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Abstract. The subject of this work is the study of local dynamics of full-coupled chains of a great number of
oscillators with a large delay in couplings. From a discrete model describing the dynamics of a great number of
coupled oscillators, a transition has been made to a nonlinear integro-differential equation, continuously depending
on time and space variable. A class of full-coupled systems has been considered. The main assumption is that
the amount of delay in the couplings is large enough. This assumption opens the way to the use of special
asymptotic methods of study. The parameters under which the critical case is realized in the problem of the
equilibrium state stability have been distinguished. It is shown that they have infinite dimension. The analogues
of normal forms — nonlinear boundary value problems of Ginzburg–Landau type have been constructed. In some
cases, these boundary value problems contain integral components too. Their nonlocal dynamics describes the
behavior of all solutions of the original equations in the balance state neighbourhood. Methods. As applied to the
considered problems, methods of constructing quasinormal forms on central manifolds are developed. An algorithm
for constructing the asymptotics of solutions based on the use of quasinormal forms for determining slowly varying
amplitudes has been created. Results. Quasinormal forms that determine the dynamics of the original boundary
value problem have been constructed. The dominant terms of asymptotic approximations for solutions of the
considered chains have been obtained. On the basis of the given statements, a number of interesting dynamical
effects have been revealed. For example, an infinite alternation of direct and reverse bifurcations when the delay
coefficient increases. Their distinguishing feature is that they have two or three spatial variables.
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Introduction

First, let’s consider a chain of 𝑁 connected second-order oscillators with delayed connections

�̈�𝑗 + 𝑎�̇�𝑗 + 𝑢𝑗 + 𝐹 (𝑢𝑗 , �̇�𝑗) =
𝑁∑︁
𝑘=1

𝑎𝑘𝑢𝑗+𝑘(𝑡− 𝑇 ), (1)

𝐹 (𝑢, 𝑣) is a sufficiently smooth nonlinear function having an order of smallness above the first
one at zero, 𝑇 > 0 is delay, the index 𝑗 varies from 1 to 𝑁 and for any integer 𝑘 the values
of 𝑢𝑘+𝑁 (𝑡) are identified with 𝑢𝑘(𝑡). This type of model occurs in many applied problems of
radiophysics [1–8], laser physics [9–13], mathematical ecology [14,15], theory of neural networks
[16–21] and see, for example, [22].

It is convenient to associate the values of 𝑢𝑗(𝑡) with the values of the function of two
variables 𝑢(𝑡, 𝑥𝑗), where the points 𝑥𝑗 (𝑗 = 1, . . . , 𝑁) are uniformly distributed on some circle.

We assume that the number of elements of the chain 𝑁 is quite large:

𝑁 ≫ 1. (2)

This condition gives a reason to move from discrete with respect to 𝑢(𝑡, 𝑥𝑗) systems (1) to an
equation with parameters distributed on the segment [0, 2π] for the function 𝑢(𝑡, 𝑥)

𝜕2𝑢

𝜕𝑡2
+ 𝑎

𝜕𝑢

𝜕𝑡
+ 𝑢+ 𝐹

(︂
𝑢,

𝜕𝑢

𝜕𝑡

)︂
=

1

2π

2π∫︁
0

Φ(𝑠)𝑢(𝑡− 𝑇, 𝑥+ 𝑠)𝑑𝑠 (3)

with periodic boundary conditions

𝑢(𝑡, 𝑥+ 2π) = 𝑢(𝑡, 𝑥). (4)

Function Φ(𝑠) defines the couplings between the elements and, generally speaking, depends on
the parameter 𝜀. For example, in the case of one-sided [17] and diffusive [2] connections, the
values of Φ(𝑠) are concentrated in the vicinity of one or more points of the segment [0, 2π]. Here
we assume that the function Φ(𝑠) does not depend on the 𝜀 parameter. In this case, the chains
are called full-coupled.

The main assumption that opens the way to the application of asymptotic methods is that
the delay parameter 𝑇 in (3) is large enough:

𝜀 = 𝑇−1 ≪ 1. (5)

In the boundary value problem (3), (4), we will replace the time 𝑡 → 𝑇𝑡. As a result , we come
to a singularly perturbed boundary value problem

𝜀2
𝜕2𝑢

𝜕𝑡2
+ 𝜀𝑎

𝜕𝑢

𝜕𝑡
+ 𝑢+ 𝐹

(︂
𝑢, 𝜀

𝜕𝑢

𝜕𝑡

)︂
=

1

2π

2π∫︁
0

Φ(𝑠)𝑢(𝑡− 1, 𝑥+ 𝑠)𝑑𝑠, (6)

𝑢(𝑡, 𝑥+ 2π) ≡ 𝑢(𝑡, 𝑥). (7)

Let us set the task of investigating the behavior of all solutions from some sufficiently small
and independent of 𝜀 neighborhood of the zero equilibrium state in (6), (7) for sufficiently small
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values 𝜀. When studying the local dynamics of (6), (7), the central place is occupied by the
analysis of the stability of solutions of the linearized equation at zero

𝜀2
𝜕2𝑢

𝜕𝑡2
+ 𝜀𝑎

𝜕𝑢

𝜕𝑡
+ 𝑢 =

1

2π

2π∫︁
0

Φ(𝑠)𝑢(𝑡− 1, 𝑥+ 𝑠)𝑑𝑠 (8)

with boundary conditions (7).
Consider the characteristic equation for (8), (7)

𝜀2λ2 + 𝜀𝑎λ+ 1 = 𝑓𝑘 exp(−λ), (9)

where 𝑓𝑘 are the Fourier coefficients of the function Φ(𝑠):

𝑓𝑘 =
1

2π

2π∫︁
0

Φ(𝑠) exp(−𝑖𝑘𝑠)𝑑𝑠, 𝑘 = 0,±1,±2, . . . .

In the case when all the roots of the equation (9) for all 𝑘 = 0,±1,±2, . . . have negative and
real parts separated from zero for 𝜀 → 0, solutions of the boundary value problem (8), (7)
are asymptotically stable, and solutions (6), (7) with sufficiently small and independent of 𝜀

(according to the norm 𝐶[0,2π]×𝐶(𝑅2)) initial conditions tend to zero at 𝑡 → ∞. If the equation
(9) has a root with a positive and separated from zero at 𝜀 → 0 real part, then the solutions (8),
(7) are unstable and the problem of dynamics (6), (7) becomes non-local.

