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Abstract. The purpose of this work is to study self-oscillatory systems under adaptive external action. This
refers to the situation when the phase of the external action additionally depends on the dynamical variable of
the oscillator. In a review plan, the results are presented for the case of a linear damped oscillator. Two cases
of self-oscillatory systems are studied: the van der Pol oscillator and an autonomous quasi-periodic generator
with three-dimensional phase space. Methods. Methods of charts of dynamical regimes and charts of Lyapunov
exponents are used, as well as the construction of phase portraits and stroboscopic sections. Results. In a review
plan, the results are presented for the case of a linear damped oscillator. Two cases of self-oscillatory systems
are studied: the van der Pol oscillator and an autonomous quasi-periodic generator with a three-dimensional
phase space. The pictures of characteristic dynamical regimes are described. Scenarios for the development of
multidimensional chaos are described. Illustrations are given of the influence of the control parameter, which is
responsible for the degree of dependence of the phase on the oscillator variable, on the dynamics of the system at
different frequencies of action. Conclusion. The taling into account of the dependence of the phase on a dynamical
variable leads to an extension of the tongues of subharmonic resonances, which are weakly expressed in the classical
van der Pol oscillator. This is especially noticeable for even resonances of periods 2 and 4. For the generator of
quasi-periodic oscillations in the non-autonomous case, three-frequency tori are observed, their regions begin to
dominate with an increase in the adaptivity parameter, displacing the tongues of resonant two-frequency tori.
A variety of multidimensional chaos characterized by an additional Lyapunov exponent close to zero is discovered,
the possibility of developing hyperchaos as a result of destruction is shown.
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Introduction

In nature and technology, there are often situations when the external impact on the system
depends not only on time, but also on the state of the system itself. This is a typical example
of feedback. Examples in radio engineering and communication tasks can be the phase-locked
frequency systems [1–5]. In biology, the system of cardiovascular regulation of living organisms
increases or decreases the heart rate when the load changes [6, 7]. Similar situations are typical
for neurodynamics. They can be characterized as adaptive properties of the system when the
impact on it is controlled by the dynamics of the system itself.

The simplest subject for such a study can be oscillatory systems under external influence
in the case when the phase of the impact depends on the dynamic variable of the system. At
the same time, the autonomous system being exposed can be of different types. It is logical to
choose situations that correspond to the main types of oscillatory processes. This can be the
simplest damped oscillator, an auto-oscillatory system with a periodic mode, as well as a system
with quasi-periodic oscillations. The first case was previously considered in detail in [8–10] and is
presented as a brief overview in section 1. The following situation, which is naturally introduced
into consideration — a system with periodic self-oscillations. Such a case on the example of the
van der Pol system is discussed in section 2. In section 3, a controlled system with autonomous
quasi-periodicity is considered — a quasi-periodic generator.

1. The case of a damped oscillator

The simplest case of an oscillatory system with a controlled phase of external action is a
damped oscillator described by the equation

�̈�+ 2α�̇�+ 𝑥 = 𝐴 sin(𝑝𝑡+ 𝑘𝑥). (1)

Here, the initial phase of the impact depends linearly on the dynamic variable 𝑥. The system
essentially depends on three parameters: the amplitude of the impact 𝐴, the frequency of the
impact 𝑝, the intensity parameter of the phase control 𝑘. The normalization in the equation (1) is
chosen so that the natural frequency of the oscillator is equal to one, α — the damping parameter
of the oscillator.

The system (1) was discussed in detail in [8–10]. The arrangement of planes of various
parameter pairs [8,9] was investigated. It is shown that the dependence of the phase of external
influence on the dynamic variable significantly complicates the dynamics. The system (1) demonst-
rates many areas of oscillatory modes realized in the vicinity of frequencies that are multiples
of the resonant one. The possibility of bifurcations of doubling the period of oscillations and
chaos is found. Multistability is also observed in the system. Other cases of dependence of the
impact phase on a variable, in particular, quadratic and cubic nonlinearity [10], have also been
investigated. Another control case is also discussed, when the frequency of exposure to [9] depends
on the dynamic variable. A radio-electronic experimental implementation based on an oscillatory
circuit with attenuation is presented for the case of both the controlled phase and the frequency
of exposure [9]. We also note that in [11] a nonlinear magnetic damping oscillator with a sine-type
nonlinearity and a linearly dependent phase of the effect on the angular variable is investigated.
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2. The case of periodic self-oscillations — van der Pol oscillator

