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COUPLED ROTATORS АРРКОАСН ТО ТНЕ DYNAMICS 
ОЕ INTERACTING MAGNETIC LAYERS’ 

Bernd Esser, Viadimir Rzhevskil 

The dynamical properties of two anisotropic rotators modelling magnetic layers 
coupled by bilinear and biquadratic interactions terms are considered. The easy plane case 15 

considered т detail and it is shown that the presence of the biquadratic coupling produces а 
sequence of bifurcations in the rotational phase spaces. In a first bifurcation a new ground 
state with rotators located in the easy plane and including а finite angle is generated. 
Hyperbolic points appear by increasing the biquadratic coupling 1 а second bifurcation. 
These hyperbolic points correspond to а nonparallel rotator configuration with rotators 
splitted off from the easy plane and symmetrically displaced along the transversal direction. 

The corresponding energy is located between the energies оЁ the ground state and the parallel 
rotator configuration. Phase space portraits displaying how the stationary states are embedded 
in the rotational flow are shown. 
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Introduction 

Magnetic materials display a wealth of nonlinear phenomena [1] among which in 
the last decade the biquadratic coupling mechanism between magnetization vectors in 
layer sysiems has attracted particular attention (see e. g. [2-4]). In such systems the 
coupling between the magnetization vectors of different layers can be influenced to a 
large extent by selecting specific spacers through which the magnetic layers interact. 
Then by changing the spacer material and layer configurations the magnetic properties of 
the layer systems can be varied to a great extent and desired properties for applications 
produced, for the calculations of the interlayer exchange coupling from microscopic 
quantum models for different systems we refer 10 the recent work [5]. In the discussion of 
the coupling between the magnetic layers the relation between the bilinear and 
biquadratic coupling types has turned out to be of particular importance [2]. Systematic 
studies of the coupling coefficients for different magnetic layer systems reveal that the 
magnitude of the biquadratic coupling coefficient can be well above the bilinear 

* Данная работа выполнена на кафедре физики низких температур и сверхпроводимости МГУ, 
на которой долгие годы работал профессор Ю.Л. Климонтович, и на кафедре статической физики и 
нелинейной динамики Гумбольдтского университета Берлина, возглавляемой в течение многих лет 
профессором В. Эбелингом. 
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coefficient for some parameter regions (e. g. for some values of the spacer layer thickness 
[6]). So far the corresponding calculations were static in the sense that they focussed оп 
the energies of the energetically lowest states, which can display transitions when the 
bilinear and biquadratic coupling coefficients are changed, ав was pointed ш [2,3]. 

The aim of this paper is to consider the implications of the presence of both the 
bilinear and biquadratic coupling mechanism on the dynamical level for coupled 
magnetization vectors. By using a classical approach familiar from the Landau-Lifshitz 
equations we investigate the dynamics of the magnetization vectors in a model of coupled 
rotators with both the bilinear and biquadratic interaction terms present. Starting from the 
equations of motion for the coupled rotators we will show that a sequence of bifurcations 
is possible in the rotational phase space of the rotators. In order to restrict the number of 
possible relations between the parameters in the equations of motion we will consider this 
bifurcation . sequence for the easy plane case of the intralayer part. Analysing the 
bifurcation sequence we find all the stationary rotator configurations including the ground 
state and the relations between these configurations from the energetic side. In particular 
we will show that besides е bifurcation Ю а new ground state there is another 
bifurcation in the excited state region of the rotator configurations creating hyperbolic 
points. The full dynamic analysis presented here is а necessary condition for а further 
understanding of dynamical phenomena in coupled magnetic layer systems such а5 
switching between different stationary states and relaxation. ВЕ 

The рарег 15 organized ав follows. In the section 1 the model for the coupled 
rotators is formulated and the basic equations are derived. Stationary states and their 
stability are treated in the sections 2 and 3, respectively. Based on the results of the 
sections 2 and 3 in the 4 section the bifurcation sequence is discussed and representative 
phase space portraits are shown. Finally in the last section we summarize our conclusions. 

1. Model 

We consider a system of two magnetic layers with coupled magnetization vectors. 
The magnetization vectors are represented by rotators and described by а classical . 
Hamilton function 

H=H,+H_, (1) 

where Н, апа Н,„ ате the Hamiltonians оё the isolated rotators and their interaction, 
respectively. The Hamiltonian оё @е isolated rotators Н, is taken as to characterize ап 
anisotropic system with different in plane and out оё plane constants a>0 апа >0, i.e. 