Here we will consider the critical case when in (9) there are no roots with a positive and
zero-separated real part, but there are roots that tend to the imaginary axis at 𝜀 → 0. Note
that in the case of a finite dimension of the critical case, the methodology for studying local
dynamics is well known. It relies on the method of integral manifolds and the method of normal
forms (see, for example, [23–25]). A characteristic feature of all the problems considered below is
the fact that they implement infinite-dimensional critical cases when infinitely many roots of the
characteristic equation tend to the imaginary axis at 𝜀 → 0. Therefore, the methods of integral
manifolds and normal forms are not directly applicable. The approach developed in [17,26–30] is
substantially used here, related to the construction of infinite-dimensional quasi-normal forms.

The sections 1–3 present studies of the most important critical cases. As the main results,
the so-called quasi-normal forms are constructed, the nonlocal dynamics of which determines the
behavior of all solutions of the original boundary value problem (6), (7) in a small neighborhood
of the equilibrium state.

The section 4 considers a significantly more complex case compared to the sections 1–3,
which is implemented for a slightly different, but close to (6), (7) edge task

𝜀2
𝜕2𝑢

𝜕𝑡2
+ 𝜀𝑎

𝜕𝑢

𝜕𝑡
+ 𝑢+ 𝐹

(︂
𝑢, 𝜀

𝜕𝑢

𝜕𝑡

)︂
=

1

2π

2π∫︁
0

Φ(𝑠)

[︂
𝑢(𝑡− 1, 𝑥+ 𝑠)−

−𝑢(𝑡− 1, 𝑥)

]︂
𝑑𝑠, 𝑢(𝑡, 𝑥+ 2π) ≡ 𝑢(𝑡, 𝑥). (10)

The content of the section 5 is devoted to generalizing the results of the previous sections

Kashchenko S.A.
Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2023;31(4) 525



to a more general boundary value problem

𝜀2
𝜕2𝑢

𝜕𝑡2
+ 𝜀𝑎

𝜕𝑢

𝜕𝑡
+ 𝑢+ 𝐹

(︂
𝑢, 𝜀

𝜕𝑢

𝜕𝑡

)︂
=

1

2π

2π∫︁
0

Φ1(𝑠)𝑢(𝑡− 1, 𝑥+ 𝑠)𝑑𝑠+

+
1

2π

2π∫︁
0

Φ2(𝑠)
𝜕𝑢(𝑡− 1, 𝑥+ 𝑠)

𝜕𝑡
𝑑𝑠, (11)

𝑢(𝑡, 𝑥+ 2π) ≡ 𝑢(𝑡, 𝑥). (12)

Let’s make one simplifying assumption about the nonlinear function 𝑓(𝑢, �̇�). It was said
above that this function is quite smooth and has a zero order of magnitude higher than the first.
It is technically easier to use the nonlinearity of 𝑓(𝑢, �̇�) of the third order of smallness, that is,
for simplicity, we consider below that in(1)

𝑓(𝑢, �̇�) = 𝑏1𝑢
3 + 𝑏2𝑢

2�̇�+ 𝑏3𝑢�̇�
2 + 𝑏4�̇�

3. (13)

We will describe here the structure of all the following sections. It is the same for all of
them. First, the parameters of the problem are distinguished, at which a critical case is observed
in the problem of the stability of the zero state of equilibrium. Then the linearized boundary
value problem is considered and its characteristic equation is given. After that, the asymptotics
of all those roots of the characteristic equation whose real part tends to zero when the small
parameter 𝜀 tends to zero is investigated. There are infinitely many such roots. On their basis,
a set of special solutions is constructed for a linearized problem. Such solutions can be written
in a form that allows their use for the analysis of solutions (with unknown amplitudes) of the
original nonlinear boundary value problem. It is possible to determine an explicit form for the
main approximation (by the parameter 𝜀) of the corresponding solution. Let ’s conditionally
denote it here by 𝜀𝑈1. We then look for solutions to the nonlinear boundary value problem in
the form

𝑢(𝑡, 𝑥, 𝜀) = 𝜀𝑈1 + 𝜀3𝑈3 + . . . .

Note that the absence of 𝜀 quadratic coefficients here is due to the fact that there is no quadratic
nonlinearity in the original equation. With respect to 𝑈3, it is known in advance that it is
periodic by several of its arguments. Substituting the above expression instead of 𝑢(𝑡, 𝑥, 𝜀), we
come to a special linear inhomogeneous boundary value problem to determine 𝑈3. The solvability
condition of this boundary value problem in the specified class of functions allows us to write out
an equation for unknown amplitudes included in 𝑈1. Obtaining such equations is the ultimate
goal. The nonlocal dynamics of these equations, also called quasi-normal forms, allows us to
describe the local behavior of solutions to the original boundary value problem. Note that the
fulfillment of the solvability conditions of the equations for 𝑈3 allows us to explicitly define this
function. Below we will use the function 𝑈3, but sometimes we will not give formulas for this
function for brevity.

1. Description of critical cases

Consider the characteristic equation (9). By 𝑓 we denote the largest of the numbers |𝑓𝑘|:

𝑓 = max
−∞<𝑘<∞

|𝑓𝑘|. (14)
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Let’s use the methodology of [26–28,31]. Let us introduce into consideration the value

γ0 =

⎧⎪⎨⎪⎩
1, if 𝑎2 ⩾ 2,

𝑎2

4

(︀
4− 𝑎2

)︀1/2
, if 𝑎2 < 2.

Note that
γ0 ⩽ 1 and 0 < γ0 < 1 for 𝑎2 < 2

and
γ0 = 0 for 𝑎 = 0.

In [28] it is shown that the following statements hold.

Lemma 1. Let the inequality be satisfied

𝑓 < γ0.

Then for all sufficiently small 𝜀, all the roots of (9) have negative and real parts separated from
zero for 𝜀 → 0.

Lemma 2. Let the inequality be satisfied

𝑓 > γ0.

Then for all sufficiently small 𝜀, the equation (9) has a root with a positive and separated from
zero at 𝜀 → 0 real part.

Note that in the condition of the lemma 1, all solutions of the boundary value problem (8), (7)
and (6), (7) from a small and independent of 𝜀 neighborhood of zero tend to zero at 𝑡 → ∞. If
the conditions of Lemma 2 are met, then the problem of dynamics (6), (7) is non-local: there
cannot be stable solutions in the neighborhood of the zero solution.