Let us now consider the case when the excited system can generate periodic self-oscillations.
The simplest example is the van der Pol oscillator [12,13]:

�̈�− (λ− 𝑥2)�̇�+ 𝑥 = 𝐴 sin(𝑝𝑡+ 𝑘𝑥). (2)

Here λ is a control parameter responsible for negative dissipation. The other parameters are the
same as in (1). The normalization is chosen so that the natural frequency of the oscillator is
equal to one.

The equation (2) is reduced to the standard form of a system of three first-order equations:

�̇� = 𝑦,

�̇� = (λ− 𝑥2)𝑦 − 𝑥+𝐴 sin(𝑤),

�̇� = 𝑝+ 𝑘𝑦.

(3)

Let’s discuss the dynamics of the system (3). In Fig. 1, a presents a map of the dynamic
modes of the van der Pol oscillator under harmonic influence (that is, the case of 𝑘 = 0) on the
traditional for non-autonomous systems parameter plane frequency — amplitude of the impact
(𝑝,𝐴) for λ =1. This value of the parameter λ is convenient because it is intermediate between
the cases of quasi-harmonic approximation and relaxation oscillations [12, 13]. The color on
the map corresponds to the different periods of oscillation of the system, determined in the
Poincare section. Since the system in question is non-autonomous, a stroboscopic section was
constructed. The color palette and oscillation periods are indicated below the drawing. Non-
periodic oscillations are indicated in gray (in this case they can be quasi-periodic Q or chaotic C,
this method does not distinguish them). The narrow area of the run-up of trajectories is also
shown D.

In Fig. 1, a one can see a vast region of period 1 corresponding to the main resonance.
To the right of it are the synchronization areas on the subharmonics of the external force
(in the terminology of [14]). The synchronization language corresponding to period 3 is the most
pronounced, which is due to the cubic nature of the nonlinearity of the van der Pol oscillator.
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Fig 1. Charts of dynamical regimes for classical non-autonomous van der Pol oscillator (3) at λ = 1 (a) and with
controlled phase of external force at 𝑘 = 0.5 (b) and 𝑘 = 1 (c) (color online)

Krylosova D.A., Kuznetsov A. P., Sedova Yu.V., Stankevich N.V.
Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2023;31(5) 551



4

0

A

0

A A

1.88 3.83p 0 1p 1 3pa b c
4

0

-4

3

0

-4

3

0

-4

1.0

0

-0.8
-1.0 0 0.8 -2.5 0 2.5 -2.5 0 2.5 -2.5 0 2.5

y y y y

x x x x

d e f g

3 10

2

Fig 2. Zoomed fragments of chart of dynamical regime for non-autonomous van der Pol oscillator (3) at λ=1,
𝑘=0.5 (a, b, c). Phase portraits illustrating synchronization on the harmonics of an external force: 𝑝 = 0.92,
𝐴 = 0.655 (d); 𝑝 = 0.43, 𝐴 = 1.015 (e); 𝑝 = 0.3, 𝐴 = 1.17 (f ); 𝑝 = 0.23, 𝐴 = 1.2 (g) (color online)

The effect of the phase dependence on the dynamic variable on the observed modes is
illustrated in Fig. 1, b and fig. 1, c, which refer to the cases 𝑘 = 0.5 and 𝑘 = 1. It can be
seen that the introduction of such a dependence leads to the expansion of languages in the field
of synchronization on subharmonics of external force, weakly expressed in the classical van der
Pol oscillator. This is especially noticeable for even resonances of periods 2 and 4. In the case
of Fig. 1, c resonances with successive periods in the region of small amplitudes of the impact
become “equal”.

