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Abstract. The purpose of this work is to build the analytical model of the behavior of a harmonic wave in a
nonlinear optical medium with periodically arranged nanofilms. Methods. The modernized method is presented
of non-smooth transformation of the argument to eliminate the Dirac functions on the right side of the non-
linear inhomogeneous differential equation describing linear polarized wave behavior within a non-linear optical
medium with periodically arranged conducting nanofilms. Small parameter methods, in particular, the averaging
method, is also used to find an approximate analytical solution. Results. The fully analytical model of the behavior
of a linear polarized harmonic wave within a nonlinear optical medium with periodically arranged conducting
nanofilms is constructed. Conclusion. For the case of propagation of a linearly polarized harmonic wave in a
nonlinear optical medium with periodically arranged conducting nanofilms, the mathematical model based on
the non-smooth argument transformation method is constructed. The model is fully analytical, all expressions
are obtained directly from Maxwell’s equations by identical transformations. The limits of its applicability are
determined by the limits of application of the wave theory of light.
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Introduction

The study of various periodic structures in optics has attracted the attention of scientists for
more than a hundred years [1–4]. One-dimensional [5,6], two-dimensional [7,8], three-dimensional
[9,10] structures were studied. From the very beginning to the present, special attention has been
drawn to various linear layered media, both isotropic [3] and anisotropic [4]. The main tasks in
this direction are to study the areas of passage and non-passage of the wave (the problem of
solution stability), finding solutions in the areas of passage, including periodic solutions.

With the development of laser technology, interest has also appeared in nonlinear periodic
optical structures [11, 12]. The main areas of research are the generation of higher harmonics,
self-focusing, etc. In this case, nonlinear medium can be used as high-quality filters. Since the
beginning of the XXI century, the study of various nanostructures [13, 14], including nanocoats
and nanofilms, has become relevant. The theoretical study of nanofilms is usually carried out
using a quantum optics apparatus. Further, to analyze structures including nanocoats and
nanolayers, it is necessary to jointly solve both the Maxwell equations and the Schredinger
equation [13–15]. Experimental results of measuring the conductivity of nanofilms of various
thicknesses from various materials are presented in [16].

We have considered a one-dimensional nonlinear structure with a periodic arrangement
of conductive nanofilms. The mechanisms of current formation in conductive nanofilms are
taken into account in Maxwell’s equations in the form of δ functions within the framework
of the nonlinear wave theory of light. This approach is simplified. But it greatly facilitates the
solution of the problem of analyzing optical devices on nonlinear structures, including periodically
arranged nanofilms. The authors constructed an analytical model using the method of non-
smooth argument transformation, the averaging method, and Lyapunov stability conditions. An
important point in the presented model is the exclusion of the δ function in the original wave
equation by converting the argument.

1. Setting the task

In this paper, we consider the behavior of a plane electromagnetic wave in a one-dimensional
infinite nonlinear dielectric medium described by the magnetic permeability µ and the dielectric
constant of the form [12]

𝜀(𝐸) = 𝜀0 + 𝜀2𝐸
2. (1)

The structure contains conductive nanofilms with a period of Λ (Fig. 1). In this case,
currents 𝐽𝑥 in neighboring nanofilms flow along the 𝑥 axis in opposite directions. This is possible
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Fig 1. Geometry of the problem

when external voltages of opposite polarity
are applied to adjacent films. The case of the
propagation of a linearly polarized wave along
the 𝑧 axis is considered (Fig. 1). Here 𝑧+1 , 𝑧−1
are coordinates of the location of conductive
nanofilms with positive and negative current
directions.