In the future, it is assumed that there is a critical case: for an arbitrary fixed γ1, either the
equality is fulfilled for the parameter 𝑓

𝑓 = γ0 + 𝜀2γ1, (15)

or
𝑓 = −γ0 − 𝜀2γ1. (16)

Thus, the boundary value problems (8), (7) and (6), (7) are investigated in the critical case.
Consider the question of the asymptotics of all those roots of the equation (9), the real parts

of which tend to zero at 𝜀 → 0. The corresponding asymptotic expansions are fundamentally
different for the case when 𝑎20 > 2 and for the case when 𝑎20 < 2.

Lemma 3. Let the condition be fulfilled

𝑎20 > 2. (17)

Then γ0 = 1 and for those roots λ𝑘(𝜀) (𝑘 = 0,±1,±2, . . .) the equations (9), whose real parts tend
to zero at 𝜀 → 0, have asymptotic equalities:

1) in case
𝑓 = 1 + 𝜀2γ1 (18)
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we have
λ𝑘(𝜀) = 2π𝑖𝑘 + 𝜀λ𝑘1 + 𝜀2λ𝑘2 + 𝑜

(︀
𝜀3
)︀
, 𝑘 = 0,±1,±2, . . . ,

where
λ𝑘1 = −2π𝑖𝑘𝑎, λ𝑘2 = −2π2𝑘2

(︀
𝑎2 − 2

)︀
+ 2π𝑖𝑘𝑎2 + γ1;

2) in case
𝑓 = −1− 𝜀2γ1 (19)

we have

λ𝑘(𝜀) = 𝑖π
(︀
2𝑘 + 1

)︀
+ 𝜀λ𝑘1 + 𝜀2λ𝑘2 + 𝑜

(︀
𝜀3
)︀
, 𝑘 = 0,±1,±2, . . . ,

where

λ𝑘1 = −π
(︀
2𝑘 + 1

)︀
𝑎, λ𝑘2 = −1

2
π2

(︀
2𝑘 + 1

)︀2(︀
𝑎2 − 2

)︀
+ 𝑖π

(︀
2𝑘 + 1

)︀
𝑎2 + γ1.

Let us then consider the case when

0 < 𝑎2 < 2. (20)

Let’s introduce a few notations. Let θ = θ(𝜀) ∈ [0, 1) be a value that complements the expression
to an integer ω0𝜀−1, where

ω0 =

⎧⎪⎨⎪⎩
0, if 𝑎2 > 2,(︂
1− 𝑎2

2

)︂1/2

, if 𝑎2 < 2.

Let’s put

𝑅1 = (𝑖𝑎− 2ω0)γ
−1
0 exp

(︀
− 𝑖Ω0

)︀
,

𝑅2 =
1

2
𝑅2

1 + γ
−1
0 exp

(︀
− 𝑖Ω0

)︀
,

𝑅3 =
(︀
𝑎− 2𝑖ω0

)︀
𝑅1γ

−1
0 exp

(︀
− 𝑖Ω0

)︀
.

Lemma 4. Let the inequalities (20) be satisfied. Then for those roots λ𝑘(𝜀) (𝑘 = 0,±1,±2, . . .)

the equations (9), whose real parts tend to zero at 𝜀 → 0, have asymptotic equalities

λ𝑘(𝜀) = 𝑖
(︀
ω0𝜀−1 + θ−Ω0 + 2π𝑘

)︀
+ 𝜀λ𝑘1 + 𝜀2λ𝑘2 + 𝑜

(︀
𝜀3
)︀
,

where

λ𝑘1 = 𝑅1

(︀
θ−Ω0 + 2π𝑘

)︀
,

λ𝑘2 = 𝑅2

(︀
θ−Ω0 + 2π𝑘

)︀2
+𝑅3

(︀
θ−Ω0 + 2π𝑘

)︀
+ γ1 exp

(︀
− 𝑖Ω0

)︀
,

moreover , the ratios are fulfilled

Re𝑅1 = 0, Re𝑅2 < 0. (21)
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2. Critical case on zero mode

Here we assume that

γ0 = |𝑓0| and |𝑓0| > |𝑓𝑘| (𝑘 = ±1,±2, . . .). (22)

We will conduct the study separately for the cases (17) and (20). We should immediately note
that the corresponding results for them are significantly different. Under the condition (17),
solutions are formed at frequencies of the order of 1, we will call them slowly oscillating. Under
the condition (20), the solutions contain frequencies of the order of 𝜀−1, so let’s call them rapidly
oscillating.

2.1. Slowly oscillating solutions. Let the inequality (17) be satisfied first, that is,
𝑎20 > 2 and γ0 = 1. Then the roots of λ𝑘(𝜀), which were discussed in the lemma 3, correspond to
the solutions of 𝑣𝑘(𝑡, 𝜀) of the linear boundary value problem (8), (7) and 𝑣𝑘(𝑡, 𝜀) = exp(λ𝑘(𝜀)𝑡),
which means that the solution of (8), (7) are the functions

𝑣(𝑡, 𝜀) =
∞∑︁

𝑘=−∞
ξ𝑘 exp

(︀
λ𝑘(𝜀)𝑡

)︀
,

where ξ𝑘 are arbitrary complex constants. For the cases (15) and (16), this expression can be
represented as

𝑣(𝑡, 𝜀) =
∞∑︁

𝑘=−∞
ξ𝑘(τ) exp

(︀
2π𝑖𝑘𝑦

)︀
= ξ(τ, 𝑦)

and

𝑣(𝑡, 𝜀) =

∞∑︁
𝑘=−∞

ξ𝑘(τ) exp
(︀
π𝑖(2𝑘 + 1)𝑦

)︀
= ξ(τ, 𝑦),

where τ = 𝜀2𝑡, 𝑦 = (1− 𝜀𝑎)𝑡, ξ𝑘(τ) = ξ𝑘 exp
(︀
(λ𝑘2 + 𝑜(𝜀))τ

)︀
.