- 2 
Hy=%_a/2(M 2+M ?) + ВМ 2. (2) 

In (2) №е z-axis is chosen transversal 10 the plane, М, M, апа M, are the components 
оё the angular momentum vectors of the rotators М., i=1,2. The interaction is taken а5 ап 
expansion in powers of the scalar products оё these vectors (M,,M,) 

H_ =%, A(M MY, () 
where A е k=1,2,.. are the corresponding interaction constants. We will consider the case 
of two anisotropic rotators coupled by both the bilinear and biquadratic interaction terms, 
i.e. we will keep the interaction terms пр 10 the second order k=2. For the sign оГА | we 
will take the case A,=-1A,1<0. Then in the absence оЁ biquadratic coupling the rmmmum 
energy corresponds to a parallel orientation (ferromagnetic case) of the magnetization 
vectors оЁ е layer system. For the sign оЁ the blquadratlc interaction constant A, we 
assume for the sake of definiteness that A,>0, which is observed in different systems 
relevant for applications [2]. A schematic representatlon of the model is shown in the fig. 1. 
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7 M, Fig. 1. Schematic representation of the magnetic 
A layer system. Two magnetic layers L, and L, are 

‚ shown with the magnetization vectors M, апа M,, 
éZ х respectively. The anisotropy axis of both layers 15 

directed transversal to the layer planes and is parallel 
I, to the z-axis. The magnetizations M, and M, 

interact through the spacer 5 by both bilinear ап 
biquadratic interaction terms, see eq. (3). By 

Ly, changing the spacer material and/or thinkness the 
interaction strength is changed. 

The equations of motion for the 
coupled rotators are obtained from 

аМ/а = {M_H|, (4) 
where {.,.} represent the classical Poisson brackets. The r.h.s. 0Ё (4) is calculated by using 
the explicit forms оЁ Hy, Н, апа the standard angular momentum brackets for M, , M, 

nt 

апа M, . In partlcular for the interaction part one finds the relation 

M, 

{M,(MM,)"} = (-1)k(M,M,)“'[M,xM,], i=1,2. (5) 

Collecting all terms one obtains the system of coupled rotators 

dM, /dt = ( - a)(aM)[nxM,] + (4,+24, (M, M,))[MxM |, (6) 

аМа = (В - о) (nM,)[nxML] + (A,+24, (M, M,))[M,xM,]. (7) 

Here п denotes а unit vector directed transversal to Ше (x, y)-plane along Ше z-axis. The 
equations оё motion (6), (7) conserve the system energy Е=Н, the z-projection of the 
total momentum M =M, M, and the square of each of the vectors Mz, 1=1,2, а5 is 

easily verified by calculatmg the corresponding Poisson brackets. We will assume 
conditions for which M?=M,?=M.,?, 1. е. the moduli оё the angular momenta of rotators 
ате equal and will be denoted by M below. This represents the situation when the 
interacting layers are prepared from the same magnetic material. The easy plane case, i. e. 
В>с, will be considered. As will be shown below, in this case by remaining т the plane 
the magnetization vectors can pass from the parallel into a nonparallel ground state 
configuration, if the biquadratic coupling becomes strong enough. 

2. Stationary states and energies 

In view of the conservation of M? the phase space of each of the vectors М, is 
located оп а sphere (rotational phase space). On this sphere according 10 (2) ап equator 
and poles formed by the intersections of the (x,y)-plane and the z-axis with the sphere are 
distinguished (the interaction part (3) is isotropic and does not introduce particular 
directions). The z-axis transversal to the equator plane determines a reflection symmetry 
with respect 10 the two half spaces z>0 and z<0. This symmetry is present ш the locations 
of the stationary states outside the equator plane and in the structure of the phase space 
portraits. 

From the zeros of the r.h.s. of the system (6) and (7) we now find the following 
stationary configurations of the coupled rotators. 

Parallel equaior plane configuration. From the r.h.s. оЁ the equations оЁ motion 
(6) and (7) one obviously finds а stationary state when both vectors M, and M, are 
parallel and located in the equator plane. According to (2) and (3) the energy of this 
stationary state is given by 
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Е, = «М? - A, IM? + A, M, ° ® 

Nonparallel equator plane configuration. For М, and M, located in the equator 
plane the r.h.s. of the equations (6) and (7) admit another solution for a stationary state if 

A, +24,(M,M,) =0 _ ©) 
holds. This condition determines ап angle 6 between the vectors М, апа М., Юг which 
the vectors are at rest. The angle is given by 

сов@ = 4) /(2А,М 2) (10) 

The solution (10) exists for parameters A,, A, and moduli оё angular momenta M, for 
which the condition 

