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Abstract. The purpose of this study is to develop a simple technique for labeling sleep stages according to EEG
data obtained from half-somnography recordings. To test the work of the method, it will be applied to three groups
of subjects: conditionally healthy, patients with Parkinson’s disease, patients with sleep apnea. Methods. In this
work, to recognize sleep stages, we use the calculation of a recurrent indicator and its subsequent assessment. It
is shown that the stages of REM (Rapid Eye Movement) and non-REM sleep demonstrate different values of the
recurrent index. Results. Depending on the range in which the recurrent indicator falls, the stages of REM and
non-REM sleep were determined for the subjects, according to their nightly polysomnographic records. For three
groups of subjects, the average knowledge of the accuracy of the method was calculated, which for all groups
exceeded 72.5%. Conclusion. It is shown that on the basis of recurrent analysis it is possible to create a simple
and effective method for recognizing sleep stages. For patients with apnea, the average accuracy of the method
is higher than for apparently healthy subjects, for whom, in turn, this value was higher than for patients with
Parkinson’s disease. This can be explained by the fact that the variability in the group of statistical characteristics
of sleep stages in patients with apnea is lower, and in patients with Parkinson’s disease is higher, compared with
apparently healthy subjects.
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Introduction

This paper presents a method for automatically marking sleep stages by calculating recurrent
indicators and their subsequent analysis. The problem of automating sleep marking is currently
acute for sleep specialists [1]. Due to the large amount of data, this task is not trivial, especially
considering that polysomnographic records are usually made two nights in a row and it is
necessary to analyze both records [2]. In this regard, recurrent analysis seems to be a good
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method for marking up data, since the method itself is easy to implement and does not require
a large number of complex calculations [3]. If the method shows good accuracy and low machine
time consumption, you can use it to quickly process nighttime sleep data and highlight sleep
stages in real time.

The method is based on the calculation of recurrent indicators in small time windows.
According to the dynamics of the recurrent indicator, it is possible to determine the stages of
non-REM and REM sleep, allowing you to record a hypnogram (a graphical representation of
the stages of sleep). The method was tested on three groups of subjects: conditionally healthy,
patients with Parkinson’s disease and patients with nocturnal apnea.

The purpose of this study is to develop a method for marking sleep stages based on recurrent
analysis.

1. Methods

1.1. Description of a neurophysiological experiment. The subjects voluntarily
participated in the experiment on a free basis. All subjects signed an informed consent to
participate in the clinical trial, received all necessary clarifications about the study and agreed
to the subsequent publication of the results of the study. The collected experimental data were
processed taking into account the confidentiality and anonymity of the study participants. All
procedures performed in human studies were consistent with the Helsinki Declaration of 1964
and its later amendments. All clinical data and design of the clinical trial have been approved
by the local research ethics committee.

Our study included data from 32 subjects over the age of 18, divided into three groups.
The group of conditionally healthy subjects (group number 1) included practically healthy
study participants (𝑁 = 14, average age 46.7 ± 19.5 years, median age 40 years, male-female
ratio 9/5). The group of patients with Parkinson’s disease (group number 2) included patients
with this disease (𝑁 = 8, average age 57.0 ± 12.3 years, median age 56 years, male-female
ratio 5/3). The group of patients with apnea (group number 3) included persons with nocturnal
respiratory failure in the form of obstructive sleep apnea syndrome (OAS) (𝑁 = 10, average age
54.0 ± 17.1 years, median age 46 years, male-female ratio 6/4). Each subject participated in a
polysomnographic (PSG) study twice with an interval of 1-3 nights in a specially equipped sleep
laboratory. The sleep duration was 6 to 9 hours, from 21:30 to 23:30 to the usual wake-up time.

The polysomnography recording included an electrocardiogram (ECG), respiratory function
signals, oculography (OCG), electromyogram (EMG) and six electroencephalogram (EEG) signals
recorded during a night’s sleep. The ECG signal was recorded in standard lead I according to
Einthoven. Respiratory signals were recorded using an oronasal flow temperature sensor and a
snoring sensor. EMG signals were recorded on the patient’s chin, right forearm and left shin. The
OCG signals included recordings of horizontal and vertical eye movements.