Solutions 𝑢(𝑡, 𝑦, 𝜀)nonlinear boundary value problem (6) and (7), “close to critical” solutions
of 𝑣(𝑡, 𝜀) linear boundary value problem (8), (7), we are looking for in the form

𝑢(𝑡, 𝑦, 𝜀) = 𝜀1/2ξ(τ, 𝑦) + 𝜀3/2𝑢3(τ, 𝑦) + 𝑜(𝜀2), (23)

where ξ(τ, 𝑦) is an unknown real function for which the conditions are met:

1) in case (15) — periodicity condition by 𝑦

ξ(τ, 𝑦 + 1) ≡ ξ(τ, 𝑦); (24)

2) in case (16) — antiperiodicity condition by 𝑦

ξ(τ, 𝑦 + 1) ≡ −ξ(τ, 𝑦). (25)

Let’s make a formal series (23) into the boundary value problem (8), (7) and equate the
coefficients at the same degrees 𝜀. Then, collecting the coefficients for 𝜀3/2, we get the equation
for 𝑢3(τ, 𝑦). From the condition of its solvability, we conclude that ξ(τ, 𝑦) is the solution of the
boundary value problem

𝜕ξ
𝜕τ

=
(︁𝑎2
2

− 1
)︁𝜕2ξ
𝜕𝑦2

− 𝑎2
𝜕ξ
𝜕𝑦

+ γ1ξ− 𝑏1ξ3 (26)

with boundary conditions, respectively (24) or (25). Let’s formulate the final result.
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Theorem 1. Let the conditions (17), (18)
(︀
(17), (19)

)︀
and 𝑏1 ̸= 0 be met. Let the function

ξ(τ, 𝑦) be bounded at τ → ∞, 𝑦 ∈ [0, 1] by the solution of the boundary value problem (26),
(24)

(︀
(26) and (25)

)︀
. Then the function

𝑢(𝑡, 𝑦, 𝜀) = 𝜀ξ(τ, 𝑦) + 𝜀3𝑢3(τ, 𝑦) (27)

for τ = 𝜀2𝑡, 𝑦 = (1− 𝜀𝑎)𝑡 satisfies the boundary value problem (6), (7) up to 𝑜(𝜀3).

It follows from this theorem that under the formulated conditions, the constructed boundary
value problems (26), (24) and (26), (25) play the role of normal forms for the boundary value
problem (6), (7). Note that if 𝑏1 = 0, that is, the condition of the theorem 1 is not satisfied, and
𝑏2 ̸= 0, then the changes are small. The last term in (26) is replaced by −𝑏2ξ2𝜕ξ/𝜕𝑦 and the
formula (27) takes the form

𝑢(𝑡, 𝑦, 𝜀) = 𝜀1/2ξ(τ, 𝑦) + 𝜀3/2𝑢3(τ, 𝑦).

2.2. Fast oscillating solutions. Let the inequality (20) be satisfied, that is, 𝑎2 < 2.
The roots of λ𝑘(𝜀) (𝑘 = 0,±1,±2, . . .), which were mentioned in the lemma 4, correspond to the
solutions of 𝑣𝑘(𝑡, 𝜀) of the linear boundary value problem (8), (7) 𝑣𝑘(𝑡, 𝜀) = exp(λ𝑘(𝜀)𝑡). Hence
the function

𝑣(𝑡, 𝜀) =
∞∑︁

𝑘=−∞
ξ𝑘 exp(λ𝑘(𝜀)𝑡), (28)

where ξ𝑘 are arbitrary complex constants also satisfy the boundary value problem (8), (7). Given
the asymptotic formulas for λ𝑘(𝜀) presented in the lemma 4, the expression (28) can be written
as

𝑣(𝑡, 𝜀) = 𝐸(𝑡, 𝜀)ξ(τ, 𝑦).

Here 𝐸(𝑡, 𝜀) = exp
[︀(︀
𝑖(ω0𝜀−1 + θ−Ω0) + 𝜀𝑅1(θ−Ω0)

)︀
𝑡
]︀
,

ξ(τ, 𝑦) =
∞∑︁

𝑘=−∞
ξ𝑘(τ) exp(2π𝑖𝑘𝑦), τ = 𝜀2𝑡, 𝑦 = (1 + 𝑖𝜀𝑅1)𝑡,

ξ𝑘(τ) = ξ𝑘 exp
(︀
(λ𝑘2 + 𝑜(𝜀))τ

)︀
. Recall that according to (21), the value of 𝑖𝑅1 is real.

Solutions 𝑢(𝑡, 𝑦, 𝜀) of the nonlinear boundary value problem (6), (7) in the case under
consideration, we are looking for in the form of a formal series

𝑢(𝑡, 𝑦, 𝜀) = 𝜀
(︀
ξ(τ, 𝑦)𝐸(𝑡, 𝜀) + ξ̄(τ, 𝑦)�̄�(𝑡, 𝜀)

)︀
+ 𝜀3𝑢3(𝑡, τ, 𝑦) + . . . . (29)

In this expression, ξ(τ, 𝑦) is an unknown complex function to be defined, which is 1-periodic in
the spatial variable 𝑦:

ξ(τ, 𝑦 + 1) ≡ ξ(τ, 𝑦), (30)

and the dependence on the argument 𝑡 of the function 𝑢3 is periodic.
Put (29) in (6), (7) and we will equate the coefficients at the same degrees 𝜀. Then,

collecting the coefficients for 𝜀3, we come to the equation with respect to 𝑢3. The condition for
the solvability of this equation in the class of periodic 𝑡 functions consists in the fulfillment of
the equality

𝜕ξ
𝜕τ

=−𝑅2
𝜕2ξ
𝜕𝑦2

+𝑅4
𝜕ξ
𝜕𝑦

+𝑅5ξ− ξ2
𝜕ξ̄
𝜕𝑦

−

−&−
(︀
3𝑏1 + 𝑖ω0𝑏2 + ω20𝑏3 + 3𝑖ω30𝑏4

)︀
exp(−𝑖Ω0)ξ|ξ|2, (31)
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in which 𝑅4 = −𝑖(2𝑅2(θ−Ω0) +𝑅3), 𝑅5 = 𝑅2(θ−Ω0)
2 +𝑅3(θ−Ω0) + γ1 exp(−𝑖Ω0).

Let’s introduce the notation. Here and below via 𝜀𝑛 = 𝜀𝑛(θ0) we will denote such a sequence
𝜀𝑛 → 0 for which θ(𝜀𝑛) = θ0. Let’s formulate the main result.

Theorem 2. Let the conditions (20) and (15) be met and let for an arbitrarily fixed value
θ0 ∈ [0, 2π) the boundary value problem (31), (30) has a bounded at τ → ∞, 𝑦 ∈ [0, 1] solution
ξ(τ, 𝑦). Then on the sequence 𝜀𝑛 = 𝜀𝑛(θ0) function

𝑢(𝑡, 𝑦, 𝜀𝑛(θ0)) = 𝜀𝑛(θ0)
[︀
ξ(τ, 𝑦)𝐸

(︀
𝑡, 𝜀𝑛(θ0)

)︀
+ ξ̄(τ, 𝑦)�̄�

(︀
𝑡, 𝜀𝑛(θ0)

)︀]︀
+ 𝜀3𝑛(θ0)𝑢3(𝑡, τ, 𝑦)

for τ = 𝜀2𝑛(θ0)𝑡, 𝑦 = (1− 𝜀𝑛(θ0)𝑎)𝑡 satisfies the boundary value problem (6), (7) up to 𝑜(𝜀3𝑛(θ0)).