The aim of the work is to develop a fully
analytical mathematical method describing
the behavior of a plane harmonic wave in
the structure under consideration and allowing
periodic solutions to be found in the nonlinear
structure under consideration.
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2. The wave equation

Solving Maxwell’s equations

rot
−→
𝐸 = −1

𝑐

𝜕
−→
𝐵

𝜕𝑡
,

rot
−→
𝐻 =

1

𝑐

𝜕
−→
𝐷

𝜕𝑡

(2)

in the case of a harmonic linearly polarized wave for a given structure as a result of transformations
leads to a nonlinear inhomogeneous differential equation of the form

𝑑2𝐸𝑥(𝑧)

𝑑𝑧2
+
ω2𝜀0µ
𝑐2

𝐸𝑥(𝑧) +
3ω2𝜀2µ

𝑐2
|𝐸𝑥(𝑧)|2𝐸𝑥(𝑧) = 𝑗

4πωµ
𝑐2

𝐽𝑥, (3)

where 𝐽𝑥 = σ(𝑧)𝐸𝑥 is current density, σ(𝑧) is specific conductivity of a nonlinear dielectric
medium or nanofilms depending on the coordinate 𝑧, from (3) we obtain

𝑑2𝐸𝑥(𝑧)

𝑑𝑧2
+
ω2𝜀0µ
𝑐2

𝐸𝑥(𝑧) +
3ω2𝜀2µ

𝑐2
|𝐸𝑥(𝑧)|2𝐸𝑥(𝑧) = 𝑗

4πωµ
𝑐2
σ(𝑧)𝐸𝑥(𝑧). (4)

Since the nonlinear medium in the problem under consideration is dielectric, the σ(𝑧) in the
intervals between nanofilms is zero. Approximately considering the thickness of nanofilms tending
to zero in comparison with the size of the period of the structure, the expression on the right side
can be written using the Dirac δ function. Thus, for currents flowing in the positive direction of
the 𝑥 axis, we have

𝐽+
𝑥 = 𝑗

4πωµ
𝑐2
σnf(𝑧)𝐸𝑥(𝑧)δ(𝑧 − 𝑧+𝑘 ), (5)

where 𝑧+𝑘 is the spatial coordinate of the corresponding nanofilm. For currents flowing in the
negative direction of the 𝑥 axis, we have

𝐽−
𝑥 = −𝑗

4πωµ
𝑐2
σnf(𝑧)𝐸𝑥(𝑧)δ(𝑧 − 𝑧−𝑘 ), (6)

where 𝑧−𝑘 is the spatial coordinate of the corresponding nanofilm. Here, the current densities are
the same in absolute value and their amplitudes are equal. As a result, the equation for a plane
harmonic wave in a nonlinear medium with periodically arranged nanofilms (Fig. 1) takes the
form

𝑑2𝐸𝑥(𝑧)

𝑑𝑧2
+
ω2𝜀0µ
𝑐2

𝐸𝑥(𝑧) +
3ω2𝜀2µ

𝑐2
|𝐸𝑥(𝑧)|2𝐸𝑥(𝑧) =

= 𝑗
4πωµ
𝑐2
σnf(𝑧)𝐸𝑥(𝑧)

∞∑︁
𝑘=−∞

[︀
δ(𝑧 − 𝑧+𝑘 )− δ(𝑧 − 𝑧−𝑘 )

]︀
,

(7)

where σnf is the specific conductivity of the nanofilm. Next, for the convenience of the solution,
we introduce the notation

𝑝 =
ω2𝜀0µ
𝑐2

,

ε =
3ω2𝜀2µ

𝑐2
,

𝑞 = 𝑗
4πωµ
𝑐2
σnf .

(8)

630
Volkova S.A., Vytovtov K.A., Barabanova E.A., Khakhomov S.A., Kovalenko D. L., Ivanov M.G.

Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2023;31(5)



Here ε is a small parameter, because for real environments 𝜀2 has the order of 10−11...10−20,
𝑐 ≈ 3 · 108. Now the equation (7) takes the form

𝑑2𝐸𝑥(𝑧)

𝑑𝑧2
+ 𝑝𝐸𝑥(𝑧) + ε|𝐸𝑥(𝑧)|2𝐸𝑥(𝑧) = −2𝑞𝐸𝑥

∞∑︁
𝑘=−∞

[︀
δ(𝑧 − 𝑧+𝑘 )− δ(𝑧 − 𝑧−𝑘 )

]︀
. (9)

3. Solving the differential equation

This section presents a fully analytical model for analyzing the behavior of a plane harmonic
wave in an isotropic nonlinear structure with periodic inclusion of conductive nanofilms. The
model is based on the method of non-smooth argument transformation and the averaging method.