EEG signals were recorded in 6 standard leads according to the scheme 10-20. The following
channels were used: O1, O2, T3, T4, Fp1, Fp2. The EEG signals were filtered with a bandwidth
of 0.1...40 Hz and sampled at a frequency of 500 Hz and ∆𝑡 = 0.002 s. The recording of each
EEG channel can be considered as a separate one-dimensional signal 𝑥(𝑡𝑖).

All PSG were tested by a certified sleep medicine specialist in order to stage a night’s sleep.
Sleep staging was carried out according to standard epochs (30-second recording segments). Any
dream begins with the waking stage, characterized by alpha waves. If the activity of the alpha
rhythm occupies more than 50% of the epoch, then this epoch is called the waking state. The
greatest power of the alpha rhythm is observed in the occipital leads (O1, O2). The first stage
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(N1 of non-REM sleep) is characterized by a decrease in the amplitude of the waves and the
appearance of a visually pronounced theta rhythm, observed in all leads in approximately the
same way. The second stage (N2) begins with the appearance of K-complexes and characteristic
sleep spindles. The third stage (N3) of sleep is characterized by powerful slow-wave activity and
the development of pronounced delta waves. Sometimes the fourth stage of sleep is distinguished,
characterized by a further increase in the amplitude of delta activity, which is best visualized in
the frontal leads (Fp1, Fp2). The third and fourth stages of sleep are usually considered as a single
block. REM sleep is characterized by a low amplitude mixed frequency without K-complexes and
carotid spindles, low muscle tone of the chin (EMG of the chin forms an isoline) with simultaneous
rapid movements of the eyeballs and so-called mirror waves on electrooculography (EOG).

1.2. Recurrent analysis. One of the methods of nonlinear dynamics used to analyze
various data is recurrent analysis, which allows you to establish relationships and correlations
between signals in complex distributed systems [4]. This method has found application in a wide
range of tasks for processing complex signals of various nature [5]. The calculation algorithm
itself is characterized by the simplicity of [6]. This makes it promising for working with big data
and real-time signal processing. Consider the signal 𝑥(𝑡), the values of which are known at time
points 𝑡𝑖, where 𝑖 = 1, ..., 𝑛. You can build a recurrent matrix for it according to the following
rule:

𝑅𝑖,𝑗 = θ(𝜀− ‖𝑥(𝑡𝑖)− 𝑥(𝑡𝑗)‖), (1)

where 𝑅𝑖,𝑗 is an element of the recurrent matrix for the signal 𝑥; 𝑡𝑖 and 𝑡𝑗 are the time points 𝑡;
𝜀 is an empirically determined threshold value that ensures the necessary accuracy of the method;
θ is Heaviside function, which takes a zero value for negative arguments and a single value for
non-negative ones. Thus, if at time 𝑡𝑗 the signal returned to 𝜀 neighborhood of the signal value
at time 𝑡𝑖, then there will be 1 in the recurrent matrix.

To estimate the number of repetitions in the signal, a recurrent indicator is used, which
is the sum of all non-zero values of the recurrent matrix normalized by its size [7]. Such an
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Fig. 1. Hypnogram for one of the subjects, which shows the cases of awakening, stages of REM sleep and four
stages of non-REM sleep. Below there are the values of the recurrent indicator calculated in the corresponding
time windows. Stages 3 and 4 of sleep are marked in green, stages of REM sleep are marked in red (color online)
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indicator can be calculated for each analyzed signal 𝑥 over the entire length of the time series or
over a small time fragment. Due to the very large amount of data in polysomnography signals,
the recurrent indicator should be calculated for relatively small time fragments in a sliding time
window.

An approximate calculation scheme is shown in Fig. 1. Time windows of 60 seconds were
used to calculate recurrent indicators. This includes 30 000 signal counts, with a window offset
step of 30 seconds. This corresponds to the expert marking of sleep stages on the hypnogram
and allows you to determine the average value of the recurrent indicator for each stage of sleep.

1.3. Method for determining sleep stages. Now it is possible to perform a simple
statistical analysis for various stages of sleep (Fig. 2). The figure shows the variation of the
recurrent indicator for each stage of sleep, normalized by the average recurrent indicator across
the entire polysomnographic record for all three groups of subjects. The recurrent indicators
of awakenings, the first and second stages of sleep approximately coincide with the average
indicator for the entire signal. But stages 3 and 4, as well as the stage of sleep with rapid
eye movements (REM), are very different. For slow sleep, the recurrent indicator decreases, for
fast sleep it increases. The data were obtained for thirty-two people, each of whom underwent
polysomnographic examination for two consecutive nights.