In Fig. 2 shows enlarged fragments of Fig. 1, b, illustrating the features of the device of
the parameter plane. Fig. 2, a represents an enlarged area between the languages of periods 2
and 4. It can be seen that with small amplitudes of impact, the picture has become close to
the classical sine mapping of the circle [15, 16]. Fig. 2, b — synchronization area on harmonics
of external force (in the terminology of [14]). It is located in the frequency range less than the
natural frequency of the oscillator. Such resonances on the map are characterized by a system
of languages of period 1 — they are answered by a different number of revolutions of the phase
trajectory, but the only intersection with the Poincare section. Examples of phase portraits for
different languages of period 1 for parameter values marked with dots on the map are shown in
Fig. 2, d–g. The increase in the trajectory speed is clearly visible with a decrease in the frequency
of the external signal. Between the languages of period 1 in Fig. 2, b very narrow languages of
other periods are also observed.

A fragment of the map in Fig. 2, c illustrates a region of sufficiently large amplitudes
when, for frequencies above the proper vertex, resonant languages of different periods are pulled
together to the boundary of the main resonance.

Let’s discuss in more detail the influence of the control parameter 𝑘 on the dynamics of
the system. For this purpose, examples of maps of dynamic modes on the parameter plane (𝑘, 𝐴)
were constructed for two values of the exposure frequency: equal to the natural frequency of the
oscillator 𝑝 = 1 (Fig. 3, a) and characterized by a sufficiently large frequency by tuning 𝑝 = 5
(fig. 3, b).
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Fig 3. Charts of dynamical regime for non-autonomous van der Pol oscillator (3) at 𝑝 = 1 (a) and 𝑝 = 5 (b), λ = 1
(color online)

Fig 4. Charts of Lyapunov exponents for non-autonomous van der Pol oscillator (3) at 𝑘 = 0.5 (a) and 𝑝 = 5 (b),
λ = 1 (color online)

It can be seen that when exposed at a resonant frequency of 𝑝 = 1, with small amplitudes
of exposure, a system of islands of period 1 appears, located quite regularly along the 𝑘 axis. At
large amplitudes of 𝐴, only the period 1 mode is observed. In turn, for the frequency of 𝑝 = 5, a
system of islands of period 5 can be seen. At the same time, with an increase in the amplitude of
the impact, there are many windows of very different periods immersed in the area of irregular
dynamics.

As we noted, the method used above does not distinguish between chaotic and quasi-
periodic modes. In the system under consideration, however, the latter are possible (unlike in
the case of a damped oscillator (1)). To demonstrate this and identify the areas of localization of
these modes, examples of maps of Lyapunov exponents were constructed, shown in Fig. 4. The
color on the maps was determined in accordance with the spectrum of Lyapunov exponents Λ1,2,3:

P — periodic mode, Λ1 = 0, Λ2,3 < 0;
Q — quasi-periodic mode, Λ1,2 = 0, Λ3 < 0;
C — chaotic mode Λ1 > 0, Λ2 = 0, Λ3 < 0.

A narrow area of trajectory run-up is also noted D.
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3. The case of a three-dimensional self-oscillating system
with adaptive external action — quasi-periodic generator

Now let’s increase the dimension of the autonomous system to three. This creates the
possibility of complicating its dynamics. Here we will consider the three-dimensional system
[17, 18], which in offline mode, depending on the parameters, is able to demonstrate a state of
equilibrium, periodic and quasi-periodic fluctuations. If we talk about radiophysics, then such
a system can be called a quasi-periodic generator. There are several examples of such systems
[17–23]. Note that quasi-periodic generators, excited even by a simple harmonic signal, have
been little studied. You can specify the works of [22,24] related to the modified by Anishchenko–
Astakhov’s generator, but a four-dimensional system was studied there, and within the framework
of a one-parameter analysis. In the work [25], a variant of a generator without equilibrium states
was studied, but in the case of pulsed action.