A /(24,М?) <1 . (11) 

is fulfilled, 1.е. the stationary state (10) exists, # the biquadratic coupling is strong 
enough. The stationary configuration with both vectors M, and M, located in the equator 
plane and constituting the angle 8, eq. (10), is degenerate with respect Ю a total rotation 
of both vectors in the equator plane. This configuration was also found from an 
experimentally analysis of the domain structure in magnetic multilayer sysiems modelled 
by an energy function with a biquadratic coupling term and called the canted 
configuration in the literature оп coupled magnetic layers [3]. We will call this stationary 
state the nonparallel equator plane configuration in order to distinguish it from another 
nonparallel configuration in which the vectors M, апа М, are located outside the equator 
in the meridian plane. The nonparalle] meridian plane configuration will be considered 
below. Inserting (10) into (2), (3) one obtains for the energy Е, of the nonparallel equator 
configuration 

E,=E_-AM*(1-cosB)? (12) 

where Е 15 Ше епегру of the parallel equator configuration given by (8). As is evident 
from (12(3 the energy Ё, is below E . 

Nonparallel meridian plane configuration. These stationary states are found by 
representing the system (6), (7) in the equivalent form 

аМ/а = [K, xM,], (13) 

аМа = [К ,xM,], (14) 

where the уестогв K,, апа К, 

ала K, = (В - a)(@M,)n + (4, +24,(M,,M,))M, (15) 

K= (В - a)(nM,)n + (A, +24,(M,,M,))M, (16) 

were introduced. Zeros оЁ the r.h.s. оЁ the equations (13) апа (14), corresponding 10 
stationary states are obtained if the vector К, 15 parallel to M, апа the vector K, parallel 
10 М., simultaneously. This occurs for the special configuration when the vectors M, апа 
M, are located in the meridian plane transversal 10 the equator plane and have opposite 
projections on the z-axis. In this plane they form a configuration symmetric with respect 
10 a reflection in the equator plane and include the angle ¢ 

созф = [15(B - а) + 14, 1)/(24,M?). (17) 

The solution (17) exists for parameters A,, A, and angular momenta M, for which е 
condition 
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[Мо(В - а) +14,11/24,M%) < 1 (18) 

is fulfilled. The solution (17) can be directly checked by noting that for this particular 
value of ¢ 

A, +24,(M, M) = 1/,(8 - o). (19) 

Inserting (19) into (15), (16) and using for М., M, the decompositions M =M+M,, 
M,=M -М,, where the vectors М, апа M, denote the parts located in the equator plane 
and directed along the z-axis, respectlvely, one obtains K, =1/2(8-a)M, parallel ю M, 
and K, =1/2(8- ос)М2 parallel to M, as required. 

Usmg (17) in (2), (3) one finds for the energy Ё, оё the nonparallel meridian plane 
configuration 

В, = Е, - АМ “(1-совф)? (20) 

which similar to (12) 15 lower than the energy of the parallel equator configuration. The 
relation between е energies Ё, апа Ё, is established by comparing (10) with (17), 
which gives со505совф, 0S¢<6<n/2 and consequently E,<E, if both the solution branches 
Е, апа Е, coexist. We will consider е implications for the phase space flow of the latter 
s1tuat1on when the discussing the bifurcation sequence below. 

3. Stability 

We now turn 10 the results for the stability апа local phase space structure around 
each of the stationary points found in the previous section. 

3.1. Parallel equator plane configuration. We start the stability analysis with 
small deviations from the parallel equator configuration when the vectors M, and М, are 
almost parallel апа deviate by а small vector m, i. ©. 

М, = М+т, M,=M-m (21) 

апа 

M= 1/2 (М1+М2), т = 1/2 (М1-М2). (22) 

The vector М is located in the equator plane, i. е. (Mn)=0, and Iml<</M!. With this 
assumption one obtains from the r.h.s. 0Ё (6), (7) to first order in ! 

аМ./аг = (B - a)(nm)[nxM] + 2(4, +2A4,M ?)[Mxm], (23) 

аМ/а = -В - o)(nm)[nxM] - 2(4,+24,M?)[Mxm]. (24) 

Adding both equations one finds dM/dt=0, 1. е. the central vector M is constant апа 
remains in the equator plane. Subtracting the equations one obtains for m 

dm/dt = (B-o)(nm)[nxM] + 2(4,+24, M?)[Mxm]. (25) 

We now choose the x-axis parallel to M. Then for the components of m one has 

dm Jdt =0, (26) 

ат / = (В-о)Мт, - 2(A,+2A,M*)Mm_, (27) 

ат /@ = 2(A, +2A,M ЭМт у (28) 

The transition 10 the tangential space with т =const 15 а result оё the linearization. The 
phase space structure of the remaining system оЁ two coupled variables т апа т, 15 ОЁ 
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elliptic ог hyperbolic type depending оп the sign of the roots A of the characteristic 
equation 

№ =AM (B - 0)/2-(A,+2A,M )} (A +24,M7). _ (29) 

For №2<0 (22>0) @е point m=0 is ellipfic (hyperbolic), i. e. the paiauel,equator 
configuration is stable (unstable). 

