and

(39)

and

dm,/dr = 1/2 (B - a){2(nm,) [nxQ}+2(nQ) [nxm, [+[m, xQ] + [Pxm, ]} + (40)
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+ 2A,{(Qm, )+(Pm,)}[PxQ].

Proceeding as with the nonparallel equator plane configuration and representing the
system (39), (40) by the components of the vectors one obtains for the roots A of the
characteristic equation

A2 = 24,(B - o) [PxQ]?, (41)

i. e. the nonparallel meridian plane configuration is hyperbolic in the easy plane case
B>a.

4. Bifurcations and phase space portraits

We now turn to the sequence of bifurcations and the corresponding changes in the
rotational phase spaces of the biquadratic coupled rotators. To be systematic in the
exposition we will fix the value of A, and increase the value of the biquadratic coupling
A,. As mentioned above we consider the case A;<0 and to avoid confusion in all
equations below the absolute value of A, i. e. IA,l is used. We note that in the easy plane
case, which is considered in this paper, p>a and correspondingly 14, I<IA,l + 1/2 (B-a).
Then the condition A,l<2A,M? is fulfilled before A+ 1/, (B-0)<2A,M? when
increasing the biquadratic coupling A,. Correspondingly according to (11), (18) the
bifurcation to the nonparallel equator plane configuration appears before the bifurcation
to the nonparallel meridian plane configuration whenA , is increased.

Phase space portraits were obtained by a direct numerical integration of the
equations of motion (6) and (7) by a standard 4th-order Runge-Kutta method and by
projecting the dynamics of the vectors M, and M, on tangential spaces. A time integration
interval from ¢=0 to r__ =15 with a time step equal to 0.001 was used. Accuracy of
integration was checked by calculating the integrals of motion.

Increasing the biquadratic coupling constant A, one obtains next cases.

Low biquadratic coupling, 2A,M?<IA,l: In this case the parallel equator
configuration of the rotators is a stable elliptic state and represents the lowest energy E..
Deviations of the vectors M, and M, from the parallel crientation result in rotations of
M, and M, around the parallel configuration (we do not display the phase space portrait
for this trivial case).

Intermediate biquadratic coupling, 1A 1<2A M’<|A |+1/2(B-a): According to
(10) and (11) in a first bifurcation a new stationary state appears. This is a pitchfork
bifurcation which converts the parallel rotator configuration into an unstable hyperbolic
state and creates a new stable elliptic configuration with nonparallel rotators including the
angle 6, eq. (10), in the equator plane. According to (12) the energy of this new stable
stationary state Ey is below the energy of the unstable parallel configuration £ from
which it has splitted off. For a representative set of parameters the phase space portrait is
shown in the Fig. 2.

Strong biquadratic coupling, |A,|+1/2(-0)<2A,M* A second bifurcation occurs
which according to (29), (41) converts the parallel configuration from an unstable
hyperbolic point into a stable elliptic point with the creation of two new hyperbolic states
arranged symmetrical in the z-direction. In this configuration the rotators include the
angle ¢. The corresponding phase space portrait is shown in the Fig. 3. According to (20)
the energy E, of the newly creaied hyperbolic configuration is below E . In view of
0<¢<0<n/2, the lowest energy remains associated with the states of the stable nonparallel
equator configuration E, i.e. the relation between the energies of the three stationary
solution branches is E <E =E
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Fig. 2. Phase space portraits of two coupled rotators for an intermediate biquadratic coupling
representative for the first bifurcation creating 2 new ground state (see text): A;=-1, A,=1, p-a=4 and

M12=M22=M2=1. Initial conditions in the equator plane: M,,=M, =0, M, =M, =McosS and M=

=-M, =Msin0, where & scans the equator plane from9=0to 9, , =n/2, scan step d0=0.01. Shown are the

trajectories of the components Mly, M, (wiangels) and M. 2y M, (circles) corresponding to the

projections of the vectors M; and M, on the (My,M ) - plane tangential to the sphere M?=1 with the

origin (0,0) of this plane located in the centre of the initial condition scan at9=0
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Conclusions

Summarizing we note that a system of two bilinear and biquadratic coupled
anisotropic rotators displays a sequence of bifurcations from low. to intermediate and
intermediate to strong values of the biquadratic coupling constant. The first bifurcation is
a pitchfork bifurcation in which a new ground state with a nonparalle]l alignment of the
rotators in the easy plane appears. The new ground state energy E, of this nonparallel
alignment of the rotators or canted configuration of the corresponding magnetization
vectors is located below the energy E_ of the parallel configuration of rotators. For a
strong biquadratic coupling in a second bifurcation hyperbolic points with the energy £,
in the excited states region of the rotator dynamics appear. Furthermore in this second
bifurcation the parallel rotator configuration passes from the hyperbolic state back to an
elliptic state. The energy of the unstable branch E, generated in the second bifurcation is
located between the energy of the nonparallel ground state configuration £, and the
energy of the parallel alignment E_ of rotators in the easy plane. As possible candidates
for the observation of the bifurcation sequences as described above we point to multilayer
systems such as Fe/Mn/Fe [7] or Gd/Cr/Co [6], where the bilinear coupling can be small
and the biquadratic coupling can dominate. Then controlled changes of the layer
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Fig. 3. Phase space portrait for a strong biquadratic coupling A,=2 representative for the second
bifurcation creating hyperbolic points in the excited states region, otﬁcr parameters and initial conditions
as in Fig. 2
configuration and spacer thickness can change the strength of the biquadratic coupling
such as to make the bifurcation sequence described above observable. We also point to
the important implications of the presence of the unstable hyperbolic rotator configuration
in the excited states region for switching and relaxation in such multilayer systems.
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MOJE/Ib CBA3AHHBIX POTATOPOB B HCCIEJOBAHNM ITNHAMUKH
B3AUMOJEHUCTBYIOIUX MATHUTHBIX CIOEB

b. 3ccep, B.B. Pxcesciuii

HccnenoBana TUHAMYKA HEJWHENHBIX B3aUMOJIEHCTBYI B CIIOMCTHIX MATHETHKAX
Ha MoJeiM [BYX OHMKBaf[paTUUHO B3aHMONEHCTBYIONMX PpOTaTOpoB. PaccMOTpeHBI
CTalMOHApHBIE COCTOSHUS M IPOBEMiCH aHAaM3 HX YCTOMYMBOCTH B H3OTPOIHOM H
AHU3OTPOIHOM chydasdx. Ilomydensr GudypKanuoHHbIE IEPEXObl B 3aBHCHMOCTH OT
BEeIWIWHLI OHKBagpaTHOrO B3amMopedcTBud. OKkasplBaeTcs, 49TO HaOIrofaeMble
9KCIEePUMEHTAIBHO NapajlelbHble N «CKPELICHHbIE» COCTOAHHUS BEKTOPOB HaMAarHW-
YEHHOCTH CIIOEB SBIAIOTCS NPENENbHbIME CydasMd OOLIEro 6u(ypKalOHHOTO
TOBEICHUS] CHCTEMbI. B 9acTHOCTH, IIOKa3aHO, UTO 3JHEPrHsl OCHOBHOLO COCTOSIHHS
IIOHIKAETCS NpPH YBeNIW4YCHHNHM OW(PypKalMOHHOrO Vyrila, KOTODBLIH omnpefelsieTcs
napamerpamu cucreMbl. IlpmBomarcs ¢as3oBele NOPTPETBI I paccMaTpHBacMOMH
MOJIEJIH Ha OCHOBE UHCIIEHHBIX PACYETOB. '
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