The system studied in this work has the form:

�̈�− (λ+ 𝑧 + 𝑥2 − β𝑥4)�̇�+ ω20𝑥 = 𝐴 sin(𝑝𝑡+ 𝑘𝑥),

�̇� = 𝑏(𝜀− 𝑧)− µ�̇�2.
(4)

Here λ is the control parameter of the generator, and ω0 is the frequency parameter. The other
parameters are selected similarly to [17,18]: 𝜀 = 4, 𝑏 = 1, µ = 0.02, β = 1/18, λ = −1. With this
choice of parameters, the autonomous system (4) can exhibit both periodic and quasi-periodic
fluctuations depending on the value of the parameter ω0. We will choose two cases when ω0 = 5
and ω0 = 2π, which corresponds to periodic and quasi-periodic oscillations of the autonomous
system. Note that the dependence of the mode type on the parameter ω0 does not allow to
exclude it by renormalization, as in the case of the van der Pol oscillator, for which the mode
type does not depend on the natural frequency.

The system (4) is reduced to the standard form of four first-order equations

�̇� = 𝑦,

�̇� = (λ+ 𝑧 + 𝑥2 − β𝑥4)𝑦 − ω20𝑥+𝐴 sin(𝑤),

�̇� = 𝑏(𝜀− 𝑧)− µ𝑦,
�̇� = 𝑝+ 𝑘𝑦.

(5)

When using the Lyapunov exponent map method, it should be borne in mind that since
the dimension of the autonomous system has increased, the model (5) will have 4 characteristic
Lyapunov exponents Λ1,2,3,4. Accordingly, there is a possibility of new dynamic modes, so we
will identify:
P — periodic mode, Λ1 = 0, Λ2,3,4 < 0;
Q2 — two-frequency quasi-periodic mode, Λ1,2 = 0, Λ3,4 < 0;
Q3 — three-frequency quasi-periodic mode, Λ1,2,3 = 0, Λ4 < 0;
C — chaos Λ1 > 0, Λ2 = 0, Λ3,4 < 0;
C0 — chaos with an additional Lyapunov exponent close to zero Λ1 > 0, Λ2 = 0, Λ3 ≈ 0,

Λ4 < 0;
HC — hyperchaos Λ1,2 > 0, Λ3 = 0, Λ4 < 0.

3.1. The case of harmonic external influence on periodic and quasi-periodic
oscillations. First, let’s consider the case of a simple harmonic effect when 𝑘 = 0. In Fig. 5
Lyapunov exponent maps are presented for two values of the parameter ω0 when the autonomous
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Fig 5. Charts of Lyapunov exponents of a non-autonomous quasi-periodic generator (5) for 𝑘 = 0 and ω0 = 5 (а),
ω0 = 2π (b). Other parameters: 𝜀 = 4, 𝑏 = 1, µ = 0.02, β = 1/18, λ = −1. The numbers indicate the periods of
cycles in the stroboscopic section (color online)

system demonstrates periodic and quasi-periodic self-oscillations. In the case of excitation of
periodic self-oscillations (Fig. 5, a), one can see the main synchronization language P having a
tip at a point corresponding to the frequency of external action equal to the frequency of natural
oscillations of the generator. There are very narrow synchronization languages of different periods,
so it is possible to distinguish resonances at double, triple and fivefold frequencies. The languages
of periodic modes are immersed in the region of two-frequency quasi-periodic oscillations Q2.
Note that near the main synchronization language, with sufficiently large signal amplitudes, a
small area of chaotic behavior can be detected, which occurs when synchronization languages
overlap at multiple frequencies.

In the case of a harmonic signal acting on a stable invariant torus, not only two-frequency
Q2, but also three-frequencyQ3 quasi-periodic oscillations can be observed, Fig. 5, b. Unlike
Fig. 5, a, the regions of the two-frequency tori Q2 have the form of tongues with points located
on the axis of the frequency of exposure. They are answered by resonant two-frequency tori
arising on the surface of a three-frequency one. Note that an external signal can initiate periodic
fluctuations of P, despite the fact that the autonomous system demonstrates a quasi-periodic
mode. In Fig. 5, b the main synchronization language is observed, as well as a narrow language
of period 3. Note that two languages of two-frequency quasi-periodicity are well traced to the
right and left of the main synchronization language. Regions of chaos are possible near the main
synchronization language and occupy small areas in the parameter space.