3.2. Nonparallel equator plane configuration. In this case the linearization of the 
equations оё motion (6) апа (7) has to be performed around the configuration оё vectors 
M, and M, located in the equator plane and including the fixed angle 6, ед. (10). We 
denote the particular vectors, which satisfy (10), ав M,=P and M,=Q, respectively. 
Introducing now the small vectors m, and т for the deviations ав 

M, = P+m, (30) 

M, = Q+m, (31) 

опе obtains by keeping the linear terms for the components of m; and т, ш the equator 
plane 

and 

dmy. /dt=(f - o)(nm,)[nxP], (32) 

dm,, @ = (В - о)в х0) о (33) 
апа for the components transversal 10 the equator plane 

нпа dm, /dt = -2A, [PxQ]((m,Q)+(m,P)), (34) 

ат /dt = +2A,[PxQ]((m,Q)+(m,P)). (35) 

Now calculating Ше roots A оё the characteristic equation for Ше system (32)-(35) 
one finds 

№ = -4A,(B - о)[РхО]Р, (36) 

i.e. the nonparallel equator plane configuration 15 elliptic for the easy plane case В>а. 

3.3. Nonparallel meridian plane configuration. In this case we proceed in 
analogy 10 the nonparallel equator plane configuration and denote the vectors M, апа M, 
satisfying the condition (17) ав M,=P and M,=Q, respectively. Introducing е small 
vectors m, and m, for the deviations from P and Q а5 

М, =P+m, (37) 

М, = О +m,, (38) 

and performing the linearizations of the equations of motion (6) and (7) one obtains 

ат /dt = 1/2 ( - o){2(nm, )[nxP]+2(nP)[nxm, ] + 

+ [mxPl+[Qxm, J}+2A,{(Qm, )+(Pm,)}[QxP] 

and 

(39) 

and 

dm,/dr = 1/2 (B - a){2(nm,)[nxQ}+2(nQ) [nxm,]+[m,xQ] + [Pxm,]} + (4о) 
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+ 2A,{(Qm, )+(Pm,)}[PxQ]. 
Proceeding as with the nonparallel equator plane configuration and representing the 

system (39), (40) by the components оЁ the vectors one obtains for the roots A оЁ the 
characteristic equation 

№ = 2А,( - о)[РхО}Р, (41) 

1. е. the nonparallel meridian plane configuration is hyperbolic in the easy plane case 
В>с. 

4. Bifurcations and phase space portraits 

We now turn to the sequence of bifurcations and the corresponding changes in the 
rotational phase spaces of the biquadratic coupled rotators. To be systematic in the 
exposition we will fix the value of A, ап increase the value of the biquadratic coupling 
A,. As mentioned above we consider е case A;<0 and to avoid confusion ш all 
equations below the absolute value оЁА, i. e. |A,l is used. We note that in the easy plane 
case, which is considered ш this paper, В>а and correspondingly 14, I<IA,l + 1/2 (В-с). 
Then the condition IA,l<2A,M? в fulfilled before A+ 1/, (B-0)<2A,M? when 
increasing the biquadratic coupling A,. Correspondingly according ю (11), (18) the 
bifurcation to the nonparallel equator plane configuration appears before the bifurcation 
10 the nonparallel meridian plane configuration whenA , is increased. 

Phase space portraits were obtained by а direct numerical integration оЁ the 
equations of motion (6) and (7) by a standard 4th-order Runge-Kutta method and by 
projecting the dynamics оё the vectors M, and M, оп tangential spaces. A time integration 
interval from ¢=0 10 r__ =15 with а time step equal 10 0.001 was used. Accuracy of 
integration was checked by calculating the integrals of motion. 

Increasing the biquadratic coupling constant A, one obtains next cases. 
Low biquadratic coupling, 2A,M?<|A,l: 1а this case е parallel equator 

configuration of the rotators is a stable elliptic state and represents the lowest energy Е. 
Deviations of the vectors М, and M, from the parallel orientation result in rotations оЁ 
M, and M, around the parallel configuration (we do not display the phase space portrait 
for this trivial case). 