According to the data in Fig. 2 we can offer a fairly simple method for determining the
stages of REM and non-REM sleep. It is clearly noticeable that the stages of non-REM sleep
show a decrease in the recurrent indicator, and the stages of REM sleep show an increase in the
recurrent indicator.

Thus, the algorithm for marking the fast and slow stages of sleep is the following sequence
of actions.

i. Search for the maximum and minimum values of recurrent indicators for a given hypnogram.
ii. Determining the values of 𝑅𝑅1 and 𝑅𝑅2 according to the following rules: 𝑅𝑅1 = 𝑅𝑅min+

+ 0.3 · (𝑅𝑅max −𝑅𝑅min), 𝑅𝑅2 = 𝑅𝑅max − 0.4 · (𝑅𝑅max −𝑅𝑅min).
iii. Determination of sleep stages according to the following rules: if the recurrent indicator is

𝑅𝑅 < 𝑅𝑅2, then sleep stages 3 and 4 are marked; if 𝑅𝑅 > 𝑅𝑅1, then the REM sleep stage
is marked; if 𝑅𝑅1 < 𝑅𝑅 < 𝑅𝑅2, then sleep stages 1 are marked and 2.
This method has a number of obvious advantages and serious disadvantages. The advantages

include its simplicity and speed of calculations. This is very important for fast post-processing of
polysomnography data (due to their large volume). This is also important for the implementation
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Fig. 2. Statistical patterns of subjects for different stages
of sleep (color online)

of devices for analyzing sleep stages in real
time (where the speed of calculations plays a
crucial role). Recurrent analysis is applicable
to all types of signals. Therefore, it is
possible to use the same method both for
EEG processing and for analyzing ECG data
obtained during a single recording. If a similar
simple way of marking sleep stages is identified
for data obtained from ECG data analysis, this
will greatly simplify the possible diagnosis of
sleep disorders, since recording an ECG signal
is much easier and cheaper, which is very
important for personalized medicine devices.

The disadvantages of the method
include the inability to separate stages 1 and 2,
as well as 3 and 4. Within the framework of the
above algorithm, it is not possible to identify
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cases of awakening, which are very important for assessing the quality of sleep. An important
point is the choice of rules for determining the values of 𝑅𝑅1 and 𝑅𝑅2, since for greater accuracy
of the method it is necessary to determine them each time not only for a new subject, but
also for each of his polysomnographic records. However, this is not possible if the method is
used for practical purposes to mark the stages of sleep. The specific values (0.3 and 0.4) of the
recurrent parameters were selected from an available selection of polysomnographic recordings
with hypnograms marked up by specialists, so that errors in determining sleep stages were
minimal. However, there is no certainty that these values of recurrent parameters are universal.

2. Results

To assess the accuracy of the method of marking sleep stages using recurrent analysis, data
from conditionally healthy subjects (14 people), patients with Parkinson’s disease (8 people) and
patients with apnea (10 people) were used. The accuracy of the method was calculated as the
ratio of the number of 30-second intervals for which the sleep stage was correctly determined
(according to a somnologist) to the total number of 30-second intervals in the recording. The
results of using the method on groups of subjects are shown in the Table.

The values of the average accuracy of the method for different groups of subjects took the
following form: 72.46% for conditionally healthy subjects, 67.81% for patients with Parkinson’s
disease and 77.902% for patients with apnea. The accuracy results are not ideal, but they
demonstrate good potential for further modification of this method. The best results were
obtained for patients with apnea. This means that for them the average characteristics of the
repetition of the dynamics of the EEG signals of different subjects are the closest. For patients
with Parkinson’s disease, the accuracy is the lowest. This indicates a very large instability of
repetitions of dynamics during sleep.