3.1. Non-smooth argument transformation. According to the previous section, the
right side of the equation (9) contains a sequence of δ functions. This is due to the fact that
two nanofilms with the opposite direction of current flow are located on the same period. The
system is solved for equidistant nanofilms, that is, for the so-called equidistant system. From
a mathematical point of view, the difficulty lies in the non-smoothness of the corresponding
dynamic process.

Modeling the effect of thin nanofilms (so-called pulse effects) can be performed in several
ways. The first way is to use the generalized functions [16]. However, this approach requires
additional mathematical justification for each specific system.

Another approach is to solve the problem at each of the intervals between nanofilms,
followed by combining solutions. Thus, instead of a single task, they solve an entire sequence of
tasks [17].

In this paper, the method of non-smooth argument transformation is used to model the
behavior of the wave in the structure under consideration. This method [18–20] allows you to
build a fully analytical mathematical model of the behavior of a wave in a nonlinear medium,
which contains δ Dirac functions, and obtain a solution for the period in the form of an analytical
expression.

According to the method, the solution (9) is searched for in the form

𝐸𝑥 = 𝑋(τ) + 𝑌 (τ)
𝑑τ
𝑑𝑧

(10)

where (Fig. 2)

τ =

{︃
−4𝑧/Λ+ 1 + 2𝑘, 𝑘Λ ⩽ 𝑧 ⩽ (𝑘 + 1/2)Λ,

4𝑧/Λ− 3− 2𝑘, (𝑘 + 1/2)Λ ⩽ 𝑧 ⩽ (𝑘 + 1)Λ,
(11)

where 𝑘 = 0,±1,±2, ...
The essence of the method of non-smooth argument conversion when replacing the variable

(10) is illustrated in Fig. 2. In accordance with the method, such a piecewise linear function τ(𝑧),
was introduced that the second derivative of it was equal to the sequence of δ functions in (9):

𝑑2τ(𝑧)
𝑑𝑧2

=
∞∑︁

𝑘=−∞

[︀
δ(𝑧 − 𝑧+𝑘 )− δ(𝑧 − 𝑧−𝑘 )

]︀
. (12)

Let’s take the first derivative of the function 𝐸𝑥(𝑧):

𝑑𝐸𝑥

𝑑𝑧
=

𝑑𝑋(τ)
𝑑𝑧

𝑑τ
𝑑𝑧

+
𝑑𝑌 (τ)
𝑑𝑧

(︂
𝑑τ
𝑑𝑧

)︂2
+ 𝑌 (τ)

𝑑2τ
𝑑𝑧2

. (13)
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Fig 2. Non-smooth argument conversion

It is obvious that for equidistant nanofilms with the opposite direction of currents [18]
(𝑑τ/𝑑𝑧)2 = 1. Then

𝑑𝐸𝑥

𝑑𝑧
=

𝑑𝑋(τ)
𝑑𝑧

𝑑τ
𝑑𝑧

+
𝑑𝑌 (τ)
𝑑𝑧

+ 𝑌 (τ)
𝑑2τ
𝑑𝑧2

. (14)

The term containing δ functions in (14) is excluded due to the boundary condition [19,20]:

𝑌 |τ=(𝑘+1/2)/Λ = 0,

𝑌 |τ=𝑘Λ = 0.
(15)

Then we will rewrite the first derivative in (14) as

𝑑𝐸𝑥

𝑑𝑧
=

𝑑𝑋(τ)
𝑑𝑧

𝑑τ
𝑑𝑧

+
𝑑𝑌 (τ)
𝑑𝑧

. (16)

Taking into account the above justification, the second derivative of the function 𝐸𝑥(𝑧) has the
form

𝑑2𝐸𝑥

𝑑𝑧2
=

𝑑2𝑋(τ)
𝑑𝑧2

𝑑2𝑌 (τ)
𝑑𝑧2

𝑑τ
𝑑𝑧

+
𝑑𝑋(τ)
𝑑𝑧

𝑑2τ
𝑑𝑧2

. (17)

Substitute the expressions (10) and (17) into (9) and get a differential equation of the form