Note that the observed pattern is somewhat similar to two coupled van der Pol oscillators
excited by a harmonic signal [26,27].

3.2. The case of adaptive external influence on periodic fluctuations. Let’s
now consider the transformation of the pattern of modes in the system (5) in the presence of
adaptability of the external signal. First, let’s consider the case of ω0 = 5, when an autonomous
system demonstrates periodic self-oscillations.

In Fig. 6 presents a map of dynamic modes and a Lyapunov map on the plane period —
amplitude of the external signal (𝑝, 𝐴) for the value of the adaptivity parameter 𝑘 = 5. It is clearly
seen that the presence of great adaptability leads to the destruction of the main synchronization
language of period 1. However, the development of synchronization languages of other periods

Krylosova D.A., Kuznetsov A. P., Sedova Yu.V., Stankevich N.V.
Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2023;31(5) 555



5

Fig 6. Chart of dynamical regime (a) and chart of Lyapunov exponents (b) for a quasi-periodic generator with an
adaptive external action (5) in the regime of periodic self-oscillations, ω0 = 5, for 𝑘 = 5. Examples of stroboscopic
sections showing secondary Neimark–Sacker bifurcations inside synchronization tongues: c — 𝐴 = 45, 𝑝 = 21
(black), 𝐴 = 50, 𝑝 = 21 (red); d — 𝐴 = 46, 𝑝 = 25 (black), 𝐴 = 46, 𝑝 = 25.4 (red) (color online)

is observed — languages of period 3, 4, 5, etc. become pronounced. Inside these languages in
Fig. 6, a period doubling bifurcations are well traced, for example, the region of period 6 inside
the language of period 3. Within the languages of period 4 and 5, the areas of quasi-periodicity
Q2 are also visible on the map of Lyapunov exponents (marked with arrows in Fig. 6, b). They
arise as a result of the Neimark–Sacker bifurcations, аs illustrated by the phase portraits in
stroboscopic section in Fig. 6, c and 6, d. In Fig. 6, c shows a situation when, based on the limit
cycle of period 4, as a result of the Neimark–Sacker bifurcations 4-component two-frequency
invariant torus is born. Fixed points in the cross section up to the bifurcation threshold are
indicated in black, and invariant curves beyond the bifurcation threshold are shown in red. The
parameter values are indicated in the figure caption. A similar bifurcation occurs on the basis of
the synchronization language of period 5, as illustrated in Fig. 6, d.

Note that the adaptive effect leads to the formation of regions of chaos C, which appear
as a result of overlapping synchronization languages. Significant areas of chaos are also observed
at high signal amplitudes. The presence of vast regions of chaos is one of the differences from the
case of the van der Pol oscillator.

3.3. The case of adaptive external influence on quasi-periodic oscillations. Now
let’s move on to the case when ω0 = 2π, and the autonomous system demonstrates two-frequency
quasi-periodic oscillations. In Fig. 7 a set of maps of dynamic modes and maps of Lyapunov
exponents for this situation is presented at different values of the parameter 𝑘 responsible for
the adaptability of the system (5).

The introduction of even low adaptability (Fig. 7, a, 𝑘 = 0.5) changes the picture in the
same way as in the case of periodic fluctuations: the main synchronization language is destroyed,
while the language of period 2 becomes pronounced. On the Lyapunov exponent map it can
be seen that at low amplitudes, three-frequency tori Q3 are observed, with a built-in system
of languages of two-frequency tori at combination frequencies. With increasing amplitude, the
languages of the two-frequency tori overlap, forming a homogeneous region Q2. Very narrow
languages of periodic oscillations can be found inside the languages of two-frequency tori, which
expand with increasing amplitude and chaotic oscillations arise.