Intermediate biquadratic coupling, 1А 1<2AM’<|A |+1/2(B-a): According 10 
(10) and (11) in a first bifurcation a new stationary state appears. This is a pitchfork 
bifurcation which converts the parallel rotator configuration into an unstable hyperbolic 
state and creates a new stable elliptic configuration with nonparallel rotators including the 
angle 6, eq. (10), in the equator plane. According to (12) е energy оё this new stable 
stationary state Е, is below the energy оё the unstable parallel configuration В, from 
which it has splitted off. For a representative set of parameters the phase space portrait is 
shown in the Fig. 2. 

Strong biquadratic coupling, |A,|+1/2(8-0)<2A,M* A second bifurcation occurs 
which according to (29), (41) converts the parallel configuration from an unstable 
hyperbolic point into а stable elliptic point with the creation оё two new hyperbolic states 
arranged symmetrical in the z-direction. In this configuration the rotators include the 
angle ¢. The corresponding phase space portrait is shown in the Fig. 3. According to (20) 
the energy Е, of the newly creaied hyperbolic configuration is below E . In view of 
0<¢<0<n/2, the lowest energy remains associated with the states оЁ the stable nonparallel 
equator configuration В, i.e. the relation between the energies of the three stationary 
solution branches is E <E «^ 
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Fig. 2. Phase space portraits оЁ two coupled rotators for ап intermediate biquadratic coupling 
representative for the first bifurcation creating а new ground state (see text): A;=-1, A,=1, p-a=4 апа 

М12=М22=М2=1. Initial conditions in the equator plane: M,,=M, =0, M, =M, =McosS апа M= 
=-M, =Msin0, where & scans the equator plane from9=0to 9, , =n/2, scan step d0=0.01. Shown are the 
trajectories of the components Mly, M, (tiangels) аоа М. 2y М., (circles) corresponding to the 

projections оЁ the vectors M; and М, оп фе (Му‚М ) - plane tangential to е sphere M?=1 with the 
origin (0,0) оЁ this plane located т the centre оё the imitial condition scan at9=0 

Conclusions 

Summarizing we note that a system of two bilinear and biquadratic coupled 
anisotropic rotators displays а sequence of bifurcations from low. 10 intermediate апа 
intermediate to strong values of the biquadratic coupling constant. The first bifurcation is 
а pitchfork bifurcation in which а new ground state with а nonparalle] alignment of the 
rotators in the easy plane appears. The new ground state energy В, of this nonparallel 
alignment of the rotators or canted configuration of the corresponding magnetization 
vectors is located below the energy E  of the parallel configuration of rotators. For а 
strong biquadratic coupling in а second bifurcation hyperbolic points with the energy Ё, 
in the excited states region of the rotator dynamics appear. Furthermore in this second 
bifurcation the parallel rotator configuration passes from the hyperbolic state back to an 
elliptic state. The energy of the unstable branch Е, generated ш the second bifurcation is 
located between the energy оё the nonparallel ground state configuration В, and the 
energy оЁ the parallel alignment Е, оё rotators 1 the easy plane. As possible candidates 
for the observation of the bifurcation sequences as described above we point to multilayer 
systems such as Fe/Mn/Fe [7] ог Gd/Cr/Co [6], where the bilinear coupling сап be small 
and the biquadratic coupling can dominate. Then controlled changes оЁ the layer 
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Fig. 3. Phase space portrait for а strong biquadratic coupling A,=2 representative for the second 
bifurcation creating hyperbolic points in the excited states region, otficr parameters and initial conditions 
ав т Fig. 2 

configuration and spacer thickness can change the strength of the biquadratic coupling 
such as to make the bifurcation sequence described above observable. We also point to 
the important implications of the presence of the unstable hyperbolic rotator configuration 
in the excited states region for switching апа relaxation in such multilayer systems. 
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ВЗАИМОДЕИЙСТВУЮЩИХ МАГНИТНЫХ СЛОЕВ 

Б. Эссер, В.В. Ржевский 

Исследована динамика нелинейных взаимодействий в слоистых магнетиках 
на модели двух биквадратично взаимодействующих ротаторов. Рассмотрены 

стационарные состояния и проведен анализ их устойчивости в H3OTPOIHOM и 
анизотропном случаях. Получены бифуркационные переходы в зависимости от 
величины — биквадратного взаимодействия. ФОказывается, что наблюдаемые 
экспериментально параллельные и «скрещенные» состояния векторов намагни- 
ченности  слоев являются предельными случаями общего бифуркационного 
поведения системы. В частности, показано, что энергия основного состояния 
понижается при увеличении бифуркационного угла, который сопределяется 
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