𝑑2𝑋(τ)
𝑑𝑧2

(︂
𝑑τ
𝑑𝑧

)︂2

+
𝑑2𝑌 (τ)
𝑑𝑧2

𝑑τ
𝑑𝑧

+
𝑑𝑋(τ)
𝑑𝑧

𝑑2τ
𝑑𝑧2

=

= − 𝑝

(︂
𝑋(τ) + 𝑌 (τ)

𝑑τ
𝑑𝑧

)︂
− ε

(︂
𝑋(τ) + 𝑌 (τ)

𝑑τ
𝑑𝑧

)︂3

−

− 2𝑞

(︂
𝑋(τ) + 𝑌 (τ)

𝑑τ
𝑑𝑧

)︂ ∞∑︁
𝑘=−∞

[︀
δ(𝑧 − 𝑧+𝑘 )− δ(𝑧 − 𝑧−𝑘 )

]︀
.

(18)

Thus, we got the expression (18) containing δ functions in the left and right parts. These
singular terms should be excluded from (18) by equating the coefficients for the same orders
of derivatives τ. In this case, the influence of currents in nanofilms is manifested in the boundary
conditions discussed below.
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3.2. Building periodic solutions. Let’s perform algebraic transformations of the expression
(18) and get

𝑑2𝑋(τ)
𝑑𝑧2

(︂
𝑑τ
𝑑𝑧

)︂2

+
𝑑2𝑌 (τ)
𝑑𝑧2

𝑑τ
𝑑𝑧

+
𝑑𝑋(τ)
𝑑𝑧

𝑑2τ
𝑑𝑧2

= −𝑝𝑋(τ)− 𝑝𝑌 (τ)
𝑑τ
𝑑𝑧

−

− 2𝑞𝑋(τ)
∞∑︁

𝑘=−∞

[︀
δ(𝑧 − 𝑧+𝑘 )− δ(𝑧 − 𝑧−𝑘 )

]︀
−

− 2𝑞𝑌 (τ)
𝑑τ
𝑑𝑧

∞∑︁
𝑘=−∞

[︀
δ(𝑧 − 𝑧+𝑘 )− δ(𝑧 − 𝑧−𝑘 )

]︀
−

− ε

(︃
𝑋3(τ) + 3𝑋2(τ)𝑌 (τ)

𝑑τ
𝑑𝑧

+ 3𝑋(τ)

(︂
𝑌 (τ)

𝑑τ
𝑑𝑧

)︂2

+

(︂
𝑌 (τ)

𝑑τ
𝑑𝑧

)︂3
)︃
.

(19)

Let’s take into account that in (19) [18]

𝑑τ
𝑑𝑧

𝑑2τ
𝑑𝑧2

= 0,(︂
𝑑τ
𝑑𝑧

)︂2

= 1

(20)

and we will get

𝑑2𝑋(τ)
𝑑𝑧2

(︂
𝑑τ
𝑑𝑧

)︂2

+
𝑑2𝑌 (τ)
𝑑𝑧2

𝑑τ
𝑑𝑧

+
𝑑𝑋(τ)
𝑑𝑧

𝑑2τ
𝑑𝑧2

= −𝑝𝑋(τ)− 𝑝𝑌 (τ)
𝑑τ
𝑑𝑧

−

− 2𝑞𝑋(τ)
∞∑︁

𝑘=−∞

[︀
δ(𝑧 − 𝑧+𝑘 )− δ(𝑧 − 𝑧−𝑘 )

]︀
−

− 2𝑞𝑌 (τ)
𝑑τ
𝑑𝑧

∞∑︁
𝑘=−∞

[︀
δ(𝑧 − 𝑧+𝑘 )− δ(𝑧 − 𝑧−𝑘 )

]︀
−

− ε

(︃
𝑋3(τ) + 3𝑋2(τ)𝑌 (τ)

𝑑τ
𝑑𝑧

+ 3𝑋(τ)
(︂
𝑌 (τ)

𝑑τ
𝑑𝑧

)︂2

+ 𝑌 3(τ)
𝑑τ
𝑑𝑧

)︃
.