Thus, the boundary value problem (31), (30) is a quasi-normal form for (6), (7) in the critical case
under consideration. Due to the conditions (21), this boundary value problem is parabolic. The
structure of its solutions can be complex. This boundary value problem defines the main terms of
asymptotic approximations of solutions of the original boundary value problem (6), (7). It follows
that the local dynamics (6), (7) can also be complex. Note also that the cubic nonlinearities of
the equation (31) are more complex in form than in the classical Ginzburg-Landau equation.

2.3. A system with small coupling coefficients. It was shown above that the critical
case for the boundary value problem (6), (7) at 𝑎 = 0 is realized at 𝑓 = 0. Here we assume that
the coefficients 𝑎 and 𝑓 are sufficiently small, that is, for some 𝑎1 and γ1 we have the relations

𝑎 = 𝜀𝑎1, 𝑓 = 𝜀γ1 (0 < 𝜀 ≪ 1). (32)

Below we consider a problem of exactly this type, that is, with boundary conditions (7) we
investigate the equation

𝜕2𝑢

𝜕𝑡2
+ 𝜀𝑎1

𝜕𝑢

𝜕𝑡
+ 𝑢+ 𝑓(𝑢, �̇�) =

𝜀

2π

2π∫︁
0

Φ(𝑠)𝑢
(︀
𝑡− 𝜀−1, 𝑥+ 𝑠

)︀
𝑑𝑠. (33)

For a linearized equation at zero , the characteristic quasipolynomial has the form

λ2 + 𝜀𝑎1λ+ 1 = 𝜀𝑓𝑘 exp
(︀
− λ𝜀−1

)︀
.

Infinitely many roots λ𝑘(𝜀) (𝑘 = 0,±1,±2, . . .) of this characteristic equation tends to the
imaginary axis at 𝜀 → 0 and there is no root with a positive and separated from zero at 𝜀 → 0

real part. Thus, in the problem of the stability of the null solution (33) a critical case of infinite
dimension is realized. For λ𝑘(𝜀) asymptotic representations take place

λ𝑘(𝜀) = 𝑖+ 𝜀λ𝑘1 + . . . ,

and λ𝑘1 is the root of a quasi-polynomial

λ𝑘1 +
1

2
𝑎1 = − 𝑖

2
γ1 exp

(︀
𝑖θ− 𝑇1λ𝑘1

)︀
. (34)

The value θ = θ(𝜀) ∈ [0, 2π) appearing in (34) complements the value of 𝑇𝜀−1 to an integer
multiple of 2π. Note that the quasi-polynomial (34) has infinitely many roots.

We are looking for solutions to a nonlinear equation in the form of a formal series

𝑢 = 𝜀1/2
(︀
ξ(τ, 𝑥) exp(𝑖𝑡) + ξ̄(τ, 𝑥) exp(−𝑖𝑡)

)︀
+ 𝜀3/2𝑢3(𝑡, τ, 𝑥) + . . . , (35)
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in which the dependence on the argument 𝑡 – 2π is periodic. Substitute (35) into (33). Performing
standard actions, we come to the equation for 𝑢3. From the condition of its solvability in the
class of 2π-periodic 𝑡 functions, we obtain an equation with a fixed delay for determining an
unknown complex amplitude ξ(τ, 𝑥):

𝜕ξ
𝜕τ

= −1

2
𝑎1ξ−

𝑖

2
exp(𝑖θ) · 1

2
π

2π∫︁
0

Φ(𝑠)ξ
(︀
τ− 1, 𝑥+ 𝑠

)︀
𝑑𝑠+

+
1

2

(︀
3𝑖𝑏1 − 𝑏2 + 𝑖𝑏3 − 3𝑏4

)︀
ξ|ξ|2. (36)

Let’s formulate the main result.

Theorem 3. Let the condition (32) be met and for an arbitrarily fixed value θ0∈[0, 2π) by the
equation (36) has a solution ξ(τ, 𝑥) bounded at τ → ∞. Then on the sequence 𝜀𝑛 = 𝜀𝑛(θ0)
function

𝑢(𝑡, 𝑥, 𝜀𝑛) = 𝜀1/2𝑛

(︀
ξ(τ, 𝑥) exp(𝑖𝑡) + ξ̄(τ, 𝑥) exp(−𝑖𝑡)

)︀
+ 𝜀3/2𝑛 𝑢3(𝑡, τ, 𝑥)

for τ = 𝜀𝑛𝑡 satisfies the equation (33) with an accuracy of 𝑜(𝜀3/2𝑛 ).

It follows from this theorem that the distributed equation (36) is a quasi-normal form in the
case under consideration. For the equation (36), it is simple to investigate questions about the
existence and stability of the simplest cycles of the form ρ exp(𝑖στ). We do not dwell on this in
more detail.

3. A critical case on a non-zero mode

Here we assume that the largest modulo the Fourier coefficient 𝑓𝑘 of the function Φ(𝑠) has
a non-zero number 𝑘0, that is

𝑓 = max
−∞<𝑘<∞

|𝑓𝑘| = |𝑓𝑘0 |, 𝑘0 ̸= 0

and
|𝑓𝑘0 | > |𝑓𝑘| at 𝑘 ̸= ±𝑘0.

Consider the critical case in the problem of stability of the zero equilibrium state of the
boundary value problem (6), (7), when for some δ

𝑓𝑘0 =
(︀
γ0 + 𝜀2γ1

)︀
exp(𝑖δ). (37)

We give asymptotic formulas for all those roots of the characteristic equation (9) whose real parts
tend to zero at 𝜀 → 0.