Table. Accuracy of applying the method of marking sleep stages for three
groups of subjects using recurrent analysis in relation to hypnograms marked
by specialists

№ Method № Method № Method
Group 1 accuracy Group 2 accuracy Group 3 accuracy

1 80.37578288 1 53.49753695 1 63.26742976
2 68.53002070 2 71.57652474 2 89.11088911
3 60.24973985 3 78.33333333 3 92.86442406
4 81.89386056 4 69.50053135 4 79.44214876
5 73.34004024 5 66.88034188 5 74.49392713
6 74.90974729 6 64.94192186 6 83.95061728
7 86.90344062 7 72.40356083 7 80.55842813
8 66.55092593 8 58.21138211 8 70.81632653
9 78.76923077 9 70.67209776
10 75.74819401 10 75.39370079
11 61.87500000
12 60.81081081
13 80.74921956
14 58.49843587
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Conclusion

In the framework of this work, a method for marking sleep stages is presented based on the
analysis of the values of recurrent indicators calculated in time windows for polysomnographic
EEG recordings. The method was tested on three groups of subjects: conditionally healthy,
patients with Parkinson’s disease and patients with nocturnal apnea. The method allows for fast
marking and building a hypnogram, highlighting the non-REM (1-2 and 3-4) and REM stages
of sleep. The average accuracy of the method exceeds 72.5%. The accuracy obtained seems to
be a fairly good result compared to existing methods of automatic marking of sleep stages.
In [2], the accuracy varies depending on the number of stages allocated from 65 to 80 percent.
And in the work of [8] using neural networks, the accuracy is slightly higher than 80 percent.
The method proposed in this paper is much simpler to implement. The time spent on building
a hypnogram is rarely mentioned in articles, but given the simplicity of calculating recurrent
indicators, it is most likely higher than for the proposed method. And taking into account the
duration of polysomnographic recordings, the simplicity and speed of calculation becomes an
important factor for choosing a method for recognizing sleep stages.

The accuracy of the method for conditionally healthy subjects coincides with the average
for three groups, for patients with Parkinson’s disease, the accuracy of the method is below
average, and for patients with cases of sleep apnea is above average. This effect is most likely due
to the fact that the average spread of the recurrent index for patients with Parkinson’s disease
is higher, and for patients with apnea it is lower than for conditionally healthy subjects.

References

1. Ebrahimi F, Alizadeh I. Automatic sleep staging by cardiorespiratory signals: a systematic
review. Sleep and Breathing. 2002;26(2):965–981. DOI: 10.1007/s11325-021-02435-8.

2. Mikkelsen KB, Villadsen DB, Otto M, Kidmose P. Automatic sleep staging using ear-EEG.
BioMedical Engineering OnLine. 2017;16(1):111. DOI: 10.1186/s12938-017-0400-5.

3. Parro VC, Valdo L. Sleep-wake detection using recurrence quantification analysis. Chaos.
2018;28(8):085706. DOI: 10.1063/1.5024692.

4. Acharya UR, Sree SV, Swapna G, Martis RJ, Suri JS. Automated EEG analysis of epilepsy:
A review. Knowledge-Based Systems. 2013;45:147–165. DOI: 10.1016/j.knosys.2013.02.014.

5. Acharya UR, Sree SV, Chattopadhyay S, Yu W, Ang PCA. Application of recurrence
quantification analysis for the automated identification of epileptic EEG signals. Interna-
tional Journal of Neural Systems. 2011;21(3):199–211. DOI: 10.1142/S0129065711002808.

6. Eckmann JP, Kamphorst SO, Ruelle D. Recurrence plots of dynamical systems. Europhysics
Letters. 1987;4(9):973–977. DOI: 10.1209/0295-5075/4/9/004.

7. Ramos AMT, Builes-Jaramillo A, Poveda G, Goswami B, Macau EEN, Kurths J, Marwan N.
Recurrence measure of conditional dependence and applications. Phys. Rev. E. 2017;95(5):
052206. DOI: 10.1103/PhysRevE.95.052206.

8. Zhu L, Wang C, He Z, Zhang Y. A lightweight automatic sleep staging method for children
using single-channel EEG based on edge artificial intelligence. World Wide Web. 2022;25(5):
1883–1903. DOI: 10.1007/s11280-021-00983-3.

648
Emelyanova E. P., Selskii A.O.

Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2023;31(5)

https://doi.org/10.1007/s11325-021-02435-8
https://doi.org/10.1186/s12938-017-0400-5
https://doi.org/10.1063/1.5024692
https://doi.org/10.1016/j.knosys.2013.02.014
https://doi.org/10.1142/S0129065711002808
https://doi.org/10.1209/0295-5075/4/9/004
https://doi.org/10.1103/PhysRevE.95.052206
https://doi.org/10.1007/s11280-021-00983-3

	Methods
	Description of a neurophysiological experiment.
	Recurrent analysis.
	Method for determining sleep stages.

	Results