(21)

In accordance with the above, we equate the coefficients at τ0, 𝑑τ/𝑑𝑧, 𝑑2τ/𝑑𝑧2 to zero. We will
get a system that describes the behavior of the wave in the structure under consideration in a
general way:

𝑑2𝑋(τ)
𝑑𝑧2

+ 𝑝𝑋(τ) = −ε(3𝑋2(τ)𝑌 (τ) + 𝑌 3(τ)),

𝑑2𝑌 (τ)
𝑑𝑧2

+ 𝑝𝑌 (τ) = −ε(3𝑋(τ)𝑌 2(τ) +𝑋3(τ))

(22)

on condition
𝑌 |τ=(𝑘+1/2)/Λ = 0,

𝑌 |τ=𝑘Λ = 0,(︂
𝑑𝑋(τ)
𝑑𝑧

+ 𝑞𝑋(τ)

)︂⃒⃒⃒⃒
τ=(𝑘+1/2)Λ

= 0,(︂
𝑑𝑋(τ)
𝑑𝑧

+ 𝑞𝑋(τ)

)︂⃒⃒⃒⃒
τ=𝑘Λ

= 0.

(23)
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From a mathematical point of view, the equations (22), (23) represent a boundary value problem
for determining the functions 𝑋 and 𝑌 . Despite the formally complex form, the main advantage
of the resulting system (22), (23) is the absence of singular terms in it.

The presence of a small parameter ε in the model (22), (23) makes it possible to use
the Poincare scheme to construct periodic solutions ([21]). Let’s imagine the solution as a
decomposition over a small parameter of nonlinearity ε

𝑋 = 𝑋0(τ) + ε𝑋1(τ) + ε2𝑋2(τ) + ...,

𝑌 = 𝑌0(τ) + ε𝑌1(τ) + ε2𝑌2(τ) + ...,

𝑝 = γ2 + ε𝑝1 + ε2𝑝2 + ...,

(24)

where 𝑋0(τ), 𝑋1(τ),...; 𝑌0(τ), 𝑌1(τ),... and γ, 𝑝1, 𝑝2, ... are functions to be defined. This approach
leads to splitting the original equation describing the model into a recurrent sequence of boundary
value problems in the interval 𝑘Λ ⩽ 𝑧 ⩽ (𝑘 + 1)Λ. The generating one is a linear (ε = 0)
disconnected with respect to 𝑋,𝑌 -component eigenvalue problem

𝑑2𝑋0(τ)
𝑑𝑧2

+ γ2𝑋0(τ) = 0,

𝑑2𝑌0(τ)
𝑑𝑧2

+ γ2𝑌0(τ) = 0,

(25)

𝑑𝑋0(τ)
𝑑𝑧

+ 𝑞𝑋0(τ)|𝑧=(𝑘+1/2)Λ = 0,

𝑌0(τ)|𝑧=(𝑘+1/2)Λ = 0,

𝑑𝑋0(τ)
𝑑𝑧

+ 𝑞𝑋0(τ)|𝑧=𝑘Λ = 0,

𝑌0(τ)|𝑧=𝑘Λ = 0.

(26)

Solving the problem (25), (26) on eigenvalues, we define the desired functions 𝑋0 and 𝑌0

𝑋0𝑖 = 𝐴03𝑖(τ),

𝑌0𝑖 = 𝐶0ψ𝑖(τ),
(27)

where 𝐴0 and 𝐶0 are constants defined by initial conditions. In this case, 𝐶0 = −𝐴0 for
𝑘Λ ⩽ 𝑧 ⩽ (𝑘 + 1/2)Λ and 𝐶0 = 𝐴0 for (𝑘 + 1/2)Λ ⩽ 𝑧 ⩽ (𝑘 + 1)Λ.