Recall that the characteristic equation (9) is obtained by substituting Euler solutions in
(8)

𝑢±𝑘 (𝑡, 𝑥, 𝜀) = exp
[︀
± 𝑖𝑘𝑥+ λ𝑘(𝜀)𝑡

]︀
. (38)

To find the roots of λ𝑘(𝜀), we come to the equation

𝜀2λ2 + 𝜀𝑎λ+ 1 =
(︀
γ0 + 𝜀2γ1

)︀
exp

(︀
± 𝑖δ− λ

)︀
. (39)

From here we get the asymptotics λ±𝑘 (𝜀):
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1) for 𝑎2 > 2 we have λ−𝑘 (𝜀) = λ̄
+
𝑘 (𝜀) and λ+𝑘 (𝜀) = 𝑖δ+ 2π𝑘𝑖+ 𝜀λ𝑘1 + 𝜀2λ𝑘2 + . . ., where

λ𝑘1 = −𝑖𝑎
(︀
2π𝑘 + δ

)︀
,

λ𝑘2 =
1

2

(︀
2− 𝑎2

)︀(︀
δ+ 2π𝑘

)︀2
+ γ1 + 𝑖𝑎2

(︀
δ+ 2π𝑘

)︀
;

2) for 𝑎2 < 2 we have λ±𝑘 (𝜀) = 𝑖(ω0/𝜀+ θ± δ−Ω0 + 2π𝑘) + 𝜀λ±𝑘1 + 𝜀2λ±𝑘2 + . . ., where

λ±𝑘1 = −𝑖
(︀
γ0 exp(𝑖Ω0)

)︀−1(︀
2𝑖ω0 − 𝑎

)︀
𝐾±

𝑘 , 𝐾±
𝑘 = θ± δ−Ω0 + 2π𝑘,

λ±𝑘2 =
1

2

(︀
λ±𝑘1

)︀2 − γ1γ−1
0 −

(︀
𝑅±

𝑘

)︀2 − 𝑎λ±𝑘1 − 2𝑖ω0λ
±
𝑘1 = 𝐴±(︀𝐾±)︀2 +𝐵±𝐾± + γ1γ

−1
0 ,

𝐾± = θ−Ω0 + 2π𝑘 ± δ,

𝐴± =
(︁
γ0 exp

(︀
𝑖(Ω0 ∓ δ)

)︀)︁−1
− 1

2

(︁
(𝑎− 2𝑖ω)

(︀
γ0 exp[𝑖(Ω0 ∓ δ)]

)︀−1
)︁2

,

𝐵± = −𝑖
(︀
𝑎2 + 4ω2

)︀(︀
γ0 exp[𝑖(Ω0 ∓ δ)]

)︀−1
.

Note that Re λ±𝑘1 = Re λ𝑘1 = 0, Re λ𝑘2 < 0 and Re λ±𝑘2 < 0.

3.1. The case 𝑎2 > 2. In this case, the constructions in a critical situation on a non-zero
mode differ little from the constructions of the section 2. We are looking for solutions to the
nonlinear boundary value problem (6), (7) in the form

𝑢(𝑡, 𝑥, 𝜀) = 𝜀
(︁
ξ(τ, 𝑦) exp

[︀
𝑖δ(1− 𝜀𝑎)𝑡+ 𝑖𝑘0𝑥

]︀
+ ξ̄(τ, 𝑦) exp

[︀
− 𝑖δ(1− 𝜀𝑎)𝑡− 𝑖𝑘0𝑥

]︀)︁
+

+𝜀3𝑢3(𝑡, τ, 𝑥, 𝑦) + . . . , (40)

where by 𝑡, 𝑥 and 𝑦 the dependence is periodic, τ = 𝜀2𝑡, 𝑦 = (1− 𝜀𝑎)𝑡. Substituting (40) into (6),
(7) and performing standard actions, we get the following result.

Theorem 4. Let 𝑘0 ̸= 0 and 𝑎2 > 2 and let ξ(τ, 𝑦) be bounded at τ → ∞, 𝑦 ∈ [0, 1] by the
solution of the boundary value problem

𝜕ξ
𝜕τ

=
1

2
(𝑎2 − 2)

𝜕2ξ
𝜕𝑦2

+
(︀
𝑎2 + 𝑖δ(𝑎2 − 2)

)︀𝜕ξ
𝜕𝑦

+

(︂
1

2
δ2(2− 𝑎2) + γ1 + 𝑖𝑎2δ

)︂
ξ− 3𝑏1ξ|ξ|2, (41)

ξ(τ, 𝑥+ 2π, 𝑦) ≡ ξ(τ, 𝑥, 𝑦) ≡ ξ(τ, 𝑥, 𝑦 + 1). (42)

Then the function

𝑢(𝑡, 𝑥, 𝜀) = 𝜀
(︁
ξ(τ, 𝑦) exp

[︀
𝑖δ(1− 𝜀𝑎)𝑡+ 𝑖𝑘0𝑥

]︀
+ ξ̄(τ, 𝑦) exp

[︀
− 𝑖δ(1− 𝜀𝑎)𝑡− 𝑖𝑘0𝑥

]︀)︁
+

+𝜀3𝑢3(𝑡, τ, 𝑥, 𝑦) (43)

satisfies the boundary value problem (6), (7) up to 𝑜(𝜀3).

Note that for 𝑏1 = 0 and 𝑏2 ̸= 0, the last term in the equation (41) is replaced by

−− 𝑏2

[︂
𝑖δξ|ξ|2 + 3ξ2

𝜕ξ̄
𝜕𝑦

+ 2|ξ|2 𝜕ξ
𝜕𝑦

]︀
,

and the asymptotics of solutions in (43) goes not by integer powers of 𝜀, but by degrees 𝜀1/2.
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3.2. The case 𝑎2 < 2. Here, unlike the results of the section 2.2, not one, but two chains
of roots are involved λ+𝑘 (𝜀) and λ−𝑘 (𝜀). First we introduce the notation. Let’s put

𝐸± = exp
[︀
𝑖𝑘0𝑥+ 𝑖(ω0𝜀−1 + θ−Ω± δ)𝑡

]︀
.

We are looking for solutions to the nonlinear boundary value problem (6), (7) in the form

𝑢(𝑡, 𝑥, 𝜀) = 𝜀
(︀
ξ+(τ, 𝑦)𝐸+ + ξ̄+(τ, 𝑦)�̄�+ + ξ−(τ, 𝑦)𝐸− + ξ̄−(τ, 𝑦)�̄�−)︀+

+𝜀3𝑢3(𝑡, τ, 𝑥, 𝑦) + . . . , (44)

where the dependence on 𝑡, 𝑥 and 𝑦 is periodic. After substituting (44) into (6) and after standard
actions, we obtain a parabolic boundary value problem for determining unknown amplitudes
ξ±(τ, 𝑦)

𝜕ξ±

𝜕τ
= −𝐴±𝜕2ξ±

𝜕𝑦2
− 𝑖

(︀
2𝐴±(θ−Ω0 ± δ) +𝐵±)︀𝜕ξ±

𝜕𝑦
+

+𝐴±(θ−Ω0 ± δ)2 −𝐵±(θ−Ω0 ± δ) + γ1γ−1
0 +

+ 3ξ±
(︀
|ξ±|2 + 2|ξ∓|2

)︀(︀
𝑏1 − ω20𝑏3 − 𝑖𝑏4

)︀
+ 𝑖ω0𝑏2ξ±|ξ±|2 (45)

with boundary conditions
ξ±(τ, 𝑦 + 1) ≡ ξ±(τ, 𝑦). (46)

We formulate the obtained statement in the form of a theorem.

Theorem 5. Let 0 < 𝑎2 < 2 and let for an arbitrarily fixed value θ0 ∈ [0, 2π) the boundary
value problem (45), (46) has a bounded at τ→ ∞, 𝑦 ∈ [0, 1] solution ξ(τ, 𝑦). Then on the sequence
𝜀𝑛 = 𝜀𝑛(θ0) function

𝑢(𝑡, 𝑥, 𝜀𝑛) = 𝜀𝑛
(︀
ξ+(τ, 𝑦)𝐸+ + ξ̄+(τ, 𝑦)�̄�+ + ξ−(τ, 𝑦)𝐸− + ξ̄−(τ, 𝑦)�̄�−)︀+ 𝜀3𝑛𝑢3(𝑡, τ, 𝑥, 𝑦),

where τ = 𝜀2𝑛𝑡, 𝑦 = (1− 𝜀𝑛𝑎)𝑡, satisfies the boundary value problem (6), (7) up to 𝑜(𝜀3𝑛).

4. Critical cases in the boundary value problem (10)

Fundamentally new effects can occur in a situation where critical cases are realized simultaneously
on an infinite set of modes. Let’s consider such a situation on one of the most common examples,
when in the boundary value problem (10) we have

Φ(𝑠) ≡ const ≡ f0. (47)

We linearize this boundary value problem at zero. As a result , we obtain a linear equation

𝜀2
𝜕2𝑢

𝜕𝑡2
+ 𝜀𝑎

𝜕𝑢

𝜕𝑡
+ 𝑢 = 𝑓0

[︂
1

2π

2π∫︁
0

𝑢(𝑡− 1, 𝑥+ 𝑠)𝑑𝑠− 𝑢(𝑡− 1, 𝑥)

]︂
(48)

with periodic boundary conditions

𝑢(𝑡, 𝑥+ 2π) ≡ 𝑢(𝑡, 𝑥). (49)
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The characteristic equation for (48), (49) has the form

𝜀2λ2 + 𝜀𝑎λ+ 1 = 𝑓𝑘 exp(−λ), 𝑘 = 0,±1,±2, . . . , (50)

where

𝑓𝑘 =

⎧⎨⎩0, if 𝑘 = 0,

−𝑓0, if 𝑘 = ±1,±2, . . . .
(51)

We fix arbitrarily γ1 and assume
𝑓0 = γ0 + 𝜀2γ1. (52)

Under this condition, an infinite-dimensional critical case takes place for all but one of the
equations in (50). Following the methodology developed above, we are looking for solutions to
the nonlinear boundary value problem (10) in the form of a formal series:

1) provided 𝑎2 > 2 we have γ0 = 1 and

𝑢(𝑡, 𝑥, 𝜀) = 𝜀ξ(τ, 𝑥, 𝑦) + 𝜀3𝑢3(τ, 𝑥, 𝑦) + . . . (53)

2) provided 𝑎2 < 2 we have

γ0 =
𝑎2

4
(4− 𝑎2)1/2

and

𝑢(𝑡, 𝑥, 𝜀) = 𝜀
(︁
ξ(τ, 𝑥, 𝑦) exp

[︀
𝑖(ω0𝜀−1 + θ+ δ−Ω0)𝑡

]︀
+

+ ξ̄(τ, 𝑥, 𝑦) exp
[︀
− 𝑖(ω0𝜀−1 + θ+ δ−Ω0)𝑡

]︀)︁
+

+ 𝜀3𝑢3(𝑡, τ, 𝑥, 𝑦) + . . . (54)

In (53) and(54) τ = 𝜀2𝑡, 𝑦 = (1 − 𝜀𝑎)𝑡, the dependence on 𝑥 —2π is periodic, from 𝑦 — 1-
antiperiodic, from 𝑡 to (54) – 2π/ω0 is periodic, where ω0 = (1 − 𝑎2/2)1/2. By virtue of the
condition (51), a condition must be imposed on the function ξ(τ, 𝑥, 𝑦)

𝑀𝑥(ξ) = 0, где 𝑀𝑥(ξ) =
1

2π

2π∫︁
0

ξ(τ, 𝑥, 𝑦)𝑑𝑥. (55)

Substitute the expression (54) into (10). Performing standard actions, we obtain an equation
with respect to 𝑢3. From the condition of its solvability in the specified class of functions , we
obtain the equality:

1) for 𝑎2 > 2

𝜕ξ
𝜕τ

=

(︂
𝑎2

2
− 1

)︂
𝜕2ξ
𝜕𝑦2

− 𝑎2
𝜕ξ
𝜕𝑦

+ γ1ξ− 𝑏1
(︀
ξ3 −𝑀𝑥(ξ3)

)︀
, (56)

ξ(τ, 𝑥, 𝑦 + 1) ≡ −ξ(τ, 𝑥, 𝑦), ξ(τ, 𝑥+ 2π, 𝑦) ≡ ξ(τ, 𝑥, 𝑦); (57)

2) for 𝑎2 < 2 (in the notation of the section 2.2)

𝜕ξ
𝜕τ

= −𝑅2
𝜕2ξ
𝜕𝑦2

+𝑅4
𝜕ξ
𝜕𝑦

+𝑅5ξ− ξ2
𝜕ξ̄
𝜕𝑦

− 2|ξ|2 𝜕ξ
𝜕𝑦

−𝑀

(︂
ξ2

𝜕ξ̄
𝜕𝑦

+ 2|ξ|2 𝜕ξ
𝜕𝑦

)︂
(58)

with conditions (57).
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Here are the final statements.