When the adaptivity parameter is increased to the value 𝑘 = 1 (Fig. 7, b), the language of
period 2 is also destroyed, but the languages of periods 4 and 5 become pronounced. The areas
of chaos expand, while the threshold for the occurrence of chaos in amplitude 𝐴 decreases.
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Fig 7. A set of charts of dynamic regimes (top row) and corresponding charts of Lyapunov exponents (bottom
row) for a quasi-periodic generator with an adaptive external action (5) in the quasi-periodic oscillation regime,
ω0 = 2π. 𝑘 = 0.5 (a); 𝑘 = 1 (b); 𝑘 = 5 (c) (color online)

For large values of the adaptivity parameter of the external signal 𝑘 = 5 (Fig. 7, c) on the
mode map, we see that there is an almost complete disappearance of periodic modes. Only very
small islands of periodicity are observed within the region of irregular oscillations. At the same
time, the three-frequency tori Q3 remain on the Lyapunov exponent map at low amplitude, which
begin to dominate, displacing the languages of the two-frequency modes observed in Fig. 7, a, b.

In Fig. 8, a graphs of Lyapunov exponents in a wide range of changes in the amplitude
of the external signal 𝐴 for the frequency of exposure 𝑝 = 5 and their enlarged fragments are
presented, Fig. 8, b, c. With a small amplitude of the impact of 𝐴 in Fig. 8, a the three-frequency
quasi-periodicity of Q3 is well traced when Λ1,2,3 = 0. It is illustrated by Fig. 8, d, which shows
on the left the attractor of the corresponding three-frequency torus in a stroboscopic section
(Fig. 8, d1) and on the right in a double Poincare section (Fig. 8, d2). When constructing a
double section, the points falling into the layer |𝑥| < 10−2 were selected, with the additional
condition 𝑦 > 0. In the double section, one can see a smooth closed invariant curve, which
corresponds to the three-frequency torus.

With an increase in the amplitude of the signal, a partial frequency capture occurs and a
two-frequency torus is born. This transition occurs as a result of a saddle-node quasi-periodic
bifurcation of the SNQ type described in [28], and at the moment of bifurcation a pair is born:
a stable and a saddle torus. In Fig. 8, e single and double mappings for this attractor are
presented. In the stroboscopic section, it is clearly visible that the invariant curve has a rather
complex shape — it is multi-turn, that is, it has a large number of rotations (Fig. 8, e1). In the
double Poincare section, 17 fixed points can be seen (Fig. 8, e2), which correspond to a 17-turn
two-dimensional torus.

A further increase in the amplitude of the impact leads to the destruction of the two-
frequency tori Q2 and the formation of a chaotic attractor. This is illustrated by the enlarged
fragment of the graphs in Fig. 8, b. Calculations show that in this case, the second indicator, as
is usually accepted in numerical calculations, can be considered zero (its value is on the order of
10−5). At the same time, the third Lyapunov exponent has a very small value in absolute value
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Fig 8. a–c — Plots of Lyapunov exponents with different scales for a quasi-periodic oscillation generator with an
adaptive external action (5) in the quasi-periodic oscillation regime, ω0 = 2π, 𝑘 = 5, 𝑝 = 5. SNQ is a saddle-node
bifurcation of invariant tori. Attractors of the system in the stroboscopic and double Poincaré sections: 𝐴 = 10 (d);
𝐴 = 23 (e); 𝐴 = 24 (f ); 𝐴 = 29 (g); 𝐴 = 60 (h); 𝐴 = 117.8 (i); 𝐴 = 140.0 (j ) (color online)

(about 10−3), but at the same time it is negative. In Fig. 8, b the corresponding area is indicated
by C0. This feature of the dynamics seems interesting, and we will give some comments.

In the works [18, 29–34], the possibility of a chaotic attractor with two (or even three)
zero Lyapunov exponents resulting from the destruction of a three-frequency torus or a cascade
of bifurcations of doubling tori was discussed. At the same time, there are no rigorous results,
and the issue is debatable. Therefore, following [18, 33], it is more accurate to talk about an
additional indicator “very close to zero”. In this regard, the considered example of an attractor
with a third indicator close to zero but negative is interesting. This feature is most likely due
to the presence of a two-dimensional saddle torus, which arose as a result of the saddle-node
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bifurcation [28]. In Fig. 8, f presents a stroboscopic section and a double section for chaos with
the third Lyapunov exponent close to zero. In the stroboscopic section, the attractor is close to
a three-dimensional torus (Fig. 8, f 1), however, in the double section we see that the invariant
curve has become non-smooth and has begun to collapse, although the shape of the original
invariant curve is clearly visible (Fig. 8, f 2).