Depending on the values of the parameter γ𝑖, there are two different types of eigenforms
of vibrations

3𝑖(τ) =

√︃
2

𝑞2 + γ2𝑖
(𝑞 cos(γ𝑖τ) + γ𝑖 sin (γ𝑖τ)),

ψ𝑖(τ) =
√
2 cos(γ𝑖τ)

(28)

for γ𝑖 = 𝑖π/2, where 𝑖 = 1, 3, 5, ... and

3𝑖(τ) = −

√︃
2

𝑞2 + γ2𝑖
(𝑞 sin(γ𝑖τ)− γ𝑖 cos (γ𝑖τ)),

ψ𝑖(τ) =
√
2 sin(γ𝑖τ)

(29)
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for γ𝑖 = 𝑖π, where 𝑖 = 1, 2, 3, ... Here the functions 3𝑖(τ) and ψ𝑖(τ) are represented as follows:

⟨3𝑛(τ),3𝑚(τ)⟩ = 1

2

(𝑘+1/2)Λ∫︁
𝑘Λ

3𝑛(𝑧),3𝑚(τ)𝑑τ = δ𝑛𝑚,

⟨ψ𝑛(τ),ψ𝑚(τ)⟩ = δ𝑛𝑚,

(30)

where δ𝑖𝑗 is the Kronecker symbol, 𝑛 = 1, 2, 3, ..., 𝑚 = 1, 2, 3, .... Then, after a series of
mathematical transformations and substituting (28) and (29) into (27), and then into (10),
we get

𝐸𝑥(𝑧) = −𝐴0

∞∑︁
𝑖=1

[︃
1√︀

𝑞2 + (𝑖π)2

(︂
𝑖π
Λ

cos

(︂
4𝑖π
Λ

𝑧

)︂
− 𝑞 sin

(︂
4𝑖π
Λ

𝑧

)︂)︂
− 4

Λ
sin

(︂
4𝑖π
Λ

𝑧

)︂]︃
+

+𝐴0

∞∑︁
𝑖=2𝑙−1

[︃
1√︀

𝑞2 + (𝑖π)2

(︂
𝑞 cos

(︂
2𝑖π
Λ

𝑧

)︂
+

𝑖π
2Λ

sin

(︂
2𝑖π
Λ

𝑧

)︂)︂
− 4

Λ
cos

(︂
2𝑖π
Λ

𝑧

)︂]︃
+𝑂(ε)

(31)
for 𝑘Λ ⩽ 𝑧 ⩽ (𝑘 + 1/2)Λ. Here 𝑙 = 1, 2, 3, ... .

𝐸𝑥(𝑧) = −𝐴0

∞∑︁
𝑖=1

[︃
1√︀

𝑞2 + (𝑖π)2

(︂
𝑖π
Λ

cos

(︂
4𝑖π
Λ

𝑧

)︂
− 𝑞 sin

(︂
4𝑖π
Λ

𝑧

)︂)︂
+

4

Λ
sin

(︂
4𝑖π
Λ

𝑧

)︂]︃
+

+𝐴0

∞∑︁
𝑖=2𝑙−1

[︃
1√︀

𝑞2 + (𝑖π)2

(︂
𝑞 cos

(︂
2𝑖π
Λ

𝑧

)︂
+

𝑖π
2Λ

sin

(︂
2𝑖π
Λ

𝑧

)︂)︂
+

4

Λ
cos

(︂
2𝑖π
Λ

𝑧

)︂]︃
+𝑂(ε)

(32)
for (𝑘 + 1/2)Λ ⩽ 𝑧 ⩽ (𝑘 + 1)Λ. It is important to note that the solution obtained in the form
(31), (32), does not contain the δ Dirac function. The expressions (31), (32) represent a zero
approximation of the solution. Similarly, the first, second and other approximations are found,
depending on the required accuracy of the solution.

Conclusion

In this paper, the behavior of a linearly polarized harmonic wave in an optical nonlinear
medium in the presence of periodically arranged conductive nanofilms is considered. The effect
of nanofilms on the behavior of the wave is taken into account by the introduction of δ functions.
A non-smooth transformation method is proposed to find periodic solutions to the differential
equation describing the behavior of the wave. It allows you to find an analytical solution for
the case under consideration. The advantage of the constructed model is to find an analytical
periodic solution on a period and the absence of δ functions in finite expressions. The correctness
of the constructed model is confirmed by the fact that it is completely analytical, and the final
expressions are obtained by identical transformations. The results presented in this paper can be
used for any medium and wave parameters within the framework of the wave theory of light.
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