Theorem 6. 1) Let 𝑎2 > 2 and let ξ(τ, 𝑥, 𝑦)— bounded at τ → ∞, 𝑥 ∈ [0, 2π], 𝑦 ∈ [0, 1] be the
solution of the boundary value problem (56), (57). Then the function

𝑢(𝑡, 𝑥, 𝜀) = 𝜀ξ(τ, 𝑥, 𝑦) + 𝜀3𝑢3(𝑡, τ, 𝑥, 𝑦)

satisfies the boundary value problem (48), (49) for τ = 𝜀2𝑡, 𝑦 = (1− 𝜀𝑎)𝑡 up to 𝑜(𝜀3).
2) Let 0 < 𝑎2 < 2 and let ξ(τ, 𝑥, 𝑦)— bounded at τ→ ∞, 𝑥 ∈ [0, 2π], 𝑦 ∈ [0, 1] be the solution

of the boundary value problem (58), (57). Then the function

𝑢(𝑡, 𝑥, 𝜀) = 𝜀
(︁
ξ(τ, 𝑥, 𝑦) exp

[︀
𝑖(ω0𝜀−1 + θ+ δ−Ω0)𝑡

]︀
+

+ ξ̄(τ, 𝑥, 𝑦) exp
[︀
− 𝑖(ω0𝜀−1 + θ+ δ−Ω0)𝑡

]︀)︁
+ 𝜀3𝑢3(𝑡, τ, 𝑥, 𝑦)

satisfies the boundary value problem (48), (49) for τ = 𝜀2𝑡, 𝑦 = (1− 𝜀𝑎)𝑡 up to 𝑜(𝜀3).

Thus, the boundary value problems (56), (57) and (58), (57) are quasi-normal forms for (48),
(49). Note that the presence in the equations (56) and (58) of integral terms in a spatial variable
allows us to explicitly find solutions smooth in τ and 𝑦 and stepwise in 𝑥. These issues have been
studied in detail in [32–34], so we do not dwell on them here.

5. About one generalization of the results

Let us briefly consider the more general boundary value problem (11), (12). We write out
the characteristic equation for its linearization at zero

𝜀2λ2 + 𝜀𝑎λ+ 1 = (𝑓𝑘1 + 𝜀λ𝑓𝑘2) exp(−λ), 𝑘 = 0,±1,±2, . . . , (59)

where 𝑓𝑘1 and 𝑓𝑘2 are the coefficients of the decomposition of the functions Φ1(𝑠) and Φ2(𝑠),
respectively, in the Fourier series. Put in (59) λ = 𝑖ω𝜀−1. As a result , we come to the equation(︀

1− ω2 + 𝑖𝑎ω
)︀(︀
𝑓𝑘1 + 𝑖ω𝑓𝑘2

)︀−1
= exp

(︀
− 𝑖ω𝜀−1

)︀
. (60)

Let’s study the question of the existence of a real root ω0 in the equation (60). Denote by 𝑝𝑘(ω)
function

𝑝𝑘(ω) = |1− ω2 + 𝑖𝑎ω| · |𝑓𝑘1 + 𝑖ω𝑓𝑘2|−1.

This function grows indefinitely at ω→ ±∞. Therefore, there is such a ω0 that

𝑝𝑘(ω0) = min
−∞<𝑘,ω<∞

𝑝𝑘(ω).

Let’s formulate one simple result.

Lemma 5. Let 𝑝(ω0) < 1. Then, for all sufficiently small values of 𝜀, all the roots of the
equation (59) have negative and real parts separated from zero at 𝜀 → 0. If 𝑝(ω0) > 1, then for
all sufficiently small values of 𝜀, the equation (59) has a root with a positive and separated from
zero at 𝜀 → 0 real part.

Thus, the critical case in the stability problem is realized under the condition 𝑝(ω0) = 1. After
that, the above method is transferred to the boundary value problem (11), (12).

536
Kashchenko S.A.

Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2023;31(4)



Conclusion

The question of the local dynamics of a fully connected system of oscillators is considered.
Critical cases in the problem of stability of the equilibrium state are highlighted. It is shown
that they have infinite dimension. The main results are that an algorithm has been developed
for constructing special nonlinear boundary value problems — quasinormal forms. Their nonlocal
dynamics determines the asymptotics of all solutions of the original equation in the vicinity of
the equilibrium state.

Quasinormal forms are spatially distributed nonlinear boundary value problems, for example,
the classical Ginzburg-Landau equations, so we can conclude that the class of problems considered
here is characterized by complex and irregular oscillations.

Depending on the value of the parameter 𝑎 — coefficient at �̇� in (1) — solutions are either
slowly oscillating (at 𝑎2 > 2) or rapidly oscillating (at 𝑎2 < 2) with asymptotically high frequency.
The quasi-normal forms from the section 4 contain another spatial variable. This, of course, leads
to a complication of the dynamic properties of solutions.

It is shown that the number of related equations in quasi-normal form is determined by
the number of modulo equal Fourier coefficients of the function Φ(𝑠). An important role belongs
to the value of the argument δ for the corresponding coefficients Φ(𝑠).

It should be particularly noted that in a number of quasinormal forms there are integral
terms of a nonlinear function with respect to a spatial variable. This leads to the fact that
solutions of quasi-normal forms can become structurally more complicated. For example, it is
explicitly possible to define solutions that are smooth and periodic in time, and stepwise in a
spatial variable, and in some cases to investigate their stability.

Note that in the case of slowly oscillating solutions, only the nonlinearity 𝑏1𝑢
3 of the

function 𝑓(𝑢, �̇�) is involved in constructing quasi-normal forms. If 𝑏1 = 0 and 𝑏2 ̸= 0, then
there is a structural complication of solutions and a change in the asymptotics of solutions of
the original equation. For fast oscillating solutions, all coefficients of the function are involved
𝑓(𝑢, �̇�).

The dynamic properties of the original boundary value problem (3), (4) at 𝑎2 < 2 are
sensitive to parameter changes. This conclusion follows from the fact that, firstly, in the quasi-
normal form there is a value θ = θ(𝜀) ∈ [0, 2π), which, with 𝜀 → 0, runs through all values from
0 to 2π. Secondly, at different values of θ, the dynamics of the quasi-normal form can differ [35],
which means that at 𝜀 → 0, an unlimited process of forward and reverse bifurcations can occur.

An important conclusion concerns the role of a large delay in the chains under consideration.
On the one hand, all analytical constructions for large 𝑇 allow us to explicitly identify critical
cases, find the asymptotics of the roots of characteristic equations and obtain asymptotic formulas
for solutions. On the other hand, for 𝑇 ≫ 1, all quasi-normal forms contain another spatial
variable, so we can conclude that the dynamics of properties becomes more complicated.
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