Note that on the map Fig. 7, c the area of dynamics of this type is shown in black and
indicated by C0, while the value of the third indicator Λ3 ≈ 0 was determined with a threshold
for fixing a value close to zero of the order of 10−3. This criterion is partly conditional, since it
depends on the selected threshold, but allows you to visualize the area where such dynamics are
observed.

A further increase in the amplitude parameter leads to the destruction of the three-
frequency torus and in Fig. 8, g2 in the double section we see a developed chaotic attractor, which
is characterized by one positive, one zero and two negative Lyapunov exponents. An increase in
the amplitude of the external signal leads to further destruction of the three-frequency torus and
in Fig. 8, h1 already in the stroboscopic section we see that the attractor does not look like a
torus; the double section demonstrates a complex chaotic attractor.

For a large amplitude of the external signal, it is also possible to detect an area where the
two highest Lyapunov exponents are positive. In Fig. 8, c an enlarged fragment of the graphs
of Lyapunov exponents is presented, where the transition to hyperhaose HC is tracked when
Λ1,2>0. In Fig. 8, i an example of a hyperchaotic attractor is presented. The interval where
hyperhaos exists is quite small in the parameter space, and with a further increase in amplitude,
classical chaos is realized. In Fig. 8, j illustrations of an attractor for large amplitudes of an
external signal are presented.

Conclusion

The study of self-oscillating systems with periodic external action characterized by the
property of adaptability, when the phase of the action linearly depends on the dynamic variable
of the oscillator. The features of the behavior of self-oscillating autonomous systems with two-
dimensional and three-dimensional phase space are considered.

The van der Pol oscillator has been studied as a two-dimensional model. The presence
of adaptive effects leads to a complication of the pattern of modes, so that Arnold’s languages
in the field of synchronization on the subharmonics of the external signal become pronounced.
Within synchronization languages, doubling bifurcations with a transition to chaos are possible.
An increase in the adaptability parameter leads to the development of a pattern close to the
classical sine representation of a circle.

The generator of autonomous quasi-periodicity in the mode of periodic and quasi-periodic
self-oscillations is studied as a three-dimensional model. In the first case, an external influence
in the presence of adaptability leads to the fact that the language of the main resonance of
period 1 is destroyed, and the synchronization languages of periods 2, 3, etc. expand. Within
these languages, quasi-periodic dynamics may occur due to the Neimark–Sacker bifurcations, a
result, the formation of multi-turn tori occurs.

In the mode of quasi-periodic oscillations, the dynamics of a non-autonomous system
becomes richer. Three-frequency quasi-periodic oscillations appear, forming a region in which
the tongues of resonant two-frequency tori are immersed. In the case of a simple harmonic
effect, periodic regimes of period 1, 3, etc. arise, although the autonomous system demonstrates
quasi-periodicity. The presence of adaptability leads to the destruction of the main modes of
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full synchronization. The domain of three-frequency quasi-periodicity is radically expanding,
displacing the languages of two-frequency tori. At the same time, in small regions of the parameter
space, the destruction of the three-frequency torus is observed with the formation of multi-
dimensional chaos, which, in addition to zero, has another indicator close to zero in the spectrum
of Lyapunov exponents. The possibility of hyperhaosis in such a system is also shown.
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11. Polczyński K, Bednarek M, Awrejcewicz J. Magnetic oscillator under excitation with cont-
rolled initial phase. In: Awrejcewicz J, Kaźmierczak M, Olejnik P, Mrozowski J, editors.
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29. Broer H, Simó C, Vitolo R. Bifurcations and strange attractors in the Lorenz-84 climate
model with seasonal forcing. Nonlinearity. 2002;15(4):1205–1267. DOI: 10.1088/0951-7715/
15/4/